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1. INTRODUCTION 

It is customary in game theory to model a situation of differently in- 
formed players in terms of partitions of a state space. In this paper we 
study the correlated equilibria (Aumann, 1974, 1987) of games in which 
players make information processing errors. To do this we replace parti- 
tions by more general information structures called possibility correspon- 
dences. As a result our players can ignore bad news, be unaware of events 
they do not observe, forget, or even fail to imagine some contingencies. 
Possibility correspondences have been examined by Shin (1986, 1987), 
Samet (1990), and Geanakoplos (1989). This last paper also introduced the 
notion of Nash equilibrium for games in which players make information 
processing errors. 

In a correlated equilibrium, information matters to a player only insofar 
as it provides a clue to other players’ choices. (The states of the world, 
which describe the players’ uncertainty, do not directly enter any player’s 
payoff function.) Hence the information processing errors allowed for by 
possibility correspondences cause players to make mistakes (in an indi- 
rect fashion) about other players’ actions. We examine the set of correl- 
ated equilibria obtained by varying the set of states of the world and the 
players’ priors and possibility correspondences. This enables us to com- 
pare the set of (generalized) correlated equilibria with information pro- 
cessing errors, with the set of (conventional) correlated equilibria in 
which such errors are absent. In the Nash equilibria studied in Geanako- 
plos (1989), the states of the world do enter the players’ payoff functions. 
Hence the set of states of the world and the players’ priors and informa- 
tion structures are naturally thought of as fixed. Moreover, in this con- 
text, information processing errors play an additional role: they directly 
affect a player’s payoffs through mistakes about the state of the world. 

In comparing the sets of correlated equilibria-with and without infor- 
mation processing errors-we adopt two approaches. In the first, the 
perspective is that of the players themselves, that is, we focus on the 
players’ strategies and payoffs. We show that any correlated equilibrium 
with information processing errors is, from the viewpoint of the players, 
decision-theoretically equivalent to some (subjective) correlated equilib- 
rium in which such errors are absent but players may have different prior 
beliefs (Proposition 4. I). Conversely, we prove that any subjective correl- 
ated equilibrium is decision-theoretically equivalent to a correlated equi- 
librium with common priors, but with (significant) information processing 
errors (Proposition 4.2). Together these results establish that information 
processing errors and different priors are interchangeable as far as the 
players’ decision problems are concerned. Moreover we show that allow- 
ing players to make further errors in the calculation of conditional proba- 
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bilities adds nothing new to the analysis: such miscalculations can already 
be subsumed in information processing errors (Remark 4.1). 

In the second approach, the perspective is that of an outside observer. 
We suppose the players share a common (objective) prior and we focus on 
the distribution on actions induced by a correlated equilibrium. When the 
players have partitions (i.e., make no mistakes) and share a common 
prior, the set of correlated equilibrium distributions on actions is a closed, 
convex set (see Aumann, 1974, 1987). Permitting mistakes, but keeping a 
common prior, must maintain or enlarge the set of correlated equilibrium 
distributions. We describe a class of information processing errors which 
nevertheless leaves the set of correlated equilibrium distributions un- 
changed (Proposition 5.2). We also characterize the set of correlated equi- 
librium distributions that arise when we allow a larger class of mistakes by 
the players (Proposition 5.1). This latter set is again convex, but not 
necessarily closed. 

The organization of the rest of the paper is as follows. Section 2-de- 
scribes alternative information structures. Section 3 defines generalized 
correlated equilibria and discusses their interpretation. Section 4 estab- 
lishes the results on decision-theoretic equivalence. Section 5 character- 
izes generalized correlated equilibrium distributions. 

2. ALTERNATIVE INFORMATION STRUCTURES 

The information structures discussed in this section all start with a finite 
set Sz of possible states of the world. In the standard framework, player 
i’s information is represented by a partition Hi of a, that is, a class of 
nonempty disjoint subsets of IR that covers 0. Given a partition Hi, define 
a correspondence Hi: fi -+ 2” \ (8) by letting H’(o) be the member of Hi 
that contains w. (Clearly the range of Hi is then Hi.) If the true state is o, 
player i is informed of H’(w). A more general way of representing infor- 
mation that allows for information processing errors is via a possibility 
correspondence Pi: 1R + 2” \ {d}. The interpretation is that if the true state 
is o, player i regards all states in P’(W) as possible. Possibility correspon- 
dences have been studied by Shin (1986, 1987), Samet (1990), and Geana- 
koplos (1989). In this paper we shall make use of various combinations of 
the following properties of the correspondence Pi. 

(1) (Nondelusion). For all w E R, w E P’(o). 

(2) (Knowing That You Know, KTYK). For all w E s1, w’ E P’(o) 
implies P’(w’) C P’(0). 

To define the properties of balancedness and positive balancedness, we 
need a preliminary definition. Say a set E C Cl is selfeuident if for every 
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w E E, P’(o) C E. That is, E is self-evident if whenever E happens, i 
knows that E happens (i can only imagine states in which E happens). 
Given a possibility correspondence Pi: fi * 2” \ {8}, let Pi denote the 
range of Pi. 

(3) (Balancedness). For every self-evident set E C R there is a func- 
tion p: Pi * [w such that 

XE = c P(R’h, 
R'EP' 
R'CE 

where XA denotes the characteristic function of A (i.e., XA(m) = 0 or 1 
according as w & A or o E A). 

(4) (Positive Balancedness). For every self-evident set E C R there is 
a function p: Pi ---, R, such that 

XE = 2 P(RI)xR:. 
R'EP' 
R'CE 

Property (1) of Pi says that player i always imagines the true state to be 
possible. Property (2) says that if i knows some set A at w, and can 
imagine o’, then he would know A at w’. In other words, i knows what he 
knows. It can be shown (see Geanakoplos, 1989) that, assuming nondelu- 
sion, KTYK implies balancedness. In fact, in the context of certain cor- 
related equilibria with information processing errors, balancedness is no 
more general than KTYK (see Proposition 5.1 and Remark 5.2). Clearly, 
positive balancedness is more restrictive than balancedness but weaker 
than assuming a partition. (Also, positive balancedness neither implies 
nor is implied by KTYK.) Nevertheless, we show that for certain correl- 
ated equilibria with information processing errors, positive balancedness 
is equivalent to assuming a partition (see Proposition 5.2). For a discus- 
sion of the kinds of information processing errors captured by possibility 
correspondences satisfying various combinations of Properties (l)-(4), 
see Geanakoplos (1989). 

It remains to discuss the issue of player i’s beliefs. The usual Bayesian 
approach is to assume that i has, in addition to a partition Hi of R, a prior 
probability distribution rri on R. If the true state is w, the probability that i 
assigns to a set A C R is then given by the conditional probability 
r’(AIH’(o)). Likewise, when i has a possibility correspondence Pi, it is 
natural to suppose that if the true state is w then i assigns probability 
rr’(AIP’(w)) to A. We could also imagine allowing for mistakes in comput- 
ing probabilities by supposing that player i, rather than calculating condi- 
tionals as just described, possesses a more general “belief function” 
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6’: fI + A(0) giving i’s beliefs at each state of the world. (Here A(a) 
denotes the set of all probability measures on a.) The probability that i 
assigns to an event A C R when o occurs, @(o)(A), might not be obtained 
by taking conditionals with respect to a prior 7~~ and possibility correspon- 
dence P’, that is, 6’(w)(A) f d(AIP’(w)). For example, player i might 
miscalculate conditional probabilities. In fact, we can show that this extra 
generality adds nothing new: errors in calculating probabilities can be 
captured in information processing errors (see Remark 4.1). 

3. GENERALIZED CORRELATED EQUILIBRIUM 

This section begins with a review of the usual notion of correlated 
equilibrium as introduced by Aumann (1974). Consider an n-person game 
I’ = (A’, . . . , A”; d, . . . , u*) where, for each i = 1, . . . , it, A’ is 
player i’s finite set of actions and ui: X&i Aj + [FB is i’s payoff function. 
For any finite set Y, let A(Y) denote the set of probability measures on Y. 
Given sets Y’, . . . , Y”, Y-’ will denote the set Y’ x **’ x Yi-i x 
yi+l x . . . x Y”, and y-’ = (y’, . . . , y’-I, yi+i, . . . , y”) a typical 
element of Y-‘. To define a correlated equilibrium of I, one must add to 
the basic description of the game a finite state space fi and, for each i, a 
prior ~~ on a, a partition Wi of 0, and a mapf’: Q + A’ satisfying H’(w’) = 
Hi(w) impliesf’(w’) = f’(o). A correlated equilibrium (CE) of I is a collec- 
tion (a ; ri, Hi, fi) where for every i and each o E R the conditional 
expected payoff to i off’(w) is at least as great as the conditional expected 
payoff to i of any other action ~2: 

,,& 7r’(W’(Hyw))uqfi(w), jyw’)) 2 2 7Ti(w’pzi(w))ui(ai, f-‘(w’)) 
o’EH’(o) 

for all ui E A’.’ If all the 7~~‘s are the same (the Common Prior Assump- 
tion) then the CE is an objective correlated equilibrium (OCE). If we wish 
to emphasize the possibility of different priors, we will refer to a CE as a 
subjective correlated equilibrium (SCE).2 

A generalized correlated equilibrium (GCE) is exactly the same as a 
CE, except that the players have possibility correspondences Pi in place 
of partitions W. Thus (a ; &, Pi, f3 is a GCE of I if for every i and each 
w E n: 

1 The conditional distributions mi(.lHi(o)) are assumed to exist for every H’(o), even if 
ri(Hi(~)) = 0, and to satisfy r’(H’(o)(H’(o)) = 1 (’ i.e., properness in the sense of Blackwell 
and Dubins (1975)). 

z Strictly speaking, our definition is that of an a posteriori equilibrium (Aumann, 1974, 
Sect. 8) since optimality on euety W(o) is required. 
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P’(0’) = Pi(o) impliesf’to’) = f’(w); (1) 

,,S(,) Ti(dIPyw))uyfi(w), f-‘(d)) 2 2 &J’IPi(w))uitai, f-‘(d)) 
w’EP’(o) 

for all L? E A’. If all the 7~~‘s are the same, we refer to an objective 
generalized correlated equilibrium (OGCE). If we wish to emphasize the 
possibility of different priors, we will refer to a GCE as a subjective 
generalized correlated equilibrium (SGCE). 

We illustrate the definition of a GCE by means of two examples. Con- 
sider first the familiar game of Matching Pennies depicted in Fig. 1. 

Recall that in any OCE of Ii the conditional expected payoffs to the 
players are always 0 (see Aumann, 1974). By contrast, we now describe 
an OGCE of I, in which the conditional expected payoffs to each player 
are all strictly positive. 

Figure 2 depicts the state space R = {I, 2,3,4,5,6} and the mapsfi and 
f, and illustrates the possibility correspondences P’ and P*. Player l’s 
possibility correspondence P’ satisfies: P’(1) = {l}, P’(2) = {1,2}, P’(3) = 
(1, 3}, P’(4) = (4, 6}, P’(5) = (5, 6}, P’(6) = (6). Player 2’s possibility 
correspondence P* satisfies: P*(l) = P*(4) = P*(5) = (1, 4, 5}, P*(2) = 
P*(3) = P*(6) = {2,3,6}. Finally, the common prior r assigns probability 5 
to each of states 1 and 6, probability & to each of states 2,3,4, and 5. It is 
readily verified that (a ; 7r, Pi, fi) is an OGCE of Il. 

The conditional expected payoffs to player 1 are either 3 or 1; the 
conditional expected payoff to player 2 is always B. Note that the possibil- 
ity correspondence P’ satisfies nondelusion and KTYK (hence balanced- 
ness), but is not positively balanced. In Section 4 we define a notion of 
decision-theoretic equivalence between GCEs. This definition permits a 
general characterization of conditional expected payoffs that arise in 
GCEs in terms of those arising in CEs. 
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In this example, the distribution on actions assigns probability B to each 
of (U, L) and (D, R), and probability & to each of (D, L) and (U, R). A 
general characterization of the distributions on actions induced by 
OGCEs is provided in Section 5. 

Our second example is based on the game (taken from Aumann (1974)) 
depicted in Fig. 3. This is a three-player game in which player 1 chooses 
the row, player 2 the column, and player 3 the matrix. A calculation 
shows that in any OCE of I2 player 1 chooses D and player 2 chooses L. 
(Player 3 might choose A or B, depending on his private information.) In 
particular, each player gets a payoff of 1. By contrast, we now describe an 
OGCE of I2 in which each player actually receives (ex post) a payoff of 3. 

Figure 4a depicts a copy of the state space CR = (1, 2, 3, 4}, and player 
I’s possibility correspondence Pi. Figure 4b depicts a second copy of a, 
and player 2’s possibility correspondence P*. Player 3’s possibility corre- 
spondence P3 satisfies: P3(1) = P3(2) = (1, 2}, P3(3) = P3(4) = (3, 4). The 
common prior 7 assigns probability $ to each state. Player 1 chooses U at 
every state of the world, player 2 chooses R at every state, and player 3 
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chooses A in states 1 and 2 and B in states 3 and 4. All this constitutes an 
OGCE of r2 in which each player receives a payoff of 3. The possibility 
correspondences P’ and P2 satisfy nondelusion and KTYK (hence bal- 
ancedness), but are not positively balanced. 

Let us now consider two possible interpretations of a GCE. The first is 
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simply the counterpart to the conventional “common knowledge” view 
of equilibrium. Under this interpretation all aspects of the structure of the 
game, including the players’ possibility correspondences, are common 
knowledge. In particular, it is common knowledge that the players make 
information processing errors-but there is nothing that they can do 
about it! Indeed it can be to the players’ mutual advantage that they make 
such errors: witness the fact that in the OGCE of I2 just described, the 
players receive (ex post) payoffs of 3, as opposed to 1 in any OCE of 12. 
This first interpretation is not, however, one that we find compelling and 
so we now turn to an alternative interpretation. 

The second interpretation assumes much less than the common knowl- 
edge hypothesized above. We think it more appropriate in the context of 
this paper to suppose that, far from the possibility correspondences being 
common knowledge, a player is not even aware of his own possibility 
correspondence. To see why this is more natural in the present context, 
consider the GCE of Matching Pennies described above. When w = 2 say, 
player 1 considers either w = 1 or 6.1 = 2 possible. Note that player 1 does 
nor argue that since he was not informed of the set {I}, which he would 
have been had the true state been o = 1, but rather was informed of { 1,2}, 
only o = 2 is possible. (This latter line of reasoning would of course, if 
adopted, lead back to the supposition that player 1 processes information 
in accordance with a partition.) For player 1 to reason in this (counterfac- 
tual) fashion he would need to be aware of his own possibility correspon- 
dence. By contrast, the point of view of this paper is precisely that players 
may lack such complete self-awareness and that information processing 
errors are therefore to be expected. Indeed, it seems to us that people 
often take information at face value, and do not contemplate what other 
information they could have received. For example, how often when 
reading a newspaper does one go through the process of imagining how 
the article would have been written in different states of the world (even 
though such a process may well lead to a better understanding of the true 
state of affairs)? 

Having discussed the “lack of self-awareness” alternative to the “com- 
mon knowledge” hypothesis, we now turn to the second interpretation of 
a GCE. Players are assumed to make information processing errors but 
are unaware that they do so. At the same time, our definition of equilib- 
rium presupposes that each player’s expectations of how the other play- 
ers move as a function of the state of the world are correct. (If one adopts 
the view of correlated equilibrium proposed in Aumann (1987), then a 
state of the world specifies each player’s choice. In this case it is tautolog- 
ically true that expectations of moves as a function of the state are cor- 
rect.) Under our second interpretation, then, the notion of GCE is plausi- 
ble insofar as the conjunction of the two hypotheses of “lack of 
self-awareness” and correct expectations concerning others’ moves 
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makes sense. We find the conjunction of these two hypotheses no less 
reasonable than is a model of information processing errors in the single- 
person case. There also, a decision maker is allowed to make mistakes in 
processing information but is assumed to assess correctly the conse- 
quences of any given state. Likewise, in the present context, a player may 
make information processing errors but is assumed to assess correctly the 
consequences of any given state, namely the moves of the other players at 
that state. 

In the definition of a GCE players are permitted to make information 
processing errors about the state of the world. On the other hand, they are 
not allowed to be mistaken about the actions chosen by the other players 
as a function of the state of the world. Note, however, that players can 
make mistakes, in an indirect fashion, about other player’s actions by 
making mistakes about o. In the GCE of Matching Pennies described 
above, when w = 2 player 1 “should” recognize that since he has not 
been informed of the set {l} but has been informed of { 1,2} the state must 
be o = 2. In other words, he should deduce that player 2 is playing R. 
Instead, player 1 acts as if he ignores this finer information and places 
probability a on player 2 playing L. Given the fact that he is playing U at 
w = 2, we might say that player 1 ignores the “bad” news that player 2 is 
actually playing R. Observe that what is “good” or “bad” news for 
player 1 is determined endogenously by the equilibrium. 

4. DECISION-THEORETIC EQUIVALENCE 

In this section we demonstrate an equivalence between correlated equi- 
libria that allow for information processing errors and correlated equilib- 
ria in which the agents do not make such errors but may have different 
priors. This result is based on the following notion of decision-theoretic 
equivalence between equilibria of a game. 

DEFINITION 4.1. For a fixed game I, let (0 ; ri, Pi, f’) and (6 ; +ri, pi, 
J‘i) be SGCEs. Th e two equilibria are decision-theoretically equivalent if 
for every i there is an isomorphism $9: Pi -+ IFpi such that: 

(1) J“(W) = f’(w) when P’(w) = $@‘(&J)); 

(2) for di E Pi and Ri = @(Z?“) 

&z, iii(GII?i)ui(ai, f-‘(6)) = 2 ~‘(WIRi)ui(ai,f-‘(w)) 
WERI 

for all a’ E A’. 
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It is easy to see that this notion of decision-theoretic equivalence is 
indeed an equivalence relation. If one SGCE is decision-theoretically 
equivalent to another, then behaviorally the two equilibria are equivalent 
in the sense that strategies and conditional expected payoffs agree. 

PROPOSITION 4.1. Let (fI;ri, Pi, f’) be an SGCE of a game r. Then 
there is a decision-theoretically equivalent SCE (fi;iii, Hi, pi) of r. 

Proof. Let fi = [FD’ X ... x P” and for each i let H’(R’, . . . , R”) = 
{R’} X IFP-‘. By construction, I-U’ is a partition and there is an isomorphism 
4’: I-U’---, Pi. Let ii’ be defined by 

ii’(R’, . . . ) R”I{R’} X pmi) = ~~((0: P’(w) = Rj forj f i}lR’) 

+({Ri} x Pi) = &. 

The probability measure ii’ is defined immediately from the above condi- 
tional and marginal. Define J? h + A’ by p(R’, . . . , R”) = f’(o) for w 
such that P’(o) = R’. Now, using the definitions, it follows that for all Ri E 
Pi and ai E A’ 

c fr’(R’ 3.. . , R”I{Rq x V>ui(ai,f-‘(RI, . . . , R”)) 
R-GP-' 

= C $({w : P(w) = Rj forj f i}IR’)u’(a’, f-‘(R’, . . . , R”)) 
R-iEp-’ 

=I2 c 7~~(wIR~)u’(a’, f-‘(o)) 
RPEQ- {o:PYo)=RJ forjfi} 

= z ni(uIRi)ui(ai f-‘(o)). W 7 
WER' 

Proposition 4.1 says that the notion of an SGCE is not decision-theoret- 
ically more general than that of an SCE. However, OGCEs are more 
general than OCEs. That is, there are GCEs in which the players have a 
common prior, such that in any equivalent CE the players are required to 
have different priors. For example, refer back to the OGCE of Matching 
Pennies described in Section 3. The state space fi and the players’ condi- 
tional probability distributions in the decision-theoretically equivalent CE 
constructed according to the proof of Proposition 4.1 are illustrated in 
Fig. 5. 

Could these conditionals have arisen from a common prior on ai? The 
answer is no, as can be seen either by direct calculation (by showing that 
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the restrictions that such a prior would have to satisfy are inconsistent), 
or by recalling that in any OCE of Matching Pennies the conditional 
expected payoffs to the players are always 0 (Aumann, 1974). Hence 
Proposition 4.1 implies that, starting from an equilibrium in which players 
have a common prior but may make information processing errors, there 
is a decision-theoretically equivalent equilibrium in which players have 
partitions but may have different priors. 

We now establish a converse to Proposition 4.1: we show that any SCE 
is decision-theoretically equivalent to an OGCE. Hence, in the context of 
correlated equilibrium, arbitrary differences in players’ priors can be in- 
terpreted as having arisen from a situation in which the players have a 
common prior but make information processing errors, 

PROPOSITION 4.2. Let (a ; ni, Hi, f’) be an SCE of a game I’. Then 
there is a decision-theoretically equivalent OGCE (a ;I?, Pi, fi) of r in 
which the Pi’s satisfy KTYK. 

Proof. Let fi = 0 X (1, . . . , 
dence Pi is defined by 

n}. Player i’s possibility correspon- 

P(w, j) = {(o’, i) E II: w’ E H’(o)} 

for (0,j) E 0. Let 

7r*(u, i) = STOPS) 

for (0, i) E fi and 



194 BRANDENBURGER, DEKEL, AND GEANAKOPLOS 

Finally, the mapp’: fi + A’ is given by J’(w, j) = f’(o) for (w, j) E fi. H 

In the decision-theoretically equivalent OGCE just constructed, the 
possibility correspondences satisfy KTYK but they do not satisfy nonde- 
lusion. (Also, the players know their own actions-see Section 5.) Impos- 
ing nondelusion is restrictive. For example, in Matching Pennies there is 
an SCE in which all the conditional expected payoffs are 1. This clearly 
cannot happen in an OGCE of Matching Pennies if nondelusion is satis- 
fied. 

Taken together, Propositions 4.1 and 4.2 provide an explanation of 
differences in priors in terms of bounded rationality on the part of the 
players. The standard assumption in game theory has been what Aumann 
has termed the “Harsanyi doctrine,” namely that all players begin with a 
common prior. In this case it is impossible for rational players to agree to 
bet or trade risky securities with one another based solely on differences 
in information, when that information is represented by partitions (Mil- 
grom and Stokey, 1982); Geanakoplos and Sebenius, 1983). If the possi- 
bility of arbitrary differences in priors between players is admitted, then 
there is of course no difficulty in explaining betting and securities trading. 
But the approach of postulating at the outset that priors may disagree has 
proved rather unpopular-only a small minority of papers (e.g., Harrison 
and Kreps, 1978) consider “subjective” priors. We have seen that differ- 
ences in priors can be justified as a manifestation of bounded rationality 
on the part of the players. This suggests that speculative behavior might 
usefully be explored from this point of view. In fact, the OGCE of Match- 
ing Pennies described in Section 3 shows that betting can occur with a 
common prior and information processing errors: the players are effec- 
tively betting with each other over which outcome of the game will obtain. 
Geanakoplos (1989) characterizes the kinds of information processing er- 
rors that permit speculation. 

Remark 4.1. Having allowed for information processing errors, it is 
natural to allow for errors in calculating conditional probabilities as well. 
Nevertheless, Proposition 4.1 shows that information processing errors 
subsume errors of the latter kind. To see this, consider a further general- 
ization of correlated equilibrium in which each player i has a belief func- 
tion 6’: fi + A(R) giving i’s beliefs at each state w (cf. the discussion in 
Section 2). An equilibrium of a game I would then be a collection (a ; a’, 
f’) where for every i and each w E 0: 

(1) #(w’) = 6’(w) impliesf’(w’) = f’(w); 



GENERALIZED CORRELATED EQUILIBRIUM 195 

(2) 2 sqfao)(o’)ui(fi(aJ), f-‘(d)) L 2 G’(w)(o’)u’(a’, f-‘(w’)) 
o’E P’(o) o’EP’(w) 

for all ui E A’. Let Di C A(n) denote the range of 6’. By analogy with 
Definition 4.1, we say that two equilibria (a ; S’, f’) and (0 ; &, fi) of I are 
decision-theoretically equivalent if for every i there is an isomorphism 4’: 
fii --, Di such that whenever 6’(o) = r#@($) then p(6) = f’(o) and the 
conditional expected payoffs to i at 6 and w are equal. A careful reading of 
the proof of Proposition 4.1 shows that any equilibrium (R ; 6’, fi) of I is 
decision-theoretically equivalent to an SCE (and hence to an SGCE) of I. 
Thus no new correlated equilibria arise by miscalculation of conditional 
probabilities. 

We close this section by mentioning briefly the connection between the 
results of this section and the solution concept of rationalizability due to 
Bernheim (1984) and Pearce (1984). In a two-person game I, the set of 
conditional expected payoffs to a player i from the SCEs of I coincides 
with the set of i’s rationalizable payoffs in I (Brandenburger and Dekel, 
1987, Proposition 2.1). The same equivalence holds in games with more 
than two players, provided the term “rationalizable” is replaced with 
“correlated rationalizable” (Brandenburger and Dekel, p. 1394). Hence 
Proposition 4.1 implies that conditional expected payoffs from GCEs are 
(correlated) rationalizable payoffs. 

5. CHARACTERIZATION OF EQUILIBRIUM DISTRIBUTIONS 

This section characterizes distributions on actions that arise from 
OGCEs. Recall that for an OCE (fI ; m, Hi, f’) of I, there is a naturally 
induced distribution on actions A E A(Ai x *.* x A”) given by 

h(a’, . . . ) aa> = 7T({W :f’(w) = a’, i = 1, . . . ) n}) 

for(a’,. . . ,u”)EA’X **a x An (see Aumann, 1987). This will be called 
an objective correlated equilibrium distribution (OCED). There is a well- 
known characterization of the set of all OCEDs. Given a probability 
measure A E A(A’ x *a. x A”), and an ui E A’such that h({u’} x A-‘) > 0, 
let A(-(a’) E A(A-‘) be the conditional probability measure on the actions 
of the other players. Given a game I, a distribution A E A(A’ x ... X A”) is 
an OCED if and only if for every i and each u’ E A’ with A({u’} x A-‘) > 0 

2 A(u-‘/u’)u’(a’, a-‘) L c A(u-‘lu’)u’(b’ a-‘) 3 
aPEA-’ *-‘.&J-8 
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for all b’ E A’. The set of all OCEDs is thus a closed, convex set defined 
by the above system of linear inequalities. 

Given an OGCE, there is a precisely analogous induced distribution on 
actions, to be called an objective generalized correlated equilibrium dis- 
tribution (OGCED). To illustrate these definitions, Fig. 6 depicts first the 
(unique) OCED of Matching Pennies, and then the OGCED induced by 
the OGCE of Matching Pennies described in Section 3. 

In characterizing OGCEDs in general, we will make use of the follow- 
ing assumption. A player i is said to know his own actions if for each Ri E 
Pi there is an a’ E A’ such that f’(o) = a’ for all w E R’. This assumption 
says that i is sure about what he is playing. (However, i may be mistaken 
if nondelusion is violated.) Note that a player always knows his own 
actions (correctly) if his information is described by a partition. 

We make two different sets of assumptions in characterizing OGCEDs. 
In Proposition 5.1 we suppose that the players know their own actions 
and that the possibility correspondences satisfy nondelusion and either 
balancedness or KTYK. The proposition provides a way of calculating 
whether a distribution on actions is an OGCED. In Proposition 5.2 we 
suppose the players know their own actions and that the possibility corre- 
spondences satisfy nondelusion and positive balancedness-in this case 
all OGCEDs are OCEDs. 

In order to state the first result, we need some notation. Given a distri- 
bution A E A(A’ x .*a x A”) and an a’ E A’ such that h({a’} x A-‘) > 0, let 

Qd4 = [ q E A(A-‘) : Supp q C Supp A(*la’), 

.-zA-; q(a-‘)[u’(a’, a-‘) - u’(b’, a-‘)] 2 0 Vb’ E Ai} 

where Supp denotes the support of a measure. In words, Q*(a’) is the set 
of all distributions q on A-‘, with support contained in that of h(.la’), 

L R L R 

OCED X OGCED X 

FIGURE 6 
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under which ui is an optimal action for i. Note that Q*(a’) is a compact, 
convex subset of A(A-‘). Given a set Y, let aff Y denote the affine hull of 
Y. That is, aff Y = {x, (~,y, :ym E Y and &(Y, = I}. 

PROPOSITION 5.1. Given a game I?, a distribution A E A(A’ x .*a x A”) 
is an OGCED induced by an OGCE in which the players know their own 
actions and the possibility correspondences satisfy nondelusion and bal- 
ancedness if and only iffor every i and each ai E A’ with A({a’} x A-‘) > 0, 
h(*(a’) E aff Qh(a1).3 

Remark 5.1. The stronger requirement that A(*la’) E Q*(a’) is exactly 
the condition for A to be an OCED. 

Remark 5.2. As the proof will make clear, Proposition 5.1 remains 
true if the assumption that the possibility correspondences satisfy bal- 
ancedness is replaced by the assumption that they satisfy KTYK. In 
general, under the hypothesis of nondelusion, KTYK is a more restrictive 
assumption than balancedness. By contrast, in the context of OGCEs in 
which the players know their own actions and the possibility correspon- 
dences satisfy nondelusion, KTYK and balancedness turn out to be 
equivalent. 

Remark 5.3. Proposition 5.1 implies that if A({a'} x A-‘) > 0, then ai 
is a correlated rationalizable action for player i. To see why, for each 
player i let Bi = {a’ E A’: A({a'} X A-‘) > O}. For any ai E B’, Qh(ai) # 0 
and for any q E Qh (a ‘), Supp q C B-‘. Hence there is a subset B 1 X * . . X 
B”CA’x.. . x A” such that for each i, every ui E Bi is a best reply to a 
distribution on B-‘. That is, ui is correlated rationalizable. 

COROLLARY 5.1. Given a game r, the set of all OGCEDs induced by 
OGCEs in which the players know their own actions and the possibility 
correspondences satisfy nondelusion and either balancedness or KTYK is 
nonempty and convex, but may not be closed. 

Before providing proofs, we illustrate Proposition 5.1 and Corollary 5.1 
in the context of Matching Pennies. Recall that the unique OCED for 
Matching Pennies assigns probability a to each pair of actions. Proposition 
5.1 implies that the set of OGCEDs induced by OGCEs in which the 
players know their own actions and the possibility correspondences sat- 
isfy nondelusion and balancedness is much larger: it consists of all strictly 
positive distributions on {U, D} x {L, R}. Note that this is a convex set, 
but is not closed. To see that any strictly positive A is an OGCED with the 
aforementioned properties, observe that for player 1, U is a best reply to 

3 At the time we were working on the first draft of this paper, Dov Samet mentioned to us 
that he was also working toward a result similar to our Proposition 5.1. 
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the distributions (1, 0) and (4, 4) on {L, R}. Hence if A has full support, aff 
QA(~> = AU, RI) and P roposition 5.1 places no restriction on A(.1 V). 
The argument for D, L, and R is analogous. Conversely, no OGCED A 
with the aforementioned properties can assign probability 0 to any pair of 
actions. Suppose A( 17, L) = 0. Then if A(U, R) > 0, Qi(U> = 0 hence A 
cannot be an OGCED. Thus A(U, R) = 0, but then by symmetry A is 
identically 0, which is a contradiction. 

Proof of Proposition 5.1. To prove sufficiency, we construct an 
OGCE by subdividing the elements of A’ x * * * x A” into states w E R. 
The construction proceeds player-by-player and for each player, action- 
by-action. So fix a player i and an u’ E A’ with h({a’} x A-‘) > 0. By 
hypothesis, A(.lai) = xc, a,q, for qm E QA(ui) and x,,, (Y, = 1. In fact, 
since Qh(ui) is convex, we can write A(*[u’) = aq + (1 - a)q’ for q, q’ E 
QA(ui). Without loss of generality (Y < 1. Note that if 0 < /3 < 1 and p is 
sufficiently close to 1, then pq + (1 - P)A(.lu’) E Qh(ui). 

Since Supp q c Supp A(*lu’), we can find a section SO of the rectangle 
{a’} x A-’ such that A(*[&,) = q. Letting -So be the complement of S,, in 
{a’} x A-‘and 4 = A(~~--,!$,), we know that A(.lu’) lies on the line segment 
from q through 4. Hence if 0 < y < 1 and y is sufficiently close to 1, yq + 
(1 - y)@ E QA(ui). Now divide up -SO into disjoint sections Si , . . . , SK 
such that A(.[&) = 4 for k = 1, . . . ,K.LetTk=&USkfork= 1, 
. . . ) K. Then if K is sufficiently large, A(.ITJ E Qh(ui) for all k. 

Player i’s possibility correspondence Pi is given by 

so if w E SO; 
P’(0) = 

Tk ifoESkfork= 1,. . . ,K. 

Clearly, nondelusion and KTYK are satisfied and hence balancedness 
also holds. (In verifying balancedness directly, the nontrivial self-evident 
sets to check are of the form {a’} x A-‘. The balancing weights are 1 for 
each Tk, k = 1,. . . , K, and -(K - 1) for SO.) By construction, player i 
knows his own actions. 

We divide up any other rectangle {b’} x A-‘, bi # ui, in a similar 
fashion. The same procedure is then repeated for every other player. At 
the end, the states o E fl consist of the intersections of all the divisions of 
rectangles. 

To prove necessity, let (a; r, Pi, f’) be an OGCE of I? in which the 
players know their own actions and the possibility correspondences sat- 
isfy nondelusion and balancedness. The first step is to show that if Pi is 
balanced, then for any self-evident set E C R and any F C R 

n(FJE) E aff {r(FIRi): Ri E Pi, R’ C E}. 
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To see this, write 

using balancedness. Hence 

= -& 2 p(R’)7r(R’)T(FIR’). 
R’EQ’ 
R’CE 

But using balancedness it is easy to show that 

-&) 2. P(R’MR’) = 1 
R’EP’ 
R’CE 

and so 

n-(F/E) E aff {r(FIRi): Ri E P’, R’ C E}. 

Now for any i and ui E A’, let E(a’) = {w E a: f’(w) = ai}. Since i 
knows his own actions and Pi satisfies nondelusion, E(a’) is self-evident. 
Hence, letting E(aP) = {w E R: f-‘(o) = a-‘}, 

A(u-~[u~) = m(E(u-‘)lE(u’)) E aff {T(E(u-‘)IR’): Ri E Pi, Ri C E(u’)). 

But for any Ri E Pi with Ri C E(u’), the measure q E A(A-‘) given by 
q(b) = T(E(u-~)IR~) for uPi E A-‘is a member of Qh(ui). (The optimality 
of ui given q follows from the hypothesis that (a; r, Pi, f’) is an OGCE, 
and the support condition is straightforward to verify.) Thus h(*lu’) E aff 
QAW>. . 

ProofufCorollury 5.1. The set of all OGCEDs is nonempty since any 
OCED A is also an OGCED. To show convexity, suppose A, A are 
OGCEDs and let ,u = (YA + (1 - cw)i( for 0 < CY < 1. We have to show that if 
~({a’) x A-‘) > 0, then p(.lui) E aff Q,(ui). Now ~(*/a’) = /3A(*lu’) + 
(1 - p)A(.(u’) for some 0 I /3 I 1. (If A({u’} x A-‘) = 0 then /3 = 0. If 
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h({a’} = 0 then j3 = 1.) Also Qh(ui) C Qp(a’) so h(*ja’) E aff Q,(ai). 
Similarly, i(.la’) E aff Q,(ui). Hence ~(*[a’) E aff Q,(ui) since aff 
Q,(ui) is convex. n 

Our final result shows that strengthening the hypothesis of balanced- 
ness in Proposition 5.1 to that of positive balancedness leads to an equiva- 
lence between OGCEDs and OCEDs. Thus in the context of OGCEs in 
which the players know their own actions and the possibility correspon- 
dences satisfy nondelusion, positive balancedness is no more general than 
assuming a partition. Proposition 5.2 mirrors the Generalized Sure Thing 
Principle established for single-person decision problems and Nash equi- 
libria in Geanakoplos (1989). 

PROPOSITION 5.2. Let (0; rr, Pi, f ‘) be an OGCE of a game r in which 
the players know their own actions and the possibility correspondences 
sutisfj, nondelusion and positive buluncedness. Then the induced OGCED 
A is an OCED of r. 

Proof. Repeat the necessity part of the proof of Proposition 5.1, 
observing that because of positive balancedness the conclusion that 
h(*lu’) E aff Qh(ui) can be strengthened to assert that ~(*/a’) lies in the 
convex hull of Qh(ui). Since Qh(ui) is convex, it follows (using Remark 
5.1) that A is an OCED. n 
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