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Two people, 1 and 2, are said to have common knowledge of an event if both know it, 1 knows 
that 2 knows it, 2 knows that 1 knows it, 1 knows that 2 knows that I knows it, and so on. This 
paper provides a Bayesian definition of common knowledge, that is, a definition in terms of 
beliefs (probability measures). The main result is an equivalence between this definition and a 
definition in terms of the u-fields representing 1 and 2’s information. To obtain this result the 
conditional probabilities must be proper and the u-fields posterior completed. 

1. Introduction 

The idea of common knowledge is central to game theory and the 
economics of uncertainty and information. For example, the non-cooperative 
analysis of a game (with complete information) starts with the assumption 
that the structure of the game is common knowledge among the players. 
Intuitively speaking, two people 1 and 2 are said to have common knowledge 
of an event if both know it, 1 knows that 2 knows it, 2 knows that 1 knows 
it, 1 knows that 2 knows that 1 knows it, and so on. 

Common knowledge was first formally defined by Aumann (1976). 
Aumann assumes that 1 and 2’s private information is represented by a pair 
of partitions of some state space 52. Individual i is said to know an event A 
at some state of the world o if the member of i’s information partition which 
contains w is itself contained in A. Using this definition of what it means to 
know an event, Aumann shows that an event A is common knowledge at o 
if and only if A contains the member of the meet (finest common coarsening) 
of 1 and 2’s partitions that contains w. 

An important restriction on the information structure in Aumann (1976) is 
that the join (coarsest common refinement) of 1 and 2’s partitions is assumed 
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to consist of non-null events. But many decision problems naturally call for a 
genera1 - possibly uncountable - state space, in which case null events (in the 
join) must be permitted. This paper provides a definition of common 
knowledge in this more genera1 situation. (Of course, the definition coincides 
with Aumann’s when his applies.) The starting point is a ‘Bayesian’ definition 
of knowledge: to say a person knows an event A at some state o means that 
(s)he assigns A posterior probability one at w. Having defined what it means 
for someone to know an event A at o, one can go on to define common 
knowledge of A at w. The main result in this paper is an equivalence 
between a definition of common knowledge in terms of beliefs and a 
definition in terms of the o-fields representing 1 and 2’s information.’ 

Apart from the intrinsic interest in defining common knowledge on an 
infinite state space, there is one fundamental issue which can only be 
addressed if we are able to define common knowledge on an infinite 0. In 
both Aumann (1976) and this paper, the information partitions and priors 
(i.e., the information structure on Q) are assumed to be common knowledge 
in an informal sense. We say ‘in an informal sense’ because the information 
structure is not an event in 52 and a forma1 mathematical definition of 
common knowledge applies only to events in G?. Of course, any mathematical 
theorems one proves on common knowledge - such as the equivalence result 
in this paper - are true whether or not it is assumed that the information 
structure is common knowledge, since the theorems hold regardless of 
interpretation. However, to interpret the theorems as statements about 
common knowledge, it is necessary to make the assumption that the 
information structure is common knowledge. As argued in Aumann (1976, 
1987), if this assumption is not satisfied then the state space can (and should) 
be expanded. In Brandenburger and Dekel (1985) the appropriate expanded 
state space is found such that if common knowledge is defined on this space, 
then the assumption that the information structure is common knowledge is 
in a certain sense without loss of generality. The point is that this expanded 
state space is uncountable even if the underlying state space is finite.’ 

Bayesian decision theory suggests a definition of knowledge in terms of 
beliefs - to say a person knows an event means that (s)he assigns it posterior 
probability one. Another approach would be to say that a person knows an 
event if (s)he is informed that it occurs - this is a definition in terms of an 
information partition/a-field. To obtain an equivalence between these two 
definitions, the two approaches have to be reconciled. This is achieved by 

‘Nielsen (1984) provides a different definition of common knowledge on a general state space 
using Boolean e-algebras. 

‘The expanded state space is the product of the underlying space of uncertainty, S say, and 
the spaces of all possible ‘types’ of 1 and 2. Following Harsanyi (1967-68) and Mertens and 
Zamir (1985), a type of person 1 (resp. 2) is an infinite hierarchy of beliefs - over S, over 2’s 
(resp. l’s) beliefs over S, and so on. The type spaces are uncountable even if S is finite. 
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assuming that the probability measures are regular and proper (see Defi- 
nition 2.2) and that the o-fields are completed in a suitable manner (see 
Definition 2.3). 

Recall that Bayes’ rule says nothing about how an individual i updates 
his/her beliefs over 52 if informed that a null event occurs. Regularity says 
that i must have a belief over s2 even if informed of some null partition cell 
H. But it is quite possible for i to ignore the fact that (s)he was informed that 
the true state lies in H, i.e., to assign positive posterior probability to states 
outside of H. Properness requires that after being informed of any partition 
cell H, i assigns posterior probability one to H even if H has prior 
probability zero. The use of the term ‘properness’ originated in Blackwell 
and Ryll-Nardzewski (1963). Blackwell and Ryll-Nardzewski (1963) and 
Blackwell and Dubins (1975) argue that an intuitively satisfactory theory of 
probability should involve proper regular conditional probabilities. 

To get an idea of the role of completion of the o-fields, suppose that i has 
no information, i.e., has the trivial partition {a}, but i assigns probability one 
to a strict subset A of Q. Then the only event of which i is informed is 52, but 
i knows A according to the definition in terms of beliefs. What is needed here 
is to add into i’s partition the events to which i assigns probability one or - 
what amounts to the same thing - the events to which i assigns probability 
zero. That is, it is necessary to complete i’s partition. 

2. Common knowledge in terms of beliefs 

This section begins with a review of the definition of common knowledge 
in Aumann (1976). There is a measurable space (Q, F), where Q is the space 
of states of the world and B is a o-field of subsets of 52. There are two 
individuals indexed by i= 1,2. Individual i’s information about the state of 
the world is represented by a (measurable) partition 9” of R. If the true state 
is o, then i is informed of the member Y’(o) of 9’ that contains o. 1 and 2 
have a common prior on D which assigns positive probability to every event 
in the join (coarsest common refinement) 8l v g2 of 1 and 2’s partitions. 

Consider an event A EF and a state of the world w E Q. i is said to know 
A at o if Y’(o) c A. An event A is said to be common knowledge at some 
state w if 1 knows A at w, 2 knows A at o, 1 knows 2 knows A at w, 2 
knows 1 knows A at w, and so on. Aumann shows that A is common 
knowledge at w if and only if (9’ A p2)(co)cA where (LY’ A g2)(o) is the 
member of the meet (finest common coarsening) of 8’ and Y2 that contains o. 

As argued in the introduction, many decision problems naturally call for 
an uncountable state space Q, in which case null events (in the join) must be 
allowed. Start with a probability space (L?,s,P) where P is the common 
prior of the two individuals.3 Individual i’s information is described by a sub 

3All our results generalize immediately to the case of more than two individuals and to non- 
identical priors. 
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o-field 9-’ of 9. For each i, fix a version of a regular conditional P- 
probability given pi, that is, a function Q’:9 x G+[O, l] such that: 

(1) for each A ~5, Q’(A, *) is a version of P(AI9”‘); 
(2) for each WE&X& Q’(., w) is a probability measure on 9. 

(This can be done if, for example, L! is a complete separable metric space and 
9 is the Bore1 field on s2.) This completes the description of the information 
structure. The elements of this structure - the probability space (s2,9, P), the 
a-fields 9;‘, F2, and the conditional probabilities Q’, Q2 - are assumed to 
be common knowledge between 1 and 2. In particular, notice that the 
conditional probabilities Q’, Q2 must be specified and hence must be 
common knowledge - it is not enough for just the prior P to be common 
knowledge. As was discussed in the introduction, this assumption that the 
information structure is common knowledge is in a certain sense without loss 
of generality. 

Consider an event AEF and a state of the world WE s2. Define ‘i knows A 

at w’ to mean that i assigns posterior probability 1 to A at o, i.e., Q’(A,o) = 1. 
The event that i knows A, to be denoted K’(A), is then the set of o’s such 
that i knows A at o: 

K’(A) = {w:Q~(A, W) = 1). 

K’( .) is a function from 9 to 9;‘. The following properties of K’( .) show 
that this function captures some aspects of one’s intuitive notion of what ‘to 
know’ means. (The proofs are straightforward and are omitted.) 

P.1. For any AE~, K’(A)E@. 

P.2. For any A, BE 9, if A c B, [i], then K’(A) c K’(B). 

P.3. For any A,, A,, . . . E 5, K’( n:= 1 A,) = f-j:= 1 K’(A,). 

The notation AcB, [i] means that for every WE s2, Q’(A-B, w) =O. So if 
AC B, [i], then i’s posterior belief at every state of the world o is that B 
happens whenever A happens. P.2 says that in this case if i knows A then i 
knows B. Note that AC B implies AC B, [i], which in turn implies that 
P(A- B) =0 (which says that i’s prior belief is that B happens whenever A 

happens), but the converses do not hold. P.2 has the form of the subsequent 
results in this paper in that it uses the conditionals Q’ and not the prior P. 

P.3 says that i knows A, and A, and so on if and only if i knows A, and i 
knows A, and so on. 

Now consider the event: 1 knows A, 1 knows 2 knows A, 1 knows 2 
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knows A, and so on. Call this event L’A. Formally, 

L’A=K’AnK’K2AnK’K2K’An.-*. 
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(Note that by P.l all sets of the type K’K’...A lie in 8’. Therefore L’A, 
being a countable intersection of such sets, also lies in 9i.) Let L2A denote 
the corresponding event: 2 knows A, 2 knows 1 knows A, and so on. 

Definition 2.1. An event AE~ is common knowledge at a state of the world 
OEO if oEL’AnL2A. 

Definition 2.1 formalizes the notion of common knowledge using 1 and 2’s 
beliefs, i.e., their posteriors Q’, Q2, as Bayesian decision theory suggests. An 
‘informational’ aproach would suggest that common knowledge can be 
defined using the a-fields 9-‘, F2, i.e., using 1 and 2’s private information. 
The objective now is to relate Definition 2.1 to an informational definition. 
To see the first issue which arises, consider the following simple example (see 
fig. 1).4 

Example. Sz = { q,w2,4 +=g2={{q), (4+4>, A=@,}. W(w))= 

P({o,))=& P({03})=0. If 1 and 2 are informed of (0~1, then they ignore 
this, so that P(.I(w,})=P(*). C onsider the state 03. It looks like A should be 
common knowledge at o3 since the member of the meet of 9’ and g2 that 
contains w3, namely {w3}, is contained in A. But A is not common 
knowledge at w3 in the sense of Definition 2.1 since K’A = K2A = 9. 

In this example, if 1 and 2 are informed of {w3}, they ignore this 
information. To rule out this somewhat implausible situation one should 
require that an individual assign posterior probability one to any partition 
cell, even if that cell has zero prior probability. Another justification for 

Fig. 1 

r------1 

7 4 I 

L______ J 

4The examples in the paper use a Finite R. Although with finite Q and common priors one can 
simply throw out the null events, this procedure does not extend to the infinite case. The 
examples are designed to be illustrative of the diffkulties in the general case. 
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imposing this restriction is that if it does not hold, an individual may not 
know his/her own beliefs: when informed of {w,}, 1 and 2 assign posterior 
probability 3 to {wi} (and hence to the belief P(.I{w,))) and posterior 
probability $ to {02} (and hence to the belief P(.\{w~})). The general version 
of the restriction on conditional probabilities we want to impose is called 
properness [see Blackwell and Ryll-Nardzewski (1963) and Blackwell and 
Dubins (1975)]. 

Definition 2.2. Qi is proper if for each own, Q’(F, o)=lF(o) for every 
FE9’. 

lF(.) denotes the indicator function. Theorem 1 in Blackwell and Ryll- 
Nardzewski (1963) provides a necessary and sufficient condition for the 
existence of a proper version. For our purposes there is no loss of generality 
in assuming that Q’ is proper. [This is because on the expanded state space 
in Brandenburger and Dekel (1985), properness is automatically satisfied 
provided the underlying state space is complete separable metric.] The 
assumption of properness is also made in the literature on extensive form 
refinements of Nash equilibrium: it is implicit in the intuition behind 
subgame perfection [Selten (1965)] and in the definition of a sequential 
equilibrium [Kreps and Wilson (1982)]. Axiomatic characterizations of 
proper conditional probabilities can be found in Brandenburger and Dekel 
(1986) and Myerson (1986). Given properness, the function K’(.) defined 
earlier can be shown to satisfy the following properties in addition to 
P.l-P.3. 

P.4. For any A E 9, K’A c A, [i]. 

P.5. For any FEY;‘, K’F=F. 

Under the assumption that Q’, Q2 are proper we can now prove a one- 
way implication between the definition of common knowledge in terms of 
beliefs (Definition 2.1) and an informational definition in terms of the o-fields 
9i and g2. 

Lemma 2.1. Suppose there is a set F in the meet 9l A p2 such that WE F 
and F c A, [i], i = 1,2. Then A is common knowledge at CO. 

Proof: If FcA, [l], then K’FcK’A by P.2. But by P.5, F=K’F, so 
FcK’A. Hence OE K’A. Similarly, K2FcK2A by P.2 and F=K2F by P.S. 
So FcK2A and thus F=K’FcK’K2A by P.5 and P.2. Hence CDEK’K~A. 
Continuing in this way shows that OE L’A. A similar argument shows that 
COEL’A. I-J 
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R 

Fig. 2 

In order to obtain a converse to Lemma 2.1, and hence an equivalence 
between Definition 2.1 and an informational definition of common know- 
ledge, the o-fields P-‘, F2 must be completed as the following example 
illustrates (see fig. 2). 

Example. Q = { Wl,W2, %>Y 8’ = {{WI>, (02, %>I, p2 = {{% @2>? {%I), A = 

{WI}. P({o,}, = P({WJ}) =t ~({o,})=O, K’A = ((Q-4, K2A = {% 02>, 

K’K~A= {ml} =K’A. Continuing in this way shows that L’A= {ol) and 
L2A = {ol, o,}, so wl E L’A n L’A. That is, A is common knowledge at o1 in 
the sense of Definition 2.1. On the other hand, the meet of 1 and 2% partitions 
is just the trivial partition {a}. Hence the converse to Lemma 2.1 fails since 
it is false that Sz c A, [i] = 1,2. 

It looks like the way to deal with the problem in this example is to throw 
out the null event {02}. But this cannot be the right intuition for a general 
(infinite) 52. Instead let’s do the opposite - add in the null events to i’s 
partition. This procedure is known in probability theory as completion 
[Chung (1974, p. 31, Exercise 20)]. However, the standard notion of 
completion, which would add in all the events to which i assigns prior 
probability 0, is inappropriate.5 Only those events to which i assigns 
posterior probability 0 at every state of the world should be added to i’s 
partition. We call this procedure ‘posterior completion’. 

Definition 2.3. The posterior completion of 9’ is the o-field gi generated by 
9’ and the class of sets {GE 9: Q’(G, w) = 0 for every o E Sz}. 

Lemma 2.2 below provides a useful characterization of i’s posterior com- 
pleted a-field &“. It says that Pi contains all the events G in the underlying 

‘To see why, refer back to the second example with P({w,})= 1 and P({o,}~{w,,o,})= 
P({u+}/{o~,o~})=~. It would be wrong to add {IQ}, to which P assigns prior probability 0, 
into l’s partition since there is no o at which 1 knows {wJ. 
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cr-field 9 such that, whatever state of the world occurs, i knows either G or 
the complement of G. 

Lemma 2.2. &=(GE9:for every w~S2,Q~(G,w)=0 or l}. 

The proof of Lemma 2.2 relies on standard arguments on completion and is 
omitted. Using Lemma 2.2 a partial converse to Lemma 2.1 can now be 
stated. 

Lemma 2.3. Suppose A is common knowledge at w. Then there is a set F in 
the meet @I A 9’ of the posterior completed a-fields such that OE F and 
FcA, [i]=1,2. 

Proof Set F=L’AnL’A. Clearly L’AnL’AcL’AcK’A, and P.4 says 
that K’AcA, [l]. So L’AnL’AcA, [l]. We now want to show that 
L’An L’AE@‘, i.e., that for every o, Q’(L’A n L’A,w) =0 or 1 (using 
the characterization in Lemma 2.2). By definition if OE K’(L’A n L’A), 
Q’(L’AnL’A,w)=l. So to prove that L’A~L’AE$’ it will be enough 
to show that if WER-K’(L’AnL’A), Q’(L’AnL’A,o)=O. But 
K1(L’AnL2A)=K’L1AnK’L2A=L’A by P.3 and P.S. Hence L’AnL’Ac 
K’(L’AnL’A). If ~ES~---K’(L’A~L~A), then Q1[S2-K1(L1AnL2A),o]=1 
by properness. So if ~ESZ--K’(L’AnL’A), Q’(L’AnL’A,w)=O as 
required. Similar arguments establish that L’ A n L2 A c A, [2], and 
L’AnL’AE$‘. 0 

There is one more difficulty to overcome before the equivalence result can 
be stated. The remaining problem is that when the o-fields are completed we 
get events in the meet which are believed never to happen. To see this, refer 
back to the second example with P({w,})=P({w,})=~. {02} is a member of 
both 1 and 2’s posterior completed a-fields, hence it lies in the meet. But 
even if {02} happens, 1 and 2 both assign posterior probability zero to {02}. 
So certainly {02} is not common knowledge at any state of the world in the 
sense of Definition 2.1. In order to rule out such situations it is necessary to 
consider only ‘non-null’ members of the meet: say an event G E 9 is non-null 
if for i = 1,2, Q’( G, w) > 0 for every w E G. 

Proposition 2.1. A is common knowledge at o if and only if there is a non-null 
FE$1n&2such that a.r~F and FcA, [Ii], i=l,2. 

Proof. Only ijI Set F=L’An L2A and proceed as in the proof of Lemma 
2.3. The only additional step is to show that F is non-null. But this follows 
immediately from L’ An L2A c K’(L’An L’A), i = 1,2, which was shown in 
the course of that proof. 
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ZJ Suppose CDEF and F CA, [i], i= 1,2, where F is a non-null member of 
the meet. Since F is non-null, Lemma 2.2 implies that Q’(F, w) = 1 for every 
OE F. That is, F cK’F, i= 1,2. The proof now follows exactly the lines of the 
proof of Lemma 2.1. q 
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