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COSTLY SELF-CONTROL AND RANDOM SELF-INDULGENCE

BY EDDIE DEKEL AND BARTON L. LIPMAN1

We study the random Strotz model, a version of the Strotz (1955) model with un-
certainty about the nature of the temptation that will strike. We show that the random
Strotz representation is unique and characterize a comparative notion of “more temp-
tation averse.” Also, we demonstrate an unexpected connection between the random
Strotz model and a generalization of the Gul–Pesendorfer (GP) (2001) model of temp-
tation which allows for the temptation to be uncertain and which we call random GP.
In particular, a preference over menus has a random GP representation if and only if
it also has a representation via a random Strotz model with sufficiently smooth uncer-
tainty about the intensity of temptation. We also show that choices of menus combined
with choices from menus can distinguish the random GP and random Strotz models.

KEYWORDS: Temptation, Strotz, self control, random temptation, multi selves.

1. INTRODUCTION

IN THIS PAPER, we explore the random Strotz model, which is a version of the
classic Strotz (1955) model of temptation that adds uncertainty about the na-
ture of the temptation. Uncertainty is both a plausible and a useful hypothesis
regarding temptation. Such uncertainty is frequently a key part of applications
of the Strotz model, such as in Battaglini, Benabou, and Tirole (2005), Ben-
abou and Tirole (2004, 2010), Eliaz and Spiegler (2006), and Harris and Laib-
son (2008). Also, as noted by Caplin and Leahy (2006), for example, uncer-
tainty can “smooth out” the discontinuities present in the usual nonstochastic
Strotz model.

The resulting model has some surprising connections to more recent mod-
els of temptation. In particular, we show a sense in which the random Strotz
model nests the self-control model of Gul and Pesendorfer (2001) (henceforth
GP). Specifically, the latter exhibits the same commitment behavior—that is,
the same choice of “menus” from which future choices will be made—as a par-
ticular class of random Strotz models. In addition, a random generalization
of the GP model is equivalent in this sense to the class of all randomizations
over Strotz models with sufficiently smooth uncertainty about the intensity of
temptation (in a sense to be made precise).

We also show that commitment behavior is sufficient to identify the random
Strotz model uniquely. In other words, any commitment behavior is consistent
with at most one random Strotz model. Given that the random Strotz model is
uniquely identified from such behavior, we can characterize how commitment

1We thank Larry Epstein, Faruk Gul, Jawwad Noor, Andy Postlewaite, Todd Sarver, Wolfgang
Pesendorfer, three anonymous referees, and numerous seminar audiences for helpful comments.
We acknowledge National Science Foundation Grants SES-0820333 (Dekel) and SES-0851590
(Lipman) for support for this research.
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choices vary as we change aspects of the representation. More specifically, we
show that a certain kind of first-order stochastic dominance shift upward in the
intensity of temptation faced corresponds to an increase in the agent’s concern
about temptation.2

Our results are useful for several reasons. First, they clarify the founda-
tions of the random Strotz model and some of its properties. For example, our
uniqueness and comparative results should be valuable in the study of temp-
tation with uncertainty, as in the papers cited above. Also, the relationship
between the random Strotz and random GP models yields a simple axiomati-
zation of a subclass of random Strotz models. Specifically, Stovall (2010) gave
an axiomatic characterization of the random GP model for the case where the
support of the measure is finite. As we explain in more detail in Section 3, the
connection between random Strotz and random GP that we demonstrate thus
implies that Stovall’s axioms characterize a subclass of random Strotz models.

Second, the connection between the random Strotz and GP models has sig-
nificant methodological implications. Most of the work on temptation has fo-
cused on using commitment behavior alone as a means of identifying a model,
implicitly or explicitly assuming that subsequent choices from menus can be de-
duced from commitment behavior.3 Since we show that two very natural mod-
els are consistent with the same commitment behavior but predict different
choices from menus, such assumptions are not warranted in general. Instead,
our results suggest that we should broaden the set of data considered. In par-
ticular, if we consider both commitment choices and choices from menus, then
we can separate the two models.

Finally, these results may be helpful in other areas where the random Strotz
model can be applied. For example, Olszewski (2007) and Ahn (2008) con-
sidered models of ambiguity where an act is viewed not as a function from
states to consequences, but as a set of lotteries, where this is interpreted as
a set of consequences. (See also related work by Gajdos, Hayashi, Tallon, and
Vergnaud (2008).4) In other words, a menu is interpreted not as a set of options
that the agent will choose from later, but as a set of possible outcomes from
which “Nature” will choose later. Under this interpretation, the random Strotz
model represents the agent as forming various theories about what guides Na-
ture’s choices. Similarly, any model of control rights necessarily has a Strotzian
aspect to it, in that an agent must evaluate his utility from the expected choices

2By contrast, the random GP model is not identified in the same way as the random Strotz
model. When commitment behavior is consistent with at least one random (or nonrandom) GP
model, it is consistent with infinitely many distinct random GP models, as we show in Section 4.

3See, for example, Gul and Pesendorfer (2001) and Dekel, Lipman, and Rustichini (2009).
4The Steiner point, which plays a significant role in the analysis of Gajdos, Hayashi, Tallon,

and Vergnaud, provides an interesting connection between their work and random Strotz. One
definition of the Steiner point of a set of lotteries is that it is the expected value of the lottery
chosen by an expected utility preference which is drawn at random from a uniform distribution.
Thus it is the expected choice by a particular random Strotz agent.
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by another agent given particular constraints. Our uniqueness and comparative
results should be useful for such models. Also, as discussed earlier, our results
can be combined with those of Stovall (2010) to provide a way to axiomatize
such representations.

The basic point that the GP representation can be rewritten in terms of a
random determination of which self has control has been made before, though
in very different ways. In particular, Benabou and Pycia (2002) noted that the
GP representation can be written as the equilibrium payoff of a game between
the current and future self engaging in a costly battle for control. Also, Chat-
terjee and Krishna (2007) showed that a preference with a GP representation
also has a representation where there is a menu-dependent probability that
the choice is made by the tempted self, with the choice made by the untempted
self otherwise. Unfortunately, the properties of the function relating menus
to probabilities over control make it difficult to interpret in general.5 Our re-
sult provides a tighter connection through a model that is an interesting and
natural alternative formulation in its own right.

While not the main purpose of their work, Fudenberg and Levine’s (2006,
2010a, 2010b) dual-selves model also gives a connection between GP and
multiple-selves models. Our approach enables us to show an unexpected con-
nection between the Fudenberg–Levine model and random Strotz. Roughly
speaking, an adaptation of our result linking GP and random Strotz shows that
we can recast a version of the dual-selves model that was discussed by Noor and
Takeoka (2010b) as a random Strotz model. See Section 3 for a more precise
statement.

The next section defines the model and the representations considered. In
Section 3, we relate random Strotz representations to (random) GP repre-
sentations. Section 4 shows the uniqueness and comparative results described
above. In Section 5, we discuss choice from menus. Proofs not contained in the
text are given in the Appendix or Supplemental Material (Dekel and Lipman
(2012)).

2. DEFINITIONS

Fix a finite set Z of “prizes” or outcomes, let Δ(Z) denote the set of lotter-
ies over Z, and let X denote the set of menus, that is, the set of compact and
nonempty subsets of Δ(Z). The current self has a preference over X , denoted
�, interpreted as a preference regarding how much commitment to impose on
subsequent choices. (In Section 5, we discuss choices from menus.) Through-
out, we assume that � is nontrivial in the sense that there exist x� y ∈X such
that x� y .

5The published version of Chatterjee and Krishna’s paper, Chatterjee and Krishna (2009),
considers only the case where this probability is independent of the menu. While this provides
more structure, the constant probability model no longer nests GP. On the other hand, this version
of their model is a special case of the random Strotz model we consider.



1274 E. DEKEL AND B. L. LIPMAN

A function w :Δ(Z)→ R is an expected utility (EU) function if w(λα+ (1 −
λ)β)= λw(α)+(1−λ)w(β) for all λ ∈ [0�1] and α�β ∈ Δ(Z). Both the Strotz
and GP representations use two expected utility functions, u�v :Δ(Z) → R.
The Strotz representation uses u and v to evaluate a menu x by

VS(x)= max
β∈Bv(x)

u(β)�

where Bv(x) is the set of best elements of x according to v, that is,

Bv(x)= {β ∈ x | v(β)≥ v(α)�∀α ∈ x}�
Intuitively, v represents the preference of the future self who will be completely
self-indulgent, choosing from the menu as he wishes, breaking ties in favor of
the current self who has utility function u.

One unfortunate feature of the Strotz model is that the agent’s utility de-
pends discontinuously on the commitments he makes. This occurs because
when the choosing self is almost indifferent, the current self may still have
strong preferences regarding the choices. A small change in commitments can
then create indifference for the chooser, leading to use of the tie-breaking rule
and a large change in the current self’s payoff. Hence small changes in com-
mitments can have big effects on the current self’s payoff.6 This discontinuity
is both intuitively implausible and analytically inconvenient.

The representation introduced by GP is continuous and hence avoids this
problem. We say that a GP representation is a pair (u�v) such that a menu x
is evaluated by the function

VGP(x)= max
β∈x

[u(β)+ v(β)] − max
α∈x

v(α)�

This representation also has an interesting interpretation. As GP emphasized,
the agent chooses from the menu the item that maximizes u+ v, not v. In this
sense, the GP model seems behaviorally richer than the Strotz model, as the
agent shows partial self-control by compromising between u and v instead of
simply maximizing v. The term [maxα∈x v(α)] − v(β) can be interpreted as the
cost of resisting temptation by choosing β instead of maximizing v.

As noted, we consider random versions of the GP and Strotz models. Letting
K denote the number of elements ofZ, we identify the set of EU functions with
RK since, for any such function, we only need to specify the payoffs to the pure
outcomes. We use the Borel σ-algebra over RK . We say that an EU function is
trivial if it is a scalar times a vector of 1’s. We say that a measure μ over RK is
nontrivial if it assigns zero measure to the set of trivial EU functions.

6This difficulty is not eliminated by changing the tie-breaking rule.
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DEFINITION 1: A random Strotz representation of � is a pair (u�μ) such
that u is a nontrivial expected utility function and μ is a nontrivial measure
over expected utility functions such that the function

VRS(x)=
∫

RK
max
β∈Bw(x)

u(β)μ(dw)

represents the preference.

This is the Strotz representation but where the agent is not sure what his
future self’s preference will be. It seems quite natural to suppose that an agent
may not know exactly what will tempt him in the future, or to what extent.
Adding uncertainty to the Strotz model also has the potential to resolve the
continuity problems noted above, since suitably atomless noise ensures that
the probability that the chooser is indifferent will be zero. Consequently, as
Caplin and Leahy (2006) showed, such atomlessness can ensure existence of
an optimal policy in Strotz’s sense.

A random GP representation generalizes the notion of a GP representation
in a fashion exactly parallel to the above; specifically, the u is fixed, but there
is a probability measure over the “temptations.”

DEFINITION 2: A random GP representation is a pair (u� ν) such that u is a
nontrivial expected utility function and ν is a nontrivial measure over expected
utility functions, such that the function

VRGP(x)=
∫

RK

{
max
α∈x

[u(α)+ v(α)] − max
α∈x

v(α)
}
ν(dv)

represents the preference.

For both random Strotz and random GP, the nontriviality of the measure is
without loss of generality in the sense that if a representation exists, then one
with a nontrivial measure exists. In both cases, the nontriviality of u is implied
by our assumption that � is nontrivial.

3. RANDOM STROTZ AND RANDOM GP MODELS

This section discusses the relationship between the models.

THEOREM 1: Any preference with a random GP representation also has a ran-
dom Strotz representation.

PROOF: We first show the claim for an arbitrary GP representation (u� v).
Let W denote the set of expected utility preferences such that w ∈ W if and
only if (iff) there exists A ∈ [0�1] with w = v+Au. Define a measure μ over
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W by taking the uniform distribution overA. Let VRS denote the random Strotz
representation generated by this measure.

Fix any menu x. Let β∗(A) denote any element of x that maximizes u over
the set Bv+Au(x). Let û(A) = u(β∗(A)) and let v̂(A) = v(β∗(A)). Note that
if multiple elements of x maximize u over Bv+Au(x), the values of û(A) and
v̂(A) do not depend on the particular choice of β∗(A). Also, it is easy to show
that û is nondecreasing in A and hence measurable. Since û is also bounded,
it is integrable. We have

VRS(x)=
∫ 1

0
u(β∗(A))dA=

∫ 1

0
û(A)dA�

Define

U(A)= v̂(A)+Aû(A)= max
Ā∈[0�1]

v̂(Ā)+Aû(Ā)�

From the usual argument characterizing incentive compatibility with trans-
ferable utility (see, e.g., Mas-Colell, Whinston, and Green (1995, Proposi-
tion 23.D.2, p. 888) or Milgrom and Segal (2002, Theorem 2)),7 we have

U(s)= U(0)+
∫ s

0
U ′(A)dA= U(0)+

∫ s

0
û(A)dA�

Hence

U(1)− U(0)=
∫ 1

0
û(A)dA= VRS(x)�

But U(1) = maxβ∈x[v(β) + u(β)], while U(0) = maxβ∈x v(β). Hence the left-
hand side is the GP representation.

To extend to a random GP representation, note that

VRGP(x)=
∫

RK

{
max
α∈x

[u(α)+ v(α)] − max
α∈x

v(α)
}
ν(dv)�

so

VRGP(x)=
∫

RK

{∫ 1

0
max

β∈Bv+Au(x)
u(β)dA

}
ν(dv)�(1)

7To see the connection, consider a standard auction problem or other characterization of in-
centive compatibility with quasi-linear utility. View A as the type of the agent, where this is his
valuation for some good. Then Ā plays the role of the agent’s report of his type, û(Ā) is the prob-
ability that the agent obtains the good if his report is Ā, and v̂(Ā) is the transfer to him when his
report is Ā.
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which is a random Strotz representation. Q.E.D.

Note the relationship between the random Strotz model constructed in the
proof of Theorem 1 and the GP representation (u�v) with the same preference
over menus. The random Strotz measure has a distribution over temptations
given by taking v +Au, where A∼ U[0�1]. Thus the random Strotz has v as
the unique “direction” of temptation but has a random intensity defined by the
random variable A. For larger A, the choice is based more on the u prefer-
ence and so the temptation is less intense in this sense. To obtain a random
Strotz with the same menu preference as a random GP, we use the probability
distribution over directions of temptation given by the random GP and use the
same uniform conditional distribution as in equation (1) for the intensity of
temptation.

Clearly, not every random Strotz model is also a random GP. A random
Strotz model can be discontinuous since random Strotz includes nonrandom
Strotz as a special case, while the random GP model inherits the continuity
of GP.

So which random Strotz models are also random GP models? Equation (1)
gives a partial answer. If we can write the distribution over w’s as a distribution
over directions (v’s) and intensities (A’s) of temptation as in equation (1), then
the representation is also a random GP model. Writing a distribution over w as
a distribution of v and A, where w= v+Au, is not itself restrictive at all. Ob-
viously, any w can be written as v+Au for appropriately chosen v and A. On
the other hand, the requirement that the intensity of temptation A is uniform
over U[0�1] independently of the direction of temptation v is quite special.

We show that a much weaker requirement suffices: we can drop the inde-
pendence of the directions and intensities of temptation and consider any con-
ditional densities over intensities in a large class. More specifically, we gener-
alize the random Strotz representation from the form on the right-hand side
of equation (1) to what we call continuous intensity (CI) random Strotz repre-
sentations: those that can be written as∫

RK

{∫ 1

0
max

β∈Bv+Au(x)
u(β)f (A | v)dA

}
ν(dv)�

where f (· | v) is a lower semicontinuous density.8
More precisely, given a random Strotz representation (u�μ), we define a

decomposition of μ to be a set V ⊆ RK , a probability measure μV on V , and

8This imposes two smoothness conditions. First, the conditional distribution of intensities must
have a density. The second condition, lower semicontinuity, seems relatively weak. It strengthens
the necessary property of a density that {A | f (A) > a} be measurable to the requirement that
such sets are open. For example, a sufficient condition is that the density be Riemann integrable.
(We thank an anonymous referee for pointing this out.) See footnote 11 for comments on the
role of the lower semicontinuity requirement.
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a family of conditional probability measures μA(· | v) on R such that, for all
measurable E ⊆ RK ,9

μ(E)=
∫

V
μA({A ∈ R | v+Au ∈E} | v)μV(dv)�

We say that (u�μ) is a continuous intensity random Strotz representation if
there exists a decomposition of μ, say (V�μV�μA(· | v)), such that for μV -
almost all v ∈ V , μA is representable by a lower semicontinuous density. That
is, for almost all v ∈ V and every measurable E ⊆ R, we have

μA(E | v)=
∫
E

f (A | v)dA�

where for every a≥ 0, {A ∈ R | f (A) > a} is open.

THEOREM 2: The preference � has a random GP representation if and only if
it has a CI random Strotz representation.

PROOF SKETCH: The complete proof is given in the Appendix. Here we offer
an intuition for why the result holds.

First, it is easy to see from equation (1) that if � has a random GP repre-
sentation, it must have a CI random Strotz representation. Turning to the con-
verse, we focus on the case where there is a single direction of intensity—that
is, where V is a singleton. The extension to the general case is straightforward.

So suppose we have a random Strotz representation of the form

V (x)=
∫

A
max

β∈Bv+Au(x)
u(β)f (A)dA�

where f is a lower semicontinuous density over the intensity of temptation A
and A is the support of f . We explain how to rewrite V in the form of a random
GP representation.

It is easy to see how we can rewrite the random Strotz as a random GP when
A is distributed uniformly over some interval other than [0�1]. To see this,
simply note that

∫ b

a

max
β∈Bv+Au(x)

u(β)
1

b− a dA=
∫ b−a

0
max

β∈Bv+au+Au(x)
u(β)

1
b− a dA

=
∫ b−a

0
max

β∈B(v+au+Au)/(b−a)(x)
u(β)

1
b− a dA�

9The measures μV and each μA(· | v) are defined on the Borel σ-algebras.
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Let v̄= (v+ au)/(b− a). Substituting

∫ b

a

max
β∈Bv+Au(x)

u(β)
1

b− a dA=
∫ b−a

0
max

β∈Bv̄+[A/(b−a)]u(x)
u(β)

1
b− a dA

=
∫ 1

0
max

β∈Bv̄+Āu(x)
u(β)dĀ�

where the last equality follows from the change of variables Ā =A/(b − a).
From the proof of Theorem 1, we see that this equals the GP representation
(u� v̄).

From this fact, it is not hard to see that if we can rewrite f as a random-
ization over uniform distributions over various intervals, then we can rewrite
the random Strotz as a randomization over GP representations—that is, as a
random GP. It turns out that this can be done if f is lower semicontinuous. To
see the idea, consider the density f shown in Figure 1.

We identify various uniform distributions by taking the supports to corre-
spond to upper contour sets of f as shown by the dotted lines in the figure.
Index these various collections of intervals by a, where a denotes the value of

FIGURE 1.—The density f .
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f (x) to which the intervals correspond. To match the original density at x, we
seek a distribution h such that

f (x)=
∫ f (x)

0

1
λ({x′ | f (x′)≥ a})h(a)da�

where λ(·) denotes Lebesgue measure. Note that the problem above has a triv-
ial solution: Let h(a)= λ({x′ | f (x′)≥ a}). Obviously, this makes the equality
hold, so the only question is whether this is a legitimate density. It is easy to
see that h(a)≥ 0 for all a, so the only issue is whether it integrates to 1. That
is, we need to show that∫ f ∗

0
λ
({x′ | f (x′)≥ a})da= 1�

where f ∗ = maxx f (x). Note that this integral simply gives another way to com-
pute the area under the density f . For each a between 0 and f ∗, it takes the
measure of the horizontal line under f at height a and adds these up, getting
the area under f , which is obviously 1.

For this to complete the proof, we need that the set of x under f at height a
is a union of (nontrivial) intervals so as to apply our earlier argument. It is not
hard to see that this is true if the density is lower semicontinuous.10 Q.E.D.

Theorems 1 and 2 complement Stovall’s (2010) axiomatization of random
GP representations. Specifically, Stovall gave axioms on a preference over
menus that are necessary and sufficient for the existence of a random GP rep-
resentation which is finite in the sense that the measure ν has a finite support.
From our results, we see that his axioms are also necessary and sufficient for
the existence of a CI random Strotz representation that is finite in a certain
sense.11

Fudenberg and Levine (2006, 2010a, 2010b) and Noor and Takeoka (2010a,
2010b) gave nonlinear generalizations of the GP model that also have inter-
esting connections to the random Strotz model. While these papers present a
variety of models, we focus on the following class of such nonlinear extensions
focused on in Noor and Takeoka (2010b). We define a nonlinear self-control

10To clarify, the key is that there exists a lower semicontinuous density. Obviously, if we have
a density that is discontinuous at countably many points, we can choose whether the jumps are
“up” or “down” without changing the probability distribution. Hence in such cases, it is without
loss of generality to assume the density is lower semicontinuous. Thus the bite of this assumption
is only in dealing with densities that have uncountably many discontinuities. For such cases, the
lower semicontinuity assumption guarantees that upper contour sets are unions of open intervals.

11In an earlier version of this paper, Dekel and Lipman (2010) extended Stovall’s theorem to
give an axiomatization of the class of Lipschitz continuous random Strotz representations. Since
there are random GP representations that are not Lipschitz continuous, the class of CI random
Strotz representations is still broader than that axiomatized by Dekel and Lipman.
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representation to be a triple consisting of (u� v�ψ), where u and v are EU func-
tions as before, ψ : R → R+ is an increasing function, and the preference is
represented by

VNSC(x)= max
β∈x

[
u(β)−ψ

(
max
α∈x

v(α)
)(

max
α∈x

v(α)− v(β)
)]
�

The idea is to model a notion of increasing marginal cost of self-control. More
specifically, the self-control costs are scaled up by an increasing function of the
“level of temptation” of the menu as measured by maxα∈x v(α). As observed by
Lipman and Pesendorfer (2011, footnote 16), an argument similar to the proof
of Theorem 1 establishes that VNSC can be written as a different kind of random
Strotz: specifically,

VNSC(x)=
∫ τ(x)

0
max

β∈Bv+Au(x)
u(β)

1
τ(x)

dA�

where τ(x)= 1/ψ(maxα∈x v(α)). Intuitively, this is a random Strotz represen-
tation where the level of temptation of the menu affects the distribution over
the intensity of temptation. If the menu is more tempting, τ(x) is smaller, so
the A’s are more concentrated around zero.

4. PROPERTIES OF RANDOM STROTZ REPRESENTATIONS

The relationship between random GP and random Strotz representations
yields an easy way to see that random GP representations are not uniquely
identified. To be more specific, any preference with a random GP representa-
tion has infinitely many such representations—that is, infinitely many proba-
bility distributions over “temptations.” Furthermore, as illustration of the fact
that these representations are nontrivially different, we note that each repre-
sentation has a distinct prediction regarding choices from menus.12 To see this
most simply, consider a GP representation. From Theorem 1, we know that

max
β∈x

[u(β)+ v(β)] − max
β∈x

v(β)=
∫ 1

0
max

β∈Bv+Au(x)
u(β)dA�

Fix any partition of [0�1] into N intervals, say [0�Δ1)� [Δ1�Δ2)� � � � � [ΔN−1�1].
Obviously,

∫ 1

0
max
v+Au

udA=
N∑
n=1

∫ Δn

Δn−1

max
v+Au

udA�

12We thank an anonymous referee for this observation.
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It is easy to rewrite this as in our proof sketch for Theorem 2 as

N∑
n=1

∫ 1

0
max
vn+Au

u[Δn −Δn−1]dA�

where

vn = v+Δn−1u

Δn −Δn−1
�(2)

Applying Theorem 1 again, this is

N∑
n=1

[Δn −Δn−1]
{

max
β∈x

[u(β)+ vn(β)] − max
β∈x

vn(β)
}
�(3)

a random GP representation. (One can also show the same conclusion directly
by substituting for vn from equation (2) into equation (3) and rearranging to
recover the original GP representation.) As we vary the partition, we vary the
collection of vn’s and the corresponding probability distribution. Hence there
are infinitely many distinct random GP representations, all of which represent
the same preference over menus as the original GP representation.

While all these random GP representations predict the same preferences
over menus, they predict very different probability distributions over choices
from menus. Specifically, as we discuss in more detail in the next section, the
random GP above predicts that choice will maximize u(β)+ vn(β) with prob-
ability Δn − Δn−1. It is easy to see that these choices vary nontrivially with the
chosen sequence {Δn}.

By contrast, if a preference has a random Strotz representation, the repre-
sentation (the u and the measure over w’s) is essentially unique. As an im-
plication, the predicted choice from menus is uniquely identified. To see this,
suppose we have a preference � with random Strotz representations (u�μ)
and (ū� μ̄). It is easy to see that u and ū must be the same up to a positive
affine transformation. This follows from the fact that both u and ū must rep-
resent the preference over singleton menus, that is, {α} � {β} if and only if
u(α) ≥ u(β), so u(α) ≥ u(β) if and only if ū(α) ≥ ū(β). Hence, just as with
EU representations, ū is a positive affine transformation of u.13

Similarly, only the choices by a given w matter for the representation, not
the level of utility for w from these choices. Thus there is no meaningful dis-
tinction between a representation that puts probability p on w and one that
puts probability p on 2w. Hence what is—and what one would naturally want
to be—identified is the measure over EU preferences, not EU representations.

13The commitment preference u is also unique up to positive affine transformations in the
random GP representation.
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Recall that we identified the space of EU functions with RK , where K is the
number of pure outcomes. Given any Borel set E ⊆ RK , let

B(E)= {w ∈ RK | aw+ b ∈E� some a ∈ R+� b ∈ R}�
That is, B(E) extends E to the set of all EU functions that represent the same
preference over lotteries as some function in E. We say that μ and μ̄ are or-
dinally equivalent if, for every Borel set E ⊆ RK , we have μ(B(E))= μ̄(B(E)).
Thus μ and μ̄ are ordinally equivalent if the two measures give the same prob-
ability to any given set of EU preferences, ignoring differences between the
particular representations chosen for those preferences.

THEOREM 3: If (u�μ) and (ū� μ̄) are random Strotz representations of �, then
u and ū are equal up to a positive affine transformation, and μ and μ̄ are ordinally
equivalent.

Given that the measure is identified, it is natural to ask how properties of the
measure are related to interpretable properties of the preference it represents.
To focus on the role of the measure, we compare two preferences with random
Strotz representations that have the same u but different μ’s. In particular, the
behavioral comparison we consider relates to a version of first-order stochastic
dominance (FOSD).14

We say that �2 is more temptation averse than �1 if the restriction of �1 and
�2 to singleton menus is the same and if, for all menus x and lotteries α ∈
x, whenever {α} �1 x, we have {α} �2 x. In other words, whenever �1 strictly
prefers committing to a particular choice from the menu rather than leaving
the choice open, �2 does so as well.15

One way to think about this comparative is that it is analogous to compar-
ing the agents in terms of their “willingness to pay” for commitment. To see
the idea, note that the more an agent would be willing to give up to achieve
commitment, the wider the range of options to which he would prefer to com-
mit. Naturally, in the absence of a common measuring unit such as money, it is
difficult to compare two agents in terms of what they are willing to give up to
achieve commitment unless they have the same preferences over commitment
options. Once we focus on preferences with the same commitment preferences,
however, the definition captures a natural notion of greater willingness to pay
to avoid temptation.

14Gul and Pesendorfer (2001) also gave two comparative notions related to temptation for
their model. Their comparatives are very different from ours both in spirit and formally.

15This definition is equivalent to one used by Ahn (2008) to compare ambiguity aversion, by
Sarver (2008) to compare regret attitudes, and by Higashi, Hyogo, and Takeoka (2009) to com-
pare aversion to commitment. It is also similar in spirit to the way Epstein (1999) and Ghiradato
and Marinacci (2002) defined comparisons of ambiguity aversion. Since the random Strotz rep-
resentation is very different from the representations considered in these papers, their character-
ization results are quite different as well.
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We now explain how this comparative is reflected in the representation. Sup-
pose we have two preferences with random Strotz representations that can be
compared according to this definition. Since they have the same preferences
restricted to singleton menus, we can take them to have the same u. So let the
random Strotz representation for �i be denoted (u�μi), i= 1�2.

Suppose we have decompositions of μ1 and μ2, (Vi�μ
i
Vi �μ

i
A(· | v)), i = 1�2,

that are related in the following way. First, we have V1 = V2 ≡ V and μ1
V =

μ2
V ≡ μV . Second, for μV -almost all v ∈ V , the conditional distribution μ1

A(· |
v) first-order stochastically dominates μ2

A(· | v). In this case, we say that μ2

conditionally dominates μ1.
As discussed earlier, the different v’s represent different directions of temp-

tation, while theA’s measure the intensity of the temptation, where a largerA
means less intense temptation. It seems natural that it would be difficult to re-
late different directions of temptations; for example, is a temptation to overeat
“worse” than a temptation to oversleep? Thus we should require two prefer-
ences to be the same regarding the directions of temptation that affect them in
order to compare them unambiguously. On the other hand, if one preference
has uniformly higher A’s in the sense of FOSD, then it has lower intensities
and hence has “less trouble” with temptation.

This relationship characterizes our temptation aversion comparison.

THEOREM 4: Fix �i with random Strotz representation (u�μi), i= 1�2. Then
�2 is more temptation averse than �1 if and only if μ2 conditionally dominates μ1.

5. CHOICE FROM MENUS

To this point, we have focused on the random Strotz and random GP models
as representations of preferences over menus. In this sense, we have treated
them as models of choice of a menu. As we have seen, we cannot, in general,
use choice of menus to distinguish the random GP and random Strotz models.

On the other hand, each model also makes predictions about choice from
menus. In the case of random Strotz, it is natural to interpret the representa-
tion (u�μ) as saying that, with probability μ(w), the choice is the one made by
w, with ties broken in favor of u (where this is stated for measures with finite
support for simplicity). In the case of a GP representation (u� v), Gul and Pe-
sendorfer argued that the natural interpretation of the choice from a menu x
is that it is some maximizer of u+ v from that menu. It is natural to interpret
a random GP representation (u� ν) analogously as saying that, with probability
ν(v), the choice is that which maximizes u+ v. In both cases, the representa-
tion theorem tells us that we can represent the agent as if these are the choices
from menus that he anticipates. If we add to the models the hypothesis that
these “anticipated” choices are the actual choices, and if we also observe both
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choices of menus and choices from menus, can we then distinguish random GP
and random Strotz?16�17

Formally, fix a random Strotz representation (u�μ). We define a selection
function for (u�μ) to be a measurable function β∗ :X × supp(μ)→ Δ(Z) such
that β∗(x�w) ∈ Bu(Bw(x)) for all (x�w) ∈X × supp(μ). That is, the selection
function β∗(x�w) gives one way that choices could be made from menu x in
the random Strotz representation as a function of w. Then we can define a
random choice function ρ :X → Δ(Δ(Z)) by

ρx(E)= μ({w ∈ W | β∗(x�w) ∈E})(4)

for every measurable E ⊆ x. We say that such a random choice function is
rationalized by (u�μ).

Turning to analogous notions for a random GP representation (u� ν), we
define a selection function to be a measurable β̂∗ :X × supp(ν)→ Δ(Z) such
that β̂∗(x� v) ∈ Bu+v(x) for all (x� v) ∈X × supp(ν). We then define a random
choice function ρ generated by this selection function by

ρx(E)= ν({v ∈ RK | β̂∗(x� v) ∈E})
for every measurable E ⊆ x. We say that such a ρ is rationalized by (u� ν).18

Obviously, the case of no temptation is a special case for both models, so
if we are to distinguish the models, we must rule out this common case. We
say that a preference � over menus exhibits temptation if there exist α�β ∈
Δ(Z) with {α} � {β} and {α} � {α�β}.19 It is not hard to show that if (u�μ) is
a random Strotz representation of �, then � exhibits temptation if and only
if there is a w ∈ supp(μ) such that w does not represent the same preference
over lotteries as u. Similarly, if (u� ν) is a random GP representation of �, then
� exhibits temptation iff there exists v ∈ supp(ν) such that v does not represent
the same preference over lotteries as u.

We show that if a random Strotz representation and a random GP repre-

16Unsurprisingly, if we only observe choices from menus, we cannot distinguish these mod-
els in general. Both models predict choice from menus in the form of random expected utility,
though with a tie-breaking rule in the case of random Strotz. While the tie-breaking distinction
can sometimes separate the two models on the basis of choice from menus, this is not generally
possible.

17The example at the beginning of Section 4 illustrating the nonuniqueness of random GP rep-
resentations might suggest that the answer is no. One can use the approach we gave to construct a
sequence of random GP representations, all with the same preference over menus, whose choice
from menus converges to that of a random Strotz representation with the same preference over
menus. Thus if this sequence of random GP representations converged to a random GP repre-
sentation, it would show that the answer to our question is “no.” However, one can show that this
sequence does not converge to a random GP representation.

18These definitions are essentially the same as those used in Gul and Pesendorfer (2006).
19One can show that this is equivalent to what GP call � having a preference for commitment

if � has either a random Strotz or random GP representation.
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sentation generate the same choices from menus, then they cannot represent
the same preferences over menus. Specifically, either the commitment prefer-
ences (the preferences over singleton menus) will differ or else the random GP
agent’s preference over menus will be strictly more temptation averse.20

THEOREM 5: Suppose random choice function ρ has both a random Strotz
rationalization (u�μ) and a random GP rationalization (û� ν). Let �RS be the
preference represented by (u�μ) and �RGP the preference represented by (û� ν).
Then if û and u represent the same preference over singletons,21 �RGP is more
temptation averse than �RS, strictly so if �RGP exhibits temptation.

PROOF: Without loss of generality, assume û = u. To show that the com-
parison holds, we show that {α} �RS x implies {α} �RGP x. To see this, fix any
menu x. By definition of the random Strotz representation, we must have
x ∼RS {∫ βρx(dβ)}. Hence {α} �RS x implies {α} �RS {∫ βρx(dβ)}. Since both
rationalizations rank singletons the same way, we have {α} �RGP {∫ βρx(dβ)}.
But, letting β̂∗ denote a selection function for (u� ν),

VRGP(x)=
∫ {

max
x

[u(β)+ v(β)] − max
x
v(β)

}
ν(dv)

=
∫ {

u(β̂∗(x� v))+ v(β̂∗(x� v))− max
x
v(β)

}
ν(dv)

≤
∫ {
u(β̂∗(x� v))+ v(β̂∗(x� v))− v(β̂∗(x� v))

}
ν(dv)

=
∫
u(β̂∗(x� v))ν(dv)= u

(∫
βρRGP

x (dβ)

)

= VRGP

({∫
βρRGP

x (dβ)

})
�

20An argument similar to that in the proof of Theorem 5 shows that we could also compare the
choices by a random Strotz representation and a random GP representation that correspond to
the same preference over menus. Specifically, one can then show that the agent would prefer to
commit to the expected behavior under the random GP than to the expected behavior under the
random Strotz.

21The choice function alone cannot tell us whether the rationalizations have the same prefer-
ence over singletons. It is not hard to show that if a random choice function has a random GP
rationalization, we can find such a rationalization with any u function we choose. To see this, con-
sider, for simplicity, a random GP rationalization (u� ν) where the support of ν is {v1� � � � � vJ}. Fix
any û. For j = 1� � � � � J, let v̂j = u− û+ vj , so that û+ v̂j = u+ vj . Define ν̂ by ν̂(v̂j)= ν(vj). The
random GP rationalization (u� ν) says that, given menu x, the choice is the one that maximizes
u + vj with probability ν(vj). Clearly, this is the same thing as saying that it is the choice that
maximizes û+ v̂j with probability ν̂(v̂j). Hence (û� ν̂) is also a random GP rationalization. In the
case of a continuous random Strotz representation, the tie-breaking in favor of u has no effect on
choices and so we get a similar indeterminacy.
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Hence {∫ βρx(dβ)} �RGP x. So {α} �RGP {∫ βρx(dβ)} �RGP x, establishing the
desired conclusion.

To see that there must be some menu where the comparison is strict if
�RGP exhibits temptation, consider any α and β that satisfy {α} �RGP {β} and
{α} �RGP {α�β}. As noted above, this implies that there is v ∈ supp(ν) with
u(α) > u(β) and v(α) < v(β). It is easy to show that this implies that, for the
menu x = {α�β}, we must have VRGP(x) < VRGP({

∫
βρRGP

x (dβ)}). Hence the
inequality above is strict for such a menu. Q.E.D.

To see the intuition behind this result most simply, suppose � has a GP rep-
resentation and hence also a random Strotz representation. Suppose this pref-
erence has {α} � {α�β} � {β}. In the GP case, this is rationalized by having
u(α) > u(β), v(β) > v(α), and u(α) + v(α) > u(β) + v(β). These rankings
imply that

VGP({α�β})= max{u(α)+ v(α)�u(β)+ v(β)} − max{v(α)� v(β)}
= u(α)− [v(β)− v(α)]�

Thus the predicted choice is α, the same as the “choice” from the menu
{α}, but the menu is ranked lower than {α} because of the self-control cost
of v(β) − v(α). By contrast, the random Strotz representation would have
VRS(α�β)= pu(α)+ (1 −p)u(β) for some p ∈ (0�1). Thus the random Strotz
representation “explains” the fact that {α} � {α�β} not by self-control costs but
by a nonzero probability of “self-indulgent” behavior under the latter menu.

In other words, the random Strotz model explains the desire for commitment
entirely in terms of a fear of succumbing to temptation, while the random GP
model explains it in part by this, but in part by a desire to avoid self-control
costs. Hence if the choices from menus coincide, the self-control costs lead the
random GP agent to have a stronger desire for commitment than the random
Strotz agent.

APPENDIX A: PROOF OF THEOREM 2

As noted in the text, we begin with a random Strotz representation of the
form

V (x)=
∫

A
max

β∈Bv+Au(x)
u(β)f (A)dA�

where f is lower semicontinuous and A is the support of f . We show how to
rewrite V in the form of a random GP representation.

For any a ≥ 0, let U(a) = {A ∈ R | f (A) > a}. Since f is lower semicontin-
uous, U(a) is open and hence is the union of countably many disjoint open
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intervals for all a. Let L(a) denote the Lebesgue measure of U(a). Then we
have

V (x)=
∫

A
max

β∈Bv+Au(x)
u(β)

[∫ f (A)

0

1
L(a)L(a)da

]
dA

=
∫

A

∫ f (A)

0
max

β∈Bv+Au(x)
u(β)

1
L(a)L(a)dadA�

Let f̄ = supA∈A f (A). Then the double integral above is over

{(A�a) ∈ R2 |A ∈ A�0< a< f(A)}
= {(A�a) ∈ R2 | 0< a< f̄ � f (A) > a}�

Thus the integral is equal to∫ f̄

0

[∫
U(a)

max
β∈Bv+Au(x)

u(β)
1

L(a) dA
]

L(a)da�

Note that
∫ f̄

0 L(a)da= ∫
A f (A)dA= 1. Hence we can view L(a) as a density

over a ∈ [0� f̄ ].
Fix any a ∈ (0� f̄ ). Since U(a) is a union of disjoint open intervals, we can

write ∫
U(a)

max
β∈Bv+Au(x)

u(β)
1

L(a) dA=
∞∑
k=1

∫ ck

bk

max
β∈Bv+Au(x)

u(β)
1

L(a) dA�

where (bk� ck), k = 1�2� � � � , is the collection of intervals defining U(a), and
we suppress the dependence of the bk’s and ck’s on a for notational simplicity.
Rewriting, this is

=
∞∑
k=1

ck − bk
L(a)

∫ ck

bk

max
β∈Bv+Au(x)

u(β)
1

ck − bk dA�

As shown in the text,∫ ck

bk

max
β∈Bv+Au(x)

u(β)
1

ck − bk dA= max
β∈x

[u(β)+ vk(β)] − max
β∈x

vk(β)�

where vk = (v+ bku)/(ck − bk). Hence for any a, we have∫
U(a)

max
β∈Bv+Au(x)

u(β)
1

L(a) dA

=
∞∑
k=1

ck − bk
L(a)

{
max
β∈x

[u(β)+ vk(β)] − max
β∈x

vk(β)
}
�
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Since
∑

k(ck − bk)/L(a) = 1, this is a random GP representation. Hence we
have established that the random Strotz representation is a randomization over
random GP representations and hence is a random GP representation.

APPENDIX B: PROOF OF THEOREM 3

We prove this result by showing that if we restrict attention to measures on
a particular subspace of RK that includes one EU function for each nontrivial
EU preference, then the measure is unique. The particular space we use is

W = {w ∈ RK |w · 1 = 0�w ·w= 1}�
where 1 is a K vector of 1’s. It is easy to see that any nontrivial EU preference
is represented by exactly one w ∈ W .

Theorem 3 is concerned only with the measure of sets of EU functions that
are closed under equivalence in the sense that if w is in the set, then every w′

equivalent to w is in the set as well. Hence we may as well take our measures
to be over W . For the σ-algebra on W , we use the Borel σ-algebra, using as
our topology on W the (relativized) usual Euclidean topology on RK .

The proofs of Lemmas 1 and 2 are straightforward algebra and hence are
omitted.

LEMMA 1: Fix w� w̄ ∈ W . Then w · w̄ ∈ [−1�1]. Furthermore, w · w̄ = 1 iff
w= w̄ and w · w̄= −1 iff w= −w̄.

Let V = {v ∈ W | v · u= 0}.

LEMMA 2: For every w ∈ W , there exist v ∈ V and A ∈ [−1�1] such that w =
v
√

1 −A2 +Au. If w = u, then this holds for every (A�v) ∈ {1} × V , while if
w= −u, it holds for every (A�v) ∈ {−1} × V . For every other w ∈ W , the (A�v)
is unique.

Define an order over W by wCuŵ (read “w is closer to u than ŵ”) if

u(α) > u(β)� ŵ(α)≥ ŵ(β) implies w(α)≥w(β)�
In other words, w is willing to “go along with” u at least as often as ŵ. Define
a set W ⊆ W to be closed under Cu if w′ ∈W and wCuw′ implies w ∈W .

For brevity, let η(A)= √
1 −A2. The proof of the following lemma is given

in the Supplemental Material.

LEMMA 3: w1Cuw2 if and only if there exists v ∈ V such that wi = v
√

1 −A2
i +

Aiu, i= 1�2, with A1 ≥A2.
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Given a function A∗ : V → [−1�1], let

W (A∗)=
⋃
v∈V

{
w ∈ W |w= v

√
1 −A2 +Au�

for some A≥A∗(v)�A �= −1
}
�

Note that by excluding A = −1, the definition of W (A∗) ensures that −u /∈
W (A∗) for any A∗.

LEMMA 4: A set W ⊆ W , W �= W , is closed and closed under Cu if and only
if there exists a lower semicontinuous function A∗ such that W = W (A∗) and
A∗(v) >−1 for all v ∈ V .

PROOF: Fix any lower semicontinuous function A∗ such that A∗(v) > −1
for all v ∈ V . Let W = W (A∗). Since the definition of W (A∗) prevents −u ∈
W (A∗), W �= W . From Lemma 3, it is easy to see that W is closed under Cu if
and only if v

√
1 −A2 +Au ∈W implies v

√
1 − Â2 +Âu ∈W for all Â ∈ (A�1].

Hence the definition ofW (A∗) obviously impliesW is closed under Cu. Finally,
to show thatW is closed, fix any sequencewn converging tow such thatwn ∈W
for all n. We can write wn = √

1 −A2
nvn +Anu for each n. Since wn ∈W for all

n, we have An ≥A∗(vn) for all n. Let v denote the limit of vn and let A denote
the limit of An. It is easy to show that the v and A associated with a given
w depend continuously on w, so we must have w = √

1 −A2v +Au. Hence
w ∈ W (A∗) if and only if limn→∞A∗(vn) ≥ A∗(limn→∞ vn). Since A∗ is lower
semicontinuous, this holds. Hence W is closed.

For the converse, suppose W �= W is closed and closed under Cu. For each
v, let

A∗(v)= min
{
A ∈ [−1�1] | v

√
1 −A2 +Au ∈W }

�

Since W is closed, A∗(v) is well defined. Since wCu − u for all w, the fact
that W �= W implies −u /∈W . Hence A∗(v) >−1 for all v. Since W is closed
under Cu, for every A ≥A∗(v), we have v

√
1 −A2 +Au ∈ W , implying that

v
√

1 −A2 +Au ∈W if and only if A≥A∗(v). Hence W =W (A∗).
Finally, to see thatA∗ is lower semicontinuous, again, consider the sequence

constructed above. As noted, for any such sequence, w ∈ W if and only if
limn→∞A∗(vn) ≥ A∗(limn→∞ vn). Since W is closed, we must have w ∈ W .
Hence any jumps in A∗ must be downward, so A∗ is lower semicontinu-
ous. Q.E.D.

We note that if A∗ is lower semicontinuous, then it is measurable.

LEMMA 5: Fix any measurable function A∗ : V → [−1�1] such that W (A∗) is
closed. Then there exists a sequence of positive numbers {εn} and a sequence of



SELF-CONTROL AND SELF-INDULGENCE 1291

menus {xn} such that, for every random Strotz representation with commitment
preference represented by u,

lim
n→∞

V (xn)

εn
= μ(W (A∗))�

PROOF: Fix such an A∗ function.
Part 1. First, suppose that A∗ is bounded in the sense that A∗(v)/√
1 − (A∗(v))2 is bounded from above and below.
For each v ∈ V , let

αv = 1
K

1 +ϕv�

βv(ε)= αv +ϕε
[
u− A∗(v)

a∗(v)
v

]
�

where a∗(v)= √
1 − (A∗(v))2. By the boundedness ofA∗/a∗, there exists ϕ> 0

such that, for all sufficiently small ε > 0, every αv and βv(ε) is a lottery.
Let L(v)= {w ∈ W |w = av+Au� some a≥ 0�A ∈ [−1�1]}. Suppose w =

L(v) and consider some v̄ which may or may not equal v. Then

w · αv̄ = aϕv · v̄�
while

w · αv = aϕ�
Since v · v̄ ≤ 1, strictly if v̄ �= v, we see that w · αv̄ ≤ w · αv, strictly so for any
v̄ �= v. Hence if w picks any α, he must pick αv.

Also, for any v, u ·αv = 0<ϕε= u ·βv(ε). So u is indifferent among the α’s,
indifferent among the β’s, and prefers the β’s to the α’s. Hence, letting xε de-
note the menu consisting of all the α’s and β’s, we see that V (xε)= ϕεμ(Wε),
where

Wε =
⋃
v∈V

{w ∈L(v) |w ·βv̄(ε)≥w · αv� for some v̄ ∈ V }�

We now show that limε↓0μ(Wε)= μ(W (A∗)). Note that ifw= av+Au, then
a= √

1 −A2 and

w ·βv(ε)=w · αv +ϕε
[
A− A∗(v)

a∗(v)
a

]
�

so w ·βv(ε)≥w ·αv iff (A/a)≥ (A∗(v)/a∗(v)). It is not hard to show that this
holds iff A≥A∗(v). Hence for every ε, we have W (A∗)⊆Wε.
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Next, we show that if w /∈ W (A∗), then there is ε̄ > 0 such that, for all ε ∈
(0� ε̄), we have w /∈Wε. To show this, suppose not. Then there exists a sequence
εn converging to zero such that w ∈Wεn \W (A∗) for all n.

Write w= av+Au. Then there exists a sequence v̄n such that

w ·βv̄n(εn)≥w · αv
or

aϕv · v̄n +ϕεn
[
A− An

an
av · v̄n

]
≥ aϕ�

where An =A∗(v̄n) and an = √
1 −A2

n. Rearranging yields

εn

[
A

a
− An

an
v · v̄n

]
≥ 1 − v · v̄n�

Since v · v̄n ≤ 1 and An/an is bounded from below, we must have v · v̄n → 1 as
n→ ∞. Note for future use that this implies v̄n → v. Also, the fact that the
right-hand side is nonnegative for all n implies that

A

a
≥ An

an
v · v̄n

for all n. Recall that w ∈L(v) and w /∈W ∗. Hence A<A∗(v). So we have

A∗(v)
a∗(v)

>
A∗(v̄n)
a∗(v̄n)

v · v̄n�

Since v · v̄n → 1, we have

A∗(v)
a∗(v)

≥ lim
n→∞

An

an
�

or A∗(v)≥ limn→∞An.
By Lemma 4, the fact thatW (A∗) is closed implies thatA∗ is lower semicon-

tinuous. Hence we have the opposite weak inequality, so A∗(v)= limn→∞An.
But recall that

A

a
≥ An

an
v · v̄n

for all n. Hence

A

a
≥ lim

n→∞
An

an
v · v̄n = A∗(v)

a∗(v)
�
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But this implies A≥A∗(v) or w ∈W (A∗), a contradiction.
Hence limn→∞μ(Wε)= μ(W ∗). Therefore,

lim
n→∞

V (xε)

ϕεn
= lim

n→∞
μ(Wε)= μ(W ∗)�

Taking the sequence referred to in the statement of the lemma to be {ϕεn}
gives the desired conclusion.

Part 2. Now we drop the assumption thatA∗ is bounded. Fix a sequence {εn}
with εn > 0 for all n such that εn → 0. Define a new function

A∗
n(v)=

{
A∗(v)� if −1 + εn ≤A∗(v)≤ 1 − εn,
−1 + εn� if A∗(v) <−1 + εn,
1 − εn� if A∗(v) > 1 − εn.

Clearly,A∗
n is bounded for every n. It is tedious but not difficult to show that

the fact that W (A∗) is closed implies that W (A∗
n) is closed for every n. Hence

for each n, we can find sequences {εnm} and {xnm} such that

lim
m→∞

V (xnm)

εnm
= μ(W (A∗

n))�

That is, for any δ > 0, there exists Mn(δ) such that∣∣∣∣V (xnm)εnm
−μ(W (A∗

n))

∣∣∣∣< δ ∀m≥Mn(δ)�

Rewriting,∣∣∣∣V (xnm)εnm
−μ(W (A∗))+μ(W (A∗) \W (A∗

n))

−μ(W (A∗
n) \W (A∗))

∣∣∣∣< δ ∀m≥Mn(δ)�

Clearly, though, if w ∈ W (A∗) \ W (A∗
n), then there must be some N such

that w ∈W (A∗) ∩W (A∗
n̄) for all n̄ ≥ N . The analogous statement is true for

W (A∗
n) \W (A∗).

So fix any sequence {δn} converging to zero. For each n, fix mn ≥Mn(δn).
Consider the sequence {ε̂n} = {εnmn} and {x̂n} = {xnmn}. Clearly, for every n,∣∣∣∣V (x̂n)ε̂n

−μ(W (A∗))+ kμ(W (A∗) \W (A∗
n))

−μ(W (A∗
n) \W (A∗))

∣∣∣∣< δn�
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So

lim
n→∞

V (x̂n)

ε̂n
= μ(W (A∗))� Q.E.D.

To complete the proof of Theorem 3, suppose (u�μ) and (ū� μ̄) are random
Strotz representations of �, where μ and μ̄ are measures over W . Let V and
V̄ denote the utility functions over menus generated by (u�μ) and (ū� μ̄), re-
spectively. As explained in the text, u and ū must be the same up to a positive
affine transformation. For convenience, we transform so that u= ū.

Since V and V̄ are random Strotz representations of the same preference,
there exist a > 0 and b such that V (x) = aV̄ (x)+ b for all menus x. For x =
{α}, then, V ({α})= aV̄ ({α})+ b or u(α)= aū(α)+ b. Since u= ū, then a= 1
and b= 0. In other words, we must have V = V̄ .

Note that the sequence of menus constructed in the proof of Lemma 5 is
independent of the representation. Hence, for any set W that is closed and
closed under Cu, we must have μ(W )= μ̄(W ).

Fix any measurable set E ⊆ W that is closed under Cu. By Theorem 12.3 of
Billingsley (1995, p. 174),

μ(E)= sup
W⊆E|W closed

μ(W )�

and similarly for μ̄. It is easy to see that if W ⊆ E, then if we close W under
Cu, the resulting set will be contained in E, that is,

W ∗ ≡ {w ∈ W |wCuw′� for some w′ ∈W } ⊆ E�
Obviously, μ(W ∗)≥ μ(W ). Hence

μ(E)= sup
W⊆E|W closed� closed under Cu

μ(W )�

Since μ(W )= μ̄(W ) for anyW that is closed and closed under Cu, this implies
μ(E) = μ̄(E). Thus μ and μ̄ coincide for any measurable set that is closed
under Cu.

Let P denote the collection of measurable sets E that are closed under Cu.
So we have established that μ and μ̄ coincide on P . It is easy to show that P is
a π-system. To see this, suppose E1�E2 ∈ P . Then E1 and E2 are measurable,
so E1 ∩E2 is measurable. Also, fix any w ∈E1 ∩E2 and any w′ such that w′Cuw.
Since w ∈ Ei and Ei is closed under Cu, we must have w′ ∈ Ei, i= 1�2. Hence
w′ ∈ E1 ∩ E2. So E1 ∩ E2 is closed under Cu and hence is an element of P .
Hence P is a π-system.

Theorem 3.3 of Billingsley (1995) then implies μ = μ̄ on σ(P), the σ-
algebra generated by P . We now show that σ(P) is the Borel σ-algebra, com-
pleting the proof of uniqueness.
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Fix any open set W ⊆ W and any w ∈ W \ {−u�u}. It is not hard to see
that there exist a closed V̂ ⊆ V and rational numbers r1� r2 ∈ (−1�1] such that
w ∈W (A∗

1) \W (A∗
2)⊆W , where

A∗
i (v)=

{
ri� for v ∈ V̂ ,
1� otherwise.

Obviously, W (A∗
1)�W (A

∗
2) ∈ P implies W (A∗

1) \ W (A∗
2) ∈ σ(P). Note that

{u} ∈ P and that W \ {−u} ∈ P implies {−u} ∈ σ(P). Hence W is the union
of a countable collection of sets in σ(P), so W ∈ σ(P). Hence σ(P) contains
all open sets and so contains the Borel σ-algebra. Since all sets in P are in the
Borel σ-algebra, σ(P) cannot be larger than the Borel σ-algebra, so it must
equal it.

APPENDIX C: PROOF OF THEOREM 4

LEMMA 6: Suppose �i has a random Strotz representation (u�μi), i = 1�2.
Then �2 is more temptation averse than �1 if and only if, for every menu x,

V2(x)≡
∫

max
β∈Bw(x)

u(β)μ2(dw)≤
∫

max
β∈Bw(x)

u(β)μ1(dw)≡ V1(x)�

PROOF: Suppose �2 is more temptation averse than �1 but that V2(x) >
V1(x) for some menu x. Without loss of generality, assume x is closed and
convex. Then there exists α ∈ x such that {α} ∼2 x. So u(α) = V2(x) > V1(x).
Hence {α} �1 x, but we do not have {α} �2 x, contradicting �2 more tempta-
tion averse. For the converse, suppose V1(x) ≥ V2(x) for all x. Then, when-
ever u(α) > V1(x), we have u(α) > V2(x), so �2 is more temptation averse
than �1. Q.E.D.

First, we show that if μ2 conditionally dominates μ1, then �2 is more temp-
tation averse than �1. Fix any menu and any v ∈ V . Since the utility u gets from
the choice is weakly increasing in A, we know that the expected utility of the
menu conditional on v is higher under μ1

A than under μ2
A for (almost) every v.

Hence the same is true when we take expectations over v, since the marginals
are the same. Thus V1(x) ≥ V2(x) for all x, implying �2 is more temptation
averse than �1 by Lemma 6.

For the converse, suppose �2 is more temptation averse than �1. We con-
struct decompositions of μ1 and μ2 which show that μ2 conditionally domi-
nates μ1. We define V as in the proof of Theorem 3. To begin constructing the
relevant measures, we fix a partition V1� � � � �VN of V with the property that
each Vi is measurable. We refer to such a partition as a measurable partition.
For any Vn and any An ∈ [−1�1], let

μi(An�Vn)= μi
({
w ∈ W |w= v

√
1 −A2 +Au�

for 1>A≥An�A �= −1� v ∈ Vn

})
�
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Note that μi(An�Vn) is defined so that it does not include the measure of u or
−u. In particular, μi(1�Vn)= 0 and

μi(−1�Vn)= μi(L(Vn))−μi({u})−μi({−u})�
where

L(Vn)= {
w ∈ W |w= v

√
1 −A2 +Au� for A ∈ [−1�1]� v ∈ Vn

}
�

Fix any A1� � � � �AN and define

W ∗ =
N⋃
n=1

⋃
v∈V N

{
w ∈ W |w= v

√
1 −A2 +Au�A≥An�A �= −1

}
�

First, suppose W ∗ is closed. By Lemma 5, we know that there is a sequence of
menus xm and numbers εm such that

lim
m→∞

Vi(xm)

εm
= μi(W ∗)�

Since this sequence is independent of the preference (given that both have
commitment utility u), and since V1(xm)≥ V2(xm) for allm, we have μ1(W

∗)≥
μ2(W

∗).
Now suppose that W ∗ is not closed. In this case, Theorem 12.3 of Billingsley

(1995, p. 174) implies that

μ2(W
∗)= sup

W⊆E|W closed
μ2(W )�

As shown in the proof of Theorem 3, we can rewrite this as

μ2(W
∗)= sup

W⊆W ∗|W closed� closed under Cu

μ2(W )�

But we know that for every W which is closed and closed under Cu, we have
μ2(W )≤ μ1(W ). Hence

μ2(W
∗)= sup

W⊆E|W closed
μ2(W )

≤ sup
W⊆W ∗|W closed� closed under Cu

μ1(W )

= μ1(W
∗)�

Summarizing, we have

μ1(u)+
N∑
n=1

μ1(An�Vn)≥ μ2(u)+
N∑
n=1

μ2(An�Vn)(5)
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for any (A1� � � � �AN) ∈ [−1�1]N .
Note that this implies μ1(u)≥ μ2(u), and μ1(−u)≤ μ2(−u). The former is

implied by taking An = 1 for all n, and the latter by taking An = −1 for all n.
Let μ∗(u)= μ1(u)−μ2(u). First, assume μ∗(u) > 0. For each n, let

λ∗
n = sup

An∈[−1�1]

μ2(An�Vn)−μ1(An�Vn)

μ∗(u)
�

By assumption, μ∗(u) > 0, so this is well defined. Also, note that for An = 1,
the difference on the right-hand side is zero. Hence λ∗

n ≥ 0.
Also,

∑
n

λ∗
n = 1

μ∗(u)

∑
n

sup
An∈[−1�1]

[μ2(An�Vn)−μ1(An�Vn)]�

Suppose that this is strictly greater than 1. Then for each n, there is a sequence
{Am

n } such that

lim
m→∞

∑
n

μ2(A
m
n �Vn) > μ

∗(u)+ lim
m→∞

∑
n

μ1(A
m
n �Vn)�

Substituting for μ∗(u) and rearranging,

lim
m→∞

[
μ2(u)+

∑
n

μ2(A
m
n �Vn)

]

> lim
m→∞

[
μ1(u)+

∑
n

μ1(A
m
n �Vn)

]
�

But this contradicts equation (5). Hence
∑

n λ
∗
n ≤ 1.

Fix any λ1
1� � � � � λ

1
N , summing to 1, such that λ1

n ≥ λ∗
n for all n. Obviously, such

a λ1 exists. Then the definition of λ∗
n and the fact that λ1

n ≥ λ∗
n imply

λ1
nμ

∗(u)+μ1(An�Vn)≥ μ2(An�Vn) ∀An ∈ [−1�1]�∀n�
Substituting for μ∗(u), then

λ1
nμ1(u)+μ1(An�Vn)≥ λ1

nμ2(u)+μ2(An�Vn) ∀An ∈ [−1�1]�∀n�(6)

Next, suppose μ∗(u) = 0. In this case, define λ1
n = 1/N for n = 1� � � � �N .

Then equation (5) evaluated at any fixed An with Am = 1 for all m �= n implies
equation (6).

Next, define μ∗(−u) = μ2(−u)− μ1(−u). First, assume μ∗(−u) > 0. Then
define λ2

1� � � � � λ
2
N by

λ1
nμ1(u)+μ1(−1�Vn)= λ1

nμ2(u)+μ2(−1�Vn)+ λ2
nμ

∗(−u)�(7)
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By equation (6) at An = −1, λ2
n ≥ 0 for all n. Also, summing both sides over n

and using
∑

n λ
1
n = 1, we obtain

μ1(u)+
∑
n

μ1(−1�Vn)= μ2(u)+
∑
n

μ2(−1�Vn)+μ∗(−u)
∑
n

λ2
n�

The left-hand side is μ1(W) − μ1(−u) = 1 − μ1(−u). The right-hand side is
1 −μ2(−u)+μ∗(−u)∑n λ

2
n. Hence we have

μ∗(−u)= μ∗(−u)
∑
n

λ2
n�

Since μ∗(−u) > 0 by assumption, we must have
∑

n λ
2
n = 1.

Second, suppose μ∗(−u)= 0. In this case, the definition of λ1 implies

λ1
nμ1(u)+μ1(−1�Vn)≥ λ1

nμ2(u)+μ2(−1�Vn)(8)

for every n. Summing both sides over n and using
∑

n λ
1
n = 1, we obtain

μ1(u)+
∑
n

μ1(−1�Vn)≥ μ2(u)+
∑
n

μ2(−1�Vn)�

But since μ∗(−u)= 0, we have μ1(−u)= μ2(−u), so

μ1(u)+
∑
n

μ1(−1�Vn)+μ1(−u)

≥ μ2(u)+
∑
n

μ2(−1�Vn)+μ2(−u)�

But each side of this inequality must equal 1. Hence equation (8) must hold
with equality for all n. In light of this, we can define λ2

n = 1/n for all n and
equation (7) still holds.

This implies that we can rewrite μi as a measure μ̂i over [−1�1]× V , i= 1�2,
as follows. For any measurable E ⊆ (−1�1)× V , let

μ̂i(E)= μi
({
w ∈ W |w= v

√
1 −A2 +Au�(A�v) ∈E})

�

For E = {1} × Vn, let

μ̂i(E)= λ1
nμi(u)�

and for E = {−1} × Vn, let

μ̂i(E)= λ2
nμi(−u)�
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To see that such a measure exists, for each n, choose an arbitrary vn ∈ Vn and
assign probability λ1

nμi(u) to {1} × vn and probability λ2
nμi(−u) to {−1} × vn.

Extend this to the Borel σ-algebra on [−1�1]× V in the obvious manner. That
is, for each E ⊆ [−1�1] × Vn, let

μ̂i(E)= μ̂i
(
E ∩ [(−1�1)× V ]) + μ̂i

(
E ∩ ({1} × {vi | i= 1� � � � �N}))

+ μ̂i
(
E ∩ ({−1} × {vi | i= 1� � � � �N}))�

The key point to observe about these measures is that, for every n and every
An ∈ [−1�1], we have

μ̂1([An�1] × Vn)= λ1
nμ1(u)+μ1(An�Vn)≥ λ1

nμ2(u)+μ2(An�Vn)

= μ̂2([An�1] × Vn)

and

μ̂1([−1�1] × Vn)= λ1
nμ1(u)+μ1(−1�Vn)+ λ2

nμ1(−u)
= λ1

nμ2(u)+μ2(−1�Vn)+ λ2
nμ2(−u)

= μ̂2([−1�1] × Vn)�

Generalizing, given any finite measurable partition Π of V , let MΠ be the
set of pairs of measures (μ̂1� μ̂2) over [−1�1] × V such that

μ̂i(E)= μi
({
w ∈ W |w= v

√
1 −A2 +Au�(A�v) ∈E})

(9)

∀ measurable E� i= 1�2�

μ̂1([An�1)× Vn)≥ μ̂2([An�1] × Vn) ∀An ∈ [−1�1]�∀n�(10)

and

μ̂1([−1�1] × Vn)= μ̂2([−1�1] × Vn) ∀n�(11)

We have shown that, for every finite measurable partitionΠ, MΠ is nonempty.
It is also not hard to see that it must be closed. Clearly, if Π′ is a refinement of
Π, then MΠ′ ⊆ MΠ .

Each MΠ is a closed nonempty subset of the space of pairs of measures over
V , obviously a compact set. Fix a finite collection of finite measurable parti-
tions, say Π1� � � � �ΠT . Let Π be the coarsest common refinement of these par-
titions. Then MΠ ⊆ MΠt for all t. Since MΠ must be nonempty, we see that⋂

t MΠt �= ∅. By Kelly (1955, Chap. 5, Theorem 1), this implies that
⋂

Π MΠ is
nonempty, where the intersection is taken over the set of all finite measurable
partitions. Hence there is at least one pair of measures that satisfies equations
(9), (10), and (11) for every finite measurable partition.
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Hence we have shown that we can rewrite μ1 and μ2 as distributions μ̂1 and
μ̂2 over (A�v) ∈ [−1�1] × V with the following properties. First, equation (9)
implies that, for every menu x,∫

w

max
β∈Bw(x)

u(β)μi(dw)=
∫
(A�v)

max
β∈B

v

√
1−A2+Au

(x)
u(β)μ̂i(d(A�v))�

i= 1�2�

This holds since we have only specified how mass at u and −u is spread across
the sets {1} × V and {−1} × V , respectively. Since (1� v) and (1� v′) both corre-
spond to utility function u, this has no effect on the calculation of the utility of
any menu.

Second, equation (10) implies that, for every measurable function A∗ : V →
[−1�1], ∫

v

μ̂1

([A∗(v)�1] × {v})dv≥
∫
v

μ̂2

([A∗(v)�1] × {v})dv�
To see this, simply note that since A∗ is bounded and measurable, there ex-
ists an increasing sequence of simple functions A∗

n converging to A∗ point-
wise from below.22 Letting W ∗ = {(A�v) |A≥A∗(v)} and Wn = {(A�v) |A≥
A∗
n(v)}, we see that W ∗ = ⋂

n Wn, so μ̂i(W ∗)= limn→∞ μ̂i(Wn). Hence

μ̂1(W
∗)= lim

n→∞
μ̂1(Wn)≥ lim

n→∞
μ̂2(Wn)= μ̂2(W

∗)�

where the inequality follows from equation (10).
Third, it is easy to see that equation (11) implies that the marginals of μ̂1

and μ̂2 over V are the same.
Letting μV denote the (common) marginal of μ̂1 and μ̂2 on V and letting

μiA(· | v) denote a regular version of the conditional for μ̂i, we see that
(V�μiV�μiA(· | v)) is a decomposition of μi for i= 1�2.

Now we complete the proof by showing that μ1
A(· | v) FOSD μ2

A(· | v) for
almost all v.

Let V(Ā) denote the set of v such that μ1
A([Ā�1] | v) < μ2

A([Ā�1] | v) and
let V ∗ = ⋃

Ā∈[−1�1] V(Ā). We now show that V ∗ has μV measure zero.
First, note that if there is an Ā such that μ1

A([Ā�1] | v) < μ2
A([Ā�1] | v), then

there must be a rational Ā with this property. This is obviously true if the dis-
tributions are continuous in a neighborhood of Ā. If a distribution has a mass
point at Ā, then we can perturb the Ā slightly in one direction and maintain
the inequality. Hence V ∗ = ⋃

Ā∈R V(Ā), where R denotes the rationals. For

22It is straightforward to modify the proof of Theorem 13.5 in Billingsley (1995, p. 185) to show
this.
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any Ā, V(Ā) is measurable, so, as a countable union of measurable sets, V ∗ is
measurable. Clearly,

μV(V ∗)≤
∑
Ā∈R

μV(V(Ā))�

To show that the right-hand side is zero, suppose it is positive. Then there
must be some rational Ā such that μV(V(Ā)) > 0. For every v ∈ V(Ā), we
have

μ1
A

([Ā�1] | v)μV(v) < μ
2
A

([Ā�1] | v)μV(v)�

Integrating over v ∈ V(Ā), we get

μ̂1([Ā�1] × V(Ā)) < μ̂2([Ā�1] × V(Ā))�

a contradiction to equation (10).
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