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ABSTRACT

In this thesis ] examine a8 number of issues in single- and multi-person
decision theory. In Chapter 1 an implicit expected utility representation of
preferences is characterized by replacing the controversial independence
axiom with the betweenness axiom. Many results and analytical tools from
expected utility theory can be extended to the representation derived, which
is, moreover, consistent with empirical evidence which violates expected util-
ity maximization. Chapter 2 focuses on the relationship between portfolio
diversification and risk aversion for general (non-linear) preferences over pro-

bability distributions.

In Chapters 3 and 4 the concept of common knowledge is examined. First
an equivalence between a Bayesian definition (in terms of beliefs) and an
informational definition (in terms of o-fields) is proven in a general frame-
work (which allows for null events in the join of the information partitions).
In Chapter 4 the approach of hierarchies of beliefs is developed. A type of an
individual is an infinite hierarchy of beliefs -- over some space S, over oth-
ers’ beliefs over S, and so on. I show that a coherent type determines a
belief over S and other individuals’ types, and that common knowledge of
coherency is needed to "close” this model. In Chapter 3, the information
structure (probabilities and o-fields) is assumed to be common knowledge. In
Chapter 4 this assumption is shown to be without loss of generality if the

underlying space is expanded to include the type spaces and common
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knowledge of coherency is satisfied.

Chapter 5 shows how common knowledge restrictions on beliefs can be
related to equilibrium concepts in games. I prove that the set of correlated
rationalizable payoff vectors in a game is equal to the set of payofl vectors
from the a posteriori equilibria (a special type of subjective correlated equili-
bria) of that game, and similarly independent rationalizability is equivalent

to mixed a posteriori equilibria.
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INTRODUCTION

The essays in this thesis examine the implications that certain assump-
tions about the beliefs and behavior of individuals have on the. choices these
individuals make when faced with decisions under uncertainty. Different
frameworks for analyzing choice under uncertainty, and several different
questions are studied. Chapters 1 and 2 focus on single person decision
theory when the probabilities are objectively given, in particular preferences
over lotteries and assets. Chapters 3 and 4 examine the concept of common
knowledge, fundamental in the area of multi-person decision theory. The
standard framework of a given state space and information structure is used
in Chapter 3, while Chapter 4 develops and applies the approach of hierar-
chies of beliefs. The relationship between restrictions on beliefs which are
common knowledge and solution concepts in game theory is pursued in

Chapter 5.

The axiomatic approach has been used extensively in the area of single
person decision theory -- situations where the outcome of a person’s action is
influenced by "nature” {the “state of nature” and action jointly determine
the outcome). The seminal result in this area is the theory of expected util-
ity. Roughly speaking, continuity and order axioms which imply the
existence of a preference function, are combined with the independence
axiom to derive the linearity (in probabilities) of this function. The indepen-

dence axiom is the most controversial of these axioms, in particular because
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of experiments in which behavior violating expected utility maximization is
observed (eg. Allais and Hagen [1]). Chapter 1 proposes an alternative set of
axioms where the independence axiom is replaced by the (weaker) between-
ness axiom. The betweenness axiom is normatively appealing -- it only
requires that receiving the lottery P if a coin comes up heads and lottery Q
if it is tails is ranked (in terms of the preference ordering) between P and Q.
The behavior implied by the axioms of Chapter 1 has many of the advan-
tages of expected utility maximization. Preferences are represented by the
solution of an implicit equation which bears a formal resemblance to an
expected utility calculation, and a large class of results and methods of
analysis from the theory of expected utility can be extended to the proposed
framework (cf. Machina [10]). The experimental evidence mentioned above
however is consistent with the axioms 1 use, and other reasons for choosing
them are discussed. In Chapter 2 I examine the optimal choice of assets
when the underlying preferences over probability measures are assumed to
be representable by a continuous and increasing (in the sense of first order
stochastic dominance) function on the space of distributions. Restrictions on
these preferences are related to the quasiconcavity of the induced prefer-
ences over assets. The latter property is of interest since it implies
diversification and convex valued asset demands; I show that risk aversion is
necessary but not sufficient for this diversification property. Risk aversion
together with quasiconcavity of the underlying preferences is sufficient, how-

ever the latter is not necessary and I derive a class of examples to clarify it;
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role.

The area of multi-person decision theory (game theory) examines the
problem of choices when individuals interact, in particular when the choice
of one person aflects the payoff to another and conversely. The axiomatic
approach is much less developed in this area of research, and Chapters 3 - 5,
which are based on Brandenburger and Dekel [6, 7, 8], are contributions in
this direction. In Chapters 3 and 4 I look at the concept of common
knowledge. The idea of common knowledge is central in game theory. For
example, the analysis of a game starts by assuming that its structure is com-
mon knowledge. Intuitively speaking, two people 1 and 2 are said to have
common knowledge of an event if both know it, 1 knows that 2 knows it, 2
knows that 1 knows it, 1 knows that 2 knows that 1 knows it, and so on.
Common knowledge was first given a formal definition in [3]. An important
restriction on the information structure in [3] is that the join of 1 and 2’s
partition is assumed to consist of nonnull events. In Chapter 3 I provide »
definition of common knowledge in the more general situation, which arises
naturally in many decision problems (e.g. with infinite state spaces) where
null events are permitted. The main result is an equivalence between a
definition in terms of beliefs (where i knows A at w means that i assigns A
posterior probability 1 at w) and a definition in terms of the o-fields
representing the information (where an individual knows an event if (s)he is
informed that it -- or an event which implies it -- has occurred). The

equivalence requires the conditional probabilities to be proper, which is an
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assumption that individuals correctly process their information, and the o
fields to be completed in an appropriate manner, which is an assumption
that the individual is (trivially) informed of events about which (s)he has no
doubts — that is regardless of the actual state of nature, (s)he believes with

certainty that the event either occurred or did not occur.

The framework used in Chapter 3 is standard, there is a state space {1
and an information structure -- a o-field and prior for each individual --
which for the purpose of interpretation are taken to be common knowledge.
An alternative approach would start by noting that the individuals face
some common space of uncertainty S. In order to determine his/her optimal
decision, each individual must have a belief (probability measure) over S.
But if other individuals’ beliefs affect his/her decision, then (s)he must have
a belief over others’ beliefs over S. This leads to each person having an
infinite hierarchy of beliefs (over S, over others’ beliefs over S and so on)
which is called his/her type (see also Boge and Eisele [5], Harsanyi [9] and
Mertens and Zamir [11]). In Chapter 4 I develop this second approach and
show how it relates to the standard framework. The notions of belief-closed
sets and coherency are examined. Then I show that a definition of common
knowledge of an event in terms of the hierarchy is equivalent to the
definitions in Chapter 3 (under the assumption of common knowledge of
coherency). So, assuming common knowiedge of coherency, the two
approaches are equivalent. In fact, as noted in [3), when the information

structure is not common knowledge we must expand the state space of the
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framework used in Chapter 3, since otherwise the interpretations of the
results are invalid. Chapter 4 shows that the expanded state space needed is
precisely the product of the underlying state space with the type spaces res-
tricted to satisfy common knowledge of coherency. This argument implies
that assuming common knowledge of the information structure is equivalent

to common knowledge of coherency.

Chapter 5 examines the problem of how individuals will play a game.
The focus is on the relationship between behavioral assumptions and solu-
tion concepts. The fundamental solution concept for noncooperative games is
that of a Nash equilibrium {12]. Aumann [2] proposed the idea of objective
and subjective correlated equilibrium as an extension of Nash equilibrium to
allow for correlation between the players’ randomizations and for subjec-
tivity in the players probability assessments. Chapter 5 starts with the solu-
tion concept of rationalizability (suggested by Bernheim [4] and Pearce [13)),
since this is what is implied by the basic decision theoretic analysis of a
game. However it is more closely related to an equilibrium approach than
one might think. Rationalizable payoffs and payoffs from a posteriori equili-
bria -- a refinement of subjective correlated equilibria -- are proven
equivalent. The analysis is developed for correlated and independent
rationalizability. In proving the equivalence of the latter with mixed a pos-
teriori equilibria the issue of how to correctly define "mixed” strategies in
this framework is examined. Slight variations on the definitions, which differ

only in how players update on null events, lead to quite different solution
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concepts.
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CHAPTER 1
IMPLICIT EXPECTED UTILITY PREFERENCES:

WEAKENING THE INDEPENDENCE AXIOM

1. Introduction

This chapter provides an implicit representation for an axiomatic charac-
terization of preferences under uncertainty. Essentially only the controver-
sial independence axiom is changed to the substantially weaker betweenness
axiom (Chew [2]), keeping ordering, monotonicity and continuity type
axioms. The betweenness axiom requires that indifference sets be convex,
i.e. if an individual is indifferent between two lotteries, then any probability
mixture of these two is equally good. This characterization is of interest for
a number of reasons. The betweenness axiom is appealing from a normative
viewpoint but is compatible with behavior which is not permitted in
expected utility, such as the Allais paradox. It also provides a useful
behavioral approach since it is the weakest form under which preferences
are both quasiconcave and quasiconvex. Quasiconcavity is necessary for the
proof of existence of a Nash equilibrium since if preferences are strictly
quasiconvex anywhere then a mixed strategy is worse than one of the pure
strategies used with positive probability in that mixed strategy. Further-
more, quasiconcavity together with risk aversion are sufficient conditions for

continuity of asset demands (while risk aversion alone is not sufficient, see

Chapter 2). Quasiconvexity on the other hand is necessary and sufficient for
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dynamic consistency of choices under uncertainty (see Green {10}). Thus, in
order to guarantee the existence of a Nash equilibrium, dynamic consistency
and continuous asset demands, we may want to impose quasiconcavity and
quasiconvexity of preferences, giving betweenness -- without making the

additional restrictions necessary for expected utility.

The chapter begins by presenting the axioms and characterization, dis-
cussing recent literature, and proving the representation. Two approaches
are taken, one with a weﬁk continuity axiom provides a representation for
all simple probability measures (those whose support is a finite subset of the
outcome set). The second imposes a stronger form of continuity which
suffices both to extend the results to the set of all distributions and also
implies that the utility function in the representation is continuous. Then
an example is constructed to show that preferences may satisfy the axioms
yet not have any differentiable preference functional, even when preferences
are over the simplex (and trivially continuous). This implies that the gen-
eralization of local monotonicity and risk aversion to global conclusions as
proven in Machina [12] might not hold for all preferences of the type dis-
cussed here. However, an alternative and intuitive extension of local proper-

ties is demonstrated by examining the slopes of the indifference hyperplanes.
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-10 -
2. Axiomatic Characterization

There is an underlying compact metric space W which is the space of
outcomes of lotteries, representing for example monetary outcomes or com-
modity bundles. Preferences, 2, are defined on the space of all probability
measures (D) or simple probability measures (D,) on the Borel fleld of W.
Convex subsets of D and D, could also be dealt with, the details are not
presented. From these preferences define the induced strict preference, >,
and indifference, ~, relations. Preferences over D and D, also induce prefer-
ences over W, where for any w, w' € W, w is preferred to w' if the measure
assigning probability 1 to w is preferred to the measure assigning probability
1 to w'. These measures will be denoted w, v’ and this preference relation is
written as 2z where no confusion should result, and the context will clarify
whether w € W (the outcome) or w € D {the degenerate measure) is implied.
For any w, w’ in W the measure which assigns probability o to w and 1—o to

v’ is denoted (a, w; (1—a), w’).

The following axioms will be used (where P, Q, R are measures in D and

¥, u, w' and v are outcomes in W).

Al: (a) > is a weak order (X is complete, > is asymmetric, and both > and

~ are transitive).

(b) There exist best and worst elements in D, which are the sure out-

comes denoted by w and w. (These are not necessarily unigue.)
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A2: Solvability: If P > @ > R, then there exists an a €(0,1) such that

aP +(1—a)R ~ Q.

A3: Monotonicity: If w = w or w = w and w' > u" (resp. w' ~ v") then
(a,v'; (1=a),w) > (a,uv";(1—a),w) for every a€(0,1) (resp.

(o, w'; (1—a), w) ~ (&, v"; (1—a), w) for every a € [0,1]).

A4: Betweenness: If P > Q (resp. P ~ @), then P > aP + (1—)Q > Q for

every a €(0,1) (resp. P ~ aP + (1—a)Q for every a € [0,1]).

PROPOSITION 1: Preferences over D, satisfy Al - A4 if and only if there
exists a function u: W X [0,1] = B increasing in the preference ordering on
W, and continuous in the second argument such that P > Q (resp. P ~ Q)
<=> V[P] > V|Q] (resp. V[P] = V[Q]), where V|F| is defined implicitly as
the unique v € [0,1] that solves:

(")  Ju(w, v)dF(w) = vu(w, v) + (1—v)u(w, v).

Furthermore u(w, v) is unique up to positive affine transformations which are
continuous functions of v. A particular transformation exists setting

u(m, v) =0 and u(iw, v) =1 for every v, giving the simpler representation:

(**) Ju(w, VIFdF(w) = V|F].

The uniqueness characterization of u in Proposition 1 is a natural exten-
sion of the result in expected utility theory that the Bernoulli utility func-
tion is unique up to affine transformations to the framework developed in

this chapter. To clarify this generalization let V[F] be uniquely defined from
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u by (*) and let \?[F] be uniquely defined by (*) when « replaces u. I say
that v is unique up to positive affine transformations which are continuous
functions of v when V|F] and \7'[F| represent the same preferences if and
only if «(w, v) = a(v)u(w, v) + b(v) for some a(v) positive continuous and

b(v) continuous.

Monotonicity (A3) is a weaker axiom than the standard first order sto-
chastic dominance axioms (cf. [2, Property 3]). However, as will be seen in
Section 4, Al - A4 are sufficient to prove that the preferences are first order
stochastic dominance preserving. In the appendix I provide a characteriza-
tion which does not assume A3. This characterization is similar to Proposi-
tion 1, except that u(w, v) is not necessarily increasing in w (see Section

3.A).

The characterization in Proposition 1 is an implicit expected utility
representation, and the similarity of equation (**) to an expected utility cal-
culation suggests that results from the theory of expected utility can be
extended to the framework of this chapter. A general result along these
lines, based on Epstein’s observation [15] that many properties of an optimal
choice depend on the indifference curve through that choice and not on the
whole indifference map, can be derived. Let U be the set of real valued
functions on W, U a subset of U and D a subset of D. Consider any propo-

sition in expected utility theory of the following form: if u(-) € U then the

distribution F € D which maximizes [u(w)dF(w) is in D. For example, if u is
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concave then F is not second order stochastically dominated, and if u also
has positive third derivative then the optimal F isn't third order stochasti-
cally dominated. This proposition can be extended to implicit expected util-
ity preferences as follows: if u(-, v) € U for every v then the F which maxim-
izes (**) is in D. This claim follows from Corollary 1 in {15]. So if u(:, v) has
negative second derivative and positive third derivative with respect to the
first argument for every v, then the optimal F is not third order stochasti-

cally dominated.

Proposition 1 is related to recent axiomatic work in non-linear utility
theory, in particular Chew [2], and Fishburn [8, 7, 8]. There are two distinct
approaches in this research, depending on whether transitivity of preferences
is assumed [2, 7] or not [6, 8]. It is common in both cases to use a type of
symmetry axiom which imposes restrictions on how indifference sets relate to
one another, while the betweenness axiom imposes convexity on each
indifference set (see the indifference sets in the probability simplices in Fig-
ure 1). Of course, the additional restriction provides stronger results, essen-
tially guaranteeing the skew-symmetry of a bilinear function ¢: D X D—R
which represents preferences by &P, Q) > 0 if and only if P > Q [6]. With
transitivity ¢ can be decomposed [7] and a weighted expected utility decom-

position has been analyzed [2, 3].

The results closest to my work are those of Chew [3] and Fishburn [7]. In

[3] Chew has independently provided an implicit weighted utility characteri-
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zation of preferences satisfying weak order, continuity and substitution
axioms which, taken together, are equivalent to Al(a), A2 and A4. Prefer-
ences are represented by the solution of an implicit equation which has the
form of a weighted utility function (cf. {2]) rather than the implicit expected
utility structure in Proposition 1. Fishburn also drops Al(b) and compact-
ness of W, assuming instead countable boundedness (there exists a countable
subset U of D such that for every P€D there is Q, Q' €D with
Q = P = Q'). Other than this his axioms are equivalent to Al, A2 and A4

(Continuity in [7] is A2 and Dominance is A4) giving [7, Theorem 1]:

Countable boundedness, Al(a}, A2 and A4 hold ifl there exists a function
Jf:D—Rst. P>Qiff {(P)> f(Q) and f(aP + (1—)Q) is continuous and

increasing (constant) in a if P > Q (P ~ Q).

The representation in this chapter is a more refined functional form, closer
in structure to expected utility, admits a simple analysis of risk aversion and

dominance and has a simple uniqueness characterization.

Proposition 1 bears a formal resemblence to Fishburn's implicit charac-
terization of a certainty equivalent functional m: D — R [8]. m(-) is defined
from [¢(z, m(P))dP(z) =0 where ¢ is a skew symmetric, monotone function
and W is an interval of the real line. However the cancellation axiom in [8]
is of the symmetry class, thus ¢ is skew symmetric while ¥ may not be.

Note that when W is restricted to a compact interval of B, I can use Propo-
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sition 1 to provide a mean value representation as follows. Given u(w, v),
normalized so that u(w, -) = 1, u(w, ') = 0, define p(w) as the unique p which
satisfies w ~ (p,u; (1—p),w) and define c(w, w') = u(w, p(v')) — p(w'). The
certainty equivalent M{F) = {w € D | w ~ F) satisfies u(M[F], V|F]) = V|F)
by (*) so we have [c(w, M|F]MF(w) = [{u(w, V[F]) — V[F|}dF(w) = 0. This
shows how a generalized mean value without symmetry axioms can be
derived using the approach of this chapter. (Note that ¢ may or may not be
skew symmetric depending on whether or not the cancellation axiom is

satisfied.)

Before going through the constructive proof, it is worthwhile to consider
the intuition of the representation. A4 implies that indifference sets are con-
vex. Since thick indifference sets are ruled out (by A4), we are left with
indifference sets as hyperplanes. Recall that preferences of the expected
utility type have parallel hyperplanes for indifference sets. Imagine now
that given the indifference hyperplane, say H(v), through the lottery
(v, w; (1=v),1), we ignore all the other indifference sets and construct instead
a collection of parallel hyperplanes. These can be taken to represent prefer-
ences satisfying the expected utility hypothesis and therefore there exists a
function u, (the subscript indicating the original hyperplane H(v)) which
satisfies fu,(w)dF(w) equals the expected utility evaluation of F. If we set,
as we are free to do with expected utility preferences, u,(w) = 1 and u,(w) =

0 then for F = (v,w; (1-v),;) we have u,(®)v + u,(w)(1—v) = v. Thus for
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any F'€ H(v), which is an indifference set both for the original preferences
and these artificial expected utility preferences, we know that fu,(-}dF'() =
v. Doing this for indifference  hyperplanes through points
(v, w; (1~v),a) for every v €(0,1) we get a collection of functions u,(w) which
is exactly u(w, v). The intuition of examining the expected utility extension
of a given indifference hyperplane lies behind most of the subsequent results.
A number of the proofs are done using the characterization (**). This is not

restrictive and is only a choice of normalization.

PROOF OF PROPOSITION 1: I will choose a normalization and prove the
existence of a representation such as (**), and the uniqueness result will
extend this to representations of the form (*). For any p and w with w s,
vy w and p €(0,1) the lottery (p,w;(1—p),w) is either: (i) strictly pre-
ferred to w; (ii) strictly worse than w; or (iii) indifferent to w. By solvabil-
ity find: (i) a A€(0,1) st. (8w, (1-B),v)~ (p,w; (1—p),m) , or (ii) a
7€(0,1) st. (vu; (1-1),w) ~(p,w; (1—p), ). In case (i) set u(w,p) =
(p=8)/(1—h), in case (ii) u(w, p) = p/(1—), and in case (iii) u(w, p) =p. If w
= w or w then for every p set u(i6, p) = 1, and «(w, p) = 0. Since u(w, v) will
be shown to be continuous on the open interval (0,1), extend the definition of
u(w, v) to the closed interval by continuity. Diagramatically (see Figure 2)
what has been done is: (a) construct the intersection of the indifference set
through (p,w; (1—p),w) with the two dimensional simplex with vertices

(w2, w, w); (b) find the line paralle]l to this intersection going through the w
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vertex, this is the dashed line in the diagram; (c¢) define the point at which
that parallel line meets the (w, w) edge of the simplex as u(w, p). This is
exactly the value that expected utility preferences parallel to the hyperplane
through (p,w; (1—p), ) would have assigned to the sure outcome w (if the

values of w and w were normalized to 1 and 0).

The proof that (**) actually represents the preferences when using the

constructed u will proceed in five steps:

(1) Assigning a value to lotteries (p, w; (1—p), u).

(2) Considering lotteries on the edges of (w, w, w) simplices.
(3) Considering other two-outcome lotteries.

(4) Lotteries in a (w, v, w) simplex.

(5) General simple lotteries.

(1) Let Vip,w;(1—p),uw] =p, which is obviously consistent with the
preference ordering of such lotteries. Substituting in (**) gives

pu(w, p) + (1—p)u(w, p) = p as required.

(2) Consider (8,1u; (1—-5),w) ~ (p,w; (1—p),:2). By the previous step it is
sufficient to show that (1—f)u(w, p) + fu(w, p) = p. By construction u(w, p)
= p [(1-5) so (1—-A)p /(1—B) + -0 = p as desired. A similar proof holds for lot-

teries on the (v, w) edge.

(3) This stage in the proof shows that if a lottery of the type

(a,w’; (1—a),uv")} with o', v" € W, is indifferent to (p,w;(1—p),x), then
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au(v’, p) + (1—a)u(vw”, p) = p. Since the proof is a simple but lengthy
geometric analysis it is provided in Appendix B.
(4) Given @ =(g,u; q,w; 7,¥) ~ (p,w; (1—p),®) with g + ¢ + g =1, find
t and o, as in Figure 3, such that:
Q =afp,w; (1-p),x) + (1—a)¢, w; (1-t), w)
and

Q ~ (p,w; (1-p), w) ~ (t,; (1), w).

I need to show that: u(w, plg + u(w, p)g + u(w, p)g = p. By the decompo-
sition of @, g = o(l-p), ¢ = (1—a)1-¢t), and g =ap + (1—a)t. Thus,
u(w,p)g + u(w,p)g + u(w,plg = afl-plu(w,p) + pu(w,p) +
(1—a)[(1-t)u(w, p) + tu(w, p)] = ap + (1—a)p == p since the first square brack-

ets equal p by step (1) and the latter square brackets equal p by step (2).

(5) Given a simple measure P which assigns positive weights p,,..., p, to

wy,..., w, and is indifferent to (p,w; (1—p),w) it is necessary to prove that
]
‘Elp,-u(w,-, p) = p. Consider the simplex A C D which includes all measures

over w,,..., w,. The intersection of the indifference hyperplane through P
with A (this intersection is denoted by H) is a compact convex subset of A,

thus any point A € H can be written as a finite convex combination of
]

extreme points of H. Therefore, P = _El)\,-Qj where Q;€EH is a lottery
(L]

assigning probability ¢; to w' and (1—g;) to w" (these are extreme points of

H, where w’,u” €A). By step (3) above fu(w,p)de- p. Therefore
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Ju(w, p)dP = fu(w, pH(EX;Q;) = EX; fu(w, p}dQ; =Z\;p = p. O

I now present the continuous representation theorem (Proposition 2) since
the proofs of the properties and uniqueness results are identical for both
representations and are provided in Section 3. Proposition 1 showed that
there is a characterization similar to expected utility even when the indepen-
dence axiom is weakened, for all simple measures on a compact consequence
space. In order to get an integral representation theorem for more general
measures we need more assumptions (just as in expected utility theory -- see
Fishburn [5, Chapter 3]). Rather than attempt to provide equivalent
theorems for all possible extension results, only one approach of special
interest is considered. It allows for a continuous “local utility” function
u(w, v) by assuming that preferences are continuous. This is in the spirit of

Grandmont [9], adapted to the more general approach of this chapter.

A2: Continuity: The sets {P €D:P>= P’} and {P €D: P’ = P} for all

P’ € D are closed (in the topology of weak convergence).

PROPOSITION 2: Preferences over D satisfy Al(a), A2', A3, A4 if and only
if there exists u: W X [0,1] — R increasing in the preference ordering of W,
continuous in both its arguments, such that P > Q (resp. P ~ @) <=>
VIP] > V|Q] (resp. V[P] = V[Q]) where V[F] is defined implicitly as the

unique v € [0,1] that solves:

(*) fu(w, v)dF(w) = vu(w, v) + (1—v)u(w, v).
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Furthermore, u(w, v) is unique up to positive affine transformations which

are continuous functions of v.

PROOF: Al(b) is implied by compactness of D and A2’. Parts (1) - (4) of the
proof are as before and only part (5) changes as below, where [u(w, p)dQ(w)
is a continuous linear function of @ € D since the constructed u(w, p) is con-

tinuous by A2'.

(5') Given a lottery F ~ (p,w;(1—p),) I need to show that
Ju(w, p)dF(w) =p.

By Choquet’s theorem ([14], pp. 19, 20) there exists a probability measure,
say », on the indifference hyperplane H which includes F, such that v
represents F and is supported by the extreme points of H. An extreme
point, say h, of H is one which can be represented only by the measure
which assigns 1 to all Borel sets of H which include A, zero eisewhere. In
this case the extreme points are those on simplex edges, i.e. of the type
(p,w'; (1—p),w"). Thus the continuous linear function U(Q) = fu(w, p)dQ(w)

for Q € D satisfies U(F) = £U(')db(') where {L—S) =0 and S is the set of all

distributions on the indifference hyperplane which are also on simplex edges.
Since for each s in S, U(s) =p (by (2) and (3) above) this shows that

U(F)=p. O
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3. Properties of the Characterization

A. u(w, v) is increasing in w.

The proof that u(w, v) is increasing in w relies on monotonicity. For any
v€[0,1] and w > v' consider P =(v,w;(1—v),x). If w> P > w' then
u(w, v) > v > u(w', v) by the construction of u. If w > w'> P then by A2
find 8 and # such that (8, w; (1—5),) ~ P and (#,v’; (1-97),12) ~ P. Now, @
> B since otherwise P~ (fw;(1-fu) > (Buv;,(1-flu) =
(#,v'; (1—F),2) ~ P (where the strict prefernce follows from A3 and the
weak preference can be derived using A4). Thus u(w, v) = v/f is greater

than u(w', v) = v/#. The proof for the case when P > w > w' is similar.

B. Uniqueness of u(w, v) up to continuous positive affine transformations.

The proof of uniqueness up to affine transformations includes two steps.
First I show that for any function g(w, v) increasing in w, no preference
functional other tkan those assigning value p to lotteries F, = (p, w; (1—p),u)
are represented by (*). Consider these distributions F, and a possible
preference funtional H(F,]. By substituting into (*), g¢(w, H[F,])p +
g, H[F,]1~p) = g(w, H|F,))H|F,] + g(w, H[F,){1-H[F,]). And this implies
that p = H(F,], since g(w, H[F,]) # g(x, H|F,]) by assumption.

The next stage asks whether, for a fixed preference function V, there

exist transformations of u for which V|F] is the solution to (*). Obviously

V|F) still solves (*) if we take a positive continuous affine transformation of
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u. These are now shown to be the only acceptable transformations. Assume
fh(w, p)dF(w) = h(w, p)(1—p) + h(w, p)p and fu(w, p}dF(w) = p so that A
correctly solves V|F] = p. Define b(p) = A(s, p) , a(p) = [h(®, p) — h(xw, p)),
and g(w, p) = a(p)u{w, p) + b(p). I now show that g(w, p) = h(w, p), 50 any
solution h(w, p) which solves (**) is a generalized affine transformation of
¥(w, p). For any  F~(p,w;(1-plu),  [9(w,p)dF(v) =
fla(p)u(w, p) + b(p)ldF(w) = [h(w, p) — h(z, p)] Ju(w, p)dF(w) + h(w, p) =
[8(w, p) — h(w, plp + h(w, p) = Jh(w, p)dF(w). Now consider
F, = (B, w; (1—-F), 1) or F, =(v,w; (1), %) such that F, ~ F, one of which
exists by solvability. Then either h(w, p)8 + A(w, p)1-5) = g(w,p)f +
(e, pX1—B) or h(w, pyy + h(w, p)(1—7) = g(w, p)y + (i, p}(1—) but since by
construction h(w, p) = ¢(i, p) and h(w, p) = g(w, p) this implies h(w, p) =

g(w, p).

C. Uniqueness of the implicit solution.

Since V|F) is defined implicitly, it is necessary to show that the solution
to the implicit function is unique. This is done by considering the expected
utility extension of these preferences. Assume the solution to (**) is not
unique, i.e. in addition to the correct solution v, there exists ¢ €[0,1], v # v
such that fu(w, v)}dF(w)=v, [fu({w, ¥}dF(w)=+¢, and fu(w, 6)df(w) -y
where ¢ is the correct solution for F. (Solutions where ¢ ¢ [0,1] can be
ignored since, even if they solve equation (**) they lie outside the range of

permissible values -- recall that v €(0,1).) Holding v constant consider
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t(w) = u(w, J) as a Bernoulli utility function which defines expected utility
preferences through F and (v, w; (1—v), ) but not through F (the latter by
assumption that ¢ is not the correct solution for F). However, by assump-
tion also [u(w)dF(w) = ¢ = [i(w)dF(w) implying that F and # do lie in the

same indifference hyperplane.

D. For every w € W, u(w, v) is continuous in v on the open interval (0,1).

First fix w not indifferent to w, and consider the simplex with vertices w,
w, and w. Let B(w) = {v € [0,1] | (v, w; (1—v), ) 2% v} and note that B(w) is a
closed interval from some v to 1. The function Av) (which was used in the
constuction of u(w,v)) is defined as the solution of (8 ,w;(1-8),w) ~
(v,w; (1—v),u) for any v € B(w). Clearly fv)=0, A1)=1, and A) is an
increasing function (otherwise two indifference lines in the simplex will
cross). I now show that §(°) is continuous. If not then there exists v, t v with
Av) > limP(v,). Choose f satisfying Av) > B > limA(v,) and let ¢ = g~YA). ¢
= yp—¢ for some ¢ > 0 since (5, v; (l—ﬁ),w) ~ (¢, w; (1-9), ) < (v,w; (1—v) m)
~ (Av),w; (1—Av)),w). But v > v, for every n since (v,w;(1—v),m) >
(vy,®; (1—v,),22). And this contradicts v, t v, so &) is continuous. Recall

that by construction u(w, v) is equal to 'l"—:%;i} for v €(v,1) and equal to v
when v = v, 30 u(w, v) is continuous for v € [v, 1). A similar proof shows that

u(w, v) is continuous for v €(0, v]. For w ~ w (resp. w ~ w) monotonicity

implies that u(w, v) = u(iv, v) = 1 (resp. u(w, v) = u(w, v) = 0).
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Continuity is necessary to avoid indifference sets which do not separate
the simplex into two disconnected sets. For example, in the simplex with ver-
tices w, w and w, if u(w, v) =% for v < % and u(w, v) = % for v > % there

would be indifference lines which end inside of the simplex.
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4. Extending Local Properties

This section relates this representation of preferences to Machina's [12]
work on non-expected utility preferences. If all preferences satisfying Al -
A4 had a preference functional U[F| which was everywhere Frechet
differentiable then Machina’s extension results (that local monotonicity and
risk aversion everywhere in D imply global monotonicity and risk aversion)
would go through. It is shown below that this is not true, in particular it is
shown how to construct a set of indifference lines in the simplex which have
no differentiable preference functional representation. However, an alterna-
tive approach to extending local results is presented. Rather than examine
the first order approximation to the preference functional (which may not be
smooth), if the indifference sets are smooth manifolds than the first order
approximation to an indifference curve can be taken, and extended to paral-
lel hyperplanes, giving an expected utility approximation. For preferences
considered in this chapter such an extension is simple. It is shown that for
W CR if u(w, ') is increasing in w, then P first order stochastically dom-
inates Q if and only if V[P]> V[Q]. (Note that the property shown in the
previous section is that u(w, v) is increasing in w with respect to the prefer-
ence order on W. Any conclusion on stochastic dominance requires that this
induced order is the natural order on the reals, i.e. w > w’ if and only if
w > w'.) Furthermore it is proven that if u(w, v) is concave in w for every v
then the individual is averse to mean preserving increases in risk. These two

properties do follow from the discussion after Proposition 1 which explained

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-926-

why a class of results in expected utility theory extends to the implicit
expected utility framework. However the direct proofs of these properties,
while brief, further clarify the relationship between the expected utility

representation and this chapter.

Let f:[0,% — [0,4] for some a € (% 1) be continuous, strictly increasing
with derivative zero a.e. (see Billingsley [1, Example 31.1]). Define the
indiflerence sets in a simplex as in Figure 4. Let V be a functional
representing these preferences, so that V|1, f(y)] = V(0, y) for y € {0, %] where
the second argument indicates the distance along the simple edge from the
lower vertex, and the first argument indicates which edge (1 for the lower
sloped edge, and O for the vertical edge). If V is differentiable then V40, y)
= V|1, f(y)|f(v) wherever f is differentiable. Hence V,(0, y) =0 a.e., imply-
ing that V(0, y) is constant for y € [0, %), (note that V(0, -) is absolutely con-
tinuous since it is everywhere differentiable and monotone). However, since
these preferences are by assumption strictly increasing along the vertical
edge of the simplex, we have a contradiction. Therefore V can not be

differentiable.

PROPERTY 1: The following statements are equivalent:

(a) For any P, Q@ € D if P stochastically dominates Q then P is pre-

ferred to Q.

(b) u(w, v) is increasing in w.
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PROOF: Assume that P first order stochastically dominates @, while p and
¢ which solve fu(w, p)dP(w) =p and fu(w, ¢)dQ(w) = ¢ satisfy p < q. The
indifference hyperplane through @ separates D into two convex sets:

pEU => [u(w, ¢Mdu(v) 2 Ju(w, ¢)dQ(w) =g

veEL = [u(w, g}dw) < fu(w, )dQ(w) = ¢.
Since P stochastically dominates @, Pe€U. I p<g then
(p,w; (1—p),w) €L since pu(w, g) +(1—p)u(w, ¢g)=p < g¢. So the convex
indifference surface through P and (p,w; (1—p), ) lies both above and below
the separating hyperplane, thus two indifference sets intersect, obviously

leading to a contradiction. The converse is straightforward. D

PROPERTY 2: Concavity of u(w, v) in w implies risk aversion (in the sense

that the individual is weakly averse to mean preserving increases in risk).

PROOF: Assume that u(w, v) is concave in w for every v, and that G differs
from F by a mean preserving increase in risk. Hence
fu(w, v)d|G(w)—F(v)] <0. Let p and ¢ solve fu(w, p)dF{(w) = p and
fu(w, gdG(w) = g¢. Then g = [u(w, ¢)dIF(w)+(G(w)-F(v))] <
f u(w, ¢)dF(w) so F lies above the indifference hyperplane through ¢. If
g > p then (p,w; (1—p),u) lies below the indifference hyperplane through g¢.
But by betweenness the indifference set which includes F ~ (p,w; (1-p), ) is
convex, intersecting the separating indifference hyperplane through g, lead-

ing to a contradiction; hence ¢ <p. 0O
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Appendix
A. The Representation Theorem Without Monotonicity

PROPOSITION A.1: Preferences over D, (resp. D) satisfy Al, A2 and A4
(resp. Al(a), A2’ and A4) if and only if there exists u(-,): W z [0,1] — B,
continuous in the second argument (resp. continuous in both arguments),
such that P> Q@ < V[P|> V|[Q] and P ~ Q <=> V|P]| = V|Q]| where
V|F) is defined implicitly as the unique v € [0,1] that solves:

(*)  Ju(w, v)dF(w) = vu(@, v) + (1—v)u(w, v).

Furthermore, u(w, v) is unique up to positive affine transformations which

are continuous in v.

The proof follows essentially the same lines as the proofs of Propositions 1
and 2. However, monotonicity of u(w, v) in w cannot be proven without A3

(see Section 3.A).

B. Step 3 in Proving the Representation Theorem

For any distribution R = (4, w’; (1), v") consider the three dimensional
simplex with vertices (u, v, w', v"), where without loss of generality assume
v" > w'. By A2 find p such that R ~ (p,w; (1—p),12), where this last lottery

is the point B in the three-dimensional simplex.

Construct the indifference hyperplane through R, (see Figure 5). I want

to show that Ou(vw',p)+ (1—0u(u”,p)=p. Define C as the lottery
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(va; (1—),v") ~ B, and E as the degenerate lottery w”. Thus, CE =~ and
u(w”, p) = p/(1-y) by case (ii) on page 9, with w replaced by w". Using tri-
gonometric identities based on equilateral triangles with edges of length nor-

malized to 1, using also the lengths ~, 4, and 1— it will be shown that

u(w', p) = 0_;'7_ . -I-;Lq giving the desired result. Take a paraliel shift of the

indifference plane through R, D and C such that the new plane intersects w’.
This new plane intersects the (w, w") edge at point C’ and the (w, w) edge at
B'. Recall that by definition u(w’, p)} is the length of the segment between B’
and w. Therefore u(w', p) can be found from the length of RC in triangle
REC, where RE =8, CE =+, and ¥ REC =60, giving RC = (6*+y—8)*.
Then cosd RCE = (27—6)/2(6*+v—18)*, and cosd CRE = 2(6—)/2(68*+r—8)".
By examining the trapezoid with corners (v, R, C, C') one can see that
length CC' = (1-6)7/0 and thus length wC’ =(8—)/8. Looking now at the
(w, w, v") simplex, sin wWBC = sin 60(1—y)/BC and sind BCw = p(sin 60)/BC.
Thus, since u(w', p) = B'w = wC'(sin BCw)/(sin wBC), it has been shown that

u(w', p) = (0—)p /0(1—) as desired. O
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CHAPTER 2

RISK AVERSION AND PORTFOLIO DIVERSIFICATION

This chapter examines the relationship between properties of a prefer-
ence function over distributions, V, and the quasiconcavity of the induced
preferences over random variables. The primitive for the analysis of prefer-
ences under uncertainty is generally V. However an important application is
to markets for assets (random variables). Quasiconcavity of the preferences
over assets is of interest for the technical reason that it implies that the
demand correspondence for assets will be convex valued. Moreover, it is
equivalent to a preference for portfolio diversification. If preferences are
linear in probabilities then concavity of the utility function, i.e. risk aver-
sion, is equivalent to three behavioral properties: (i) a preference for substi-
tuting the mean of any risky outcome for the outcome, (ii) an aversion to
mean preserving increases in risk and (iii) a preference for portfolio
diversification. Machina [2] and Chew and Mao [1] have shown that for a
general class of preferences the first two properties are equivalent. However,
in general the third is not equivalent to the other two for non-expected util-
ity preferences. After developing the framework for analysis I provide a class
of examples which show that preferences can exhibit property (ii) while exhi-
biting an aversion to diversification. On the other hand (iii) is shown to
imply (i). I go on to prove that quasiconcavity of V together with risk aver-
sion (in the sense of (i) and (ii)) is sufficient to guarantee portfolio

diversification. Quasiconcavity of V is shown to be not necessary by
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constructing a class of examples. These examples help clarify the role of
quasiconcavity by demonstrating how it can be relaxed if the risk aversion is

sufficient.

Let V: D —& be a preference function over the space of probability dis-
tributions on [0, 1], which is continuous in the topology of weak convergence
and is consistent with first order stochastic dominance. The random vari-
ables z' (i > 1) on the probability space ([0, 1], B, \) (where B is the Borel
field on the unit interval and A is the Lebesgue measure) have probability
distributions F(z%; ') which are also denoted F. Also, for any n assets z',
¢=1,..., n define the diversified asset z* by z%s) = Ya’z’(s) for every s, where
o' >0 and Yo' =1. F® denotes the distribution F(z° ) induced by the
diversification, while a-F is the convex combination of the distributions, i.e.

aF = Yo'F,

DEFINITION 1: V exhibits risk aversion if:
(i) V(F)> V(G) whenever G is a mean preserving spread of F, or

(ii) VipF + (1=p)F| < V[pF + (1—p)bgr))-

(6, denotes the distribution with point mass at ¢, and E is the expectation
operator.) These two properties are equivalent for preferences which are con-
sistent with first order stochastic dominance and continuous [1, 2). If V is

Fréchet differentiable then they are also equivalent to concavity of the local

utility function u(:, F) [2]. The local utility function satisfies fu(, F )d(F—F)
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- W(f—F, F) where the latter is the Fréchet differential of V at F in the
direction of F'. Roughly speaking u(-,F) is the Bernoulli utility function of
the linear approximation to V at F. (The approximation exists by the
assumption of differentiability, and its linearity implies that the expected

utility axioms are satisfied so a utility function exists.)

DEFINITION 2: V exhibits divérsification if for any n > 1 and any random

variables z*, i=1,...,n:
V(F) = - - = V(F") implies V(F%) > V(F') Va

I now show that although the equivalence of the definitions of risk aversion
in terms of (i) and (ii) extends to non-linear preferences, a similar extension
of the equivalence of property (iii) fails. To do so I construct a Fréchet
differentiable preference function, with concave local utility functions for

which there exist assets z!, z? and an « such that V(F?) < V(F!) = V(F?).

THEOREM 1: There exist V which do exhibit risk aversion but do not exhi-

bit diversification.

PROOF: First choose any two assets z! and z? with different means where

neither second order stochastically dominates (SSD) the other. Assume that
E(F') > E(F?%). Now choose an increasing and concave v such that [udF' <
JudF?. (v exists since F' does not SSD F?). Affinely normalize v so that the
first integral equals E(F?) and the second integral equals E(F!). Clearly [dF!

> [dF® > [dF% For o sufficiently close to 1: [WlF! < [udF® < [udF?
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where the first inequality follows from concavity of v and the second from
continuity of v. Choose an a' sufficiently close to 1 for which the last ine-

quality holds and then choose an increasing and differentiable g such that:
9IE(FY) + g|E(F?)} > g(frdF®) + g(fdF¥), where & = (&', 1—a@"). Let V(F) =
9(fdF) + g(fdF). By construction V does not exhibit diversification (F? is
less preferred than F! which is indifferent to F2). On the other hand the
local utility functions of V are u(8, F) = g(fuxdF)A8) + ¢'(JdF)d and are con-

cave by construction so V exhibits risk aversion. O

In [4] Tobin discussed diversification and risk aversion for the case of
preferences over means and variances of distributions, U(u, 0%®). A risk
averter is defined as having a positive tradeoff between these two moments,
that is an upward sloping indifference curve, and a "plunger” (i.e. non-
diversifier) is a risk averter with quasiconvex preferences (over (g, 6%)). Tobin
noted that: "If the category defined as plungers ... exists at all, their
indifference curves must be determined by some process other than those
described in 3.3" [4, p. 77|, where Section 3.3 derived mean-variance prefer-
ences from expected utility preferences with either normal distributions or
quadratic Bernoulli utility functions. Theorem 3 below shows that a neces-
sary condition for plungers is quasiconvexity of V in F (although this isn't
sufficient as in the mean-variance case). The example above showed how
preferences exhibiting risk aversion and plunging can be derived from gen-

eral preferences over distributions.
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It has just been shown that the sufficiency of risk aversion for
diversification in the case of expected utility preferences does not extend to
more general preferences. However the reverse implication, that is the

necessity of risk aversion, does extend to general V's.

THEOREM 2: If V does not exhibit risk aversion then V does not exhibit

diversification.

PROOF: If V does not exhibit risk aversion then there exist F, F and t such
that Vi(1—t)F + tF) < V[(1-t)F + tég(r)- First assume that F is a simple dis-
tribution (i.e. with finite support) which assigns rational probabilities p, to
outcomes #,. Rewrite F as an equal probability distribution assigning proba-
bility 1/m t0 ¥,,..., ¥,. Let y be a random variable with the distribution F.

Now for k = 1,...,m define the following assets:

2(s) = oy if » € (1, 11

24(s) = y(;—:-:-) ifa>t
(Where [i+k] = i+k modulo m.) For each &, z* clearly has the distribution
(1—t)F + tF (s is greater than ¢t with probability 1—¢ and then z* is just y

contracted from the unit interval to (¢, 1) and for &« < ¢, z* is a permutation
of the random variable which assigns ¥; to the i'th interval of measure t#).
On the other hand 2 for a=(1/m,.,1/m) has the distribution
(1—t)F+tég. To conclude note that V(FY) = V[1—t)F +tF] <

V(1—-t)F +tégp)) = V(F®). If the p, aren’t rational then a similar
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construction gives assets with distributions arbitrarily close to F, which is
sufficient since V is continuous by assumption. Similarly if F is not simple
then consider a sequence of simple distributions F, 1 F, where for n

sufficiently large V[(1—t)F + tF,] < V[(1-t)F + tégr, ) by continuity of V. 0O

Since risk aversion is not a sufficient condition for quasiconcavity of the
induced preferences over assets, and the latter is an important assumption
for the analysis of asset markets, I now turn to find conditions which imply
this property (and hence diversification). The condition required is quasicon-
cavity of V in addition to risk aversion. However, quasiconcavity of V is not
necessary for diversification, as the example following Theorem 3 shows.
That example does help clarify the role of quasiconcavity of V, since in it
quasiconcavity can be relaxed only by putting a lower bound on the risk

aversion.

THEOREM 3: If V is quasiconcave in F and V exhibits risk aversion then V

exhibits diversification.

PROOF: I first show that if V exhibits risk aversion then V[F?| > Via-F|.
Let v be an arbitrary concave Bernoulli utility function. Then [udFf® =
Ju[Bafzi(s))dM(s) > Ta'fulzi(s)]dNs) = Ta' fudF’ = fud(a-F). But since u is
an arbitrary concave function and E(F*) = E(a-F) it follows from Rothschild
and Stiglitz [3] that o-F is a mean preserving spread of F°, so V(F?%) >

V(a-F). Now note that quasiconcavity of V implies that V(a-'F) >
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miin {V(F*)} which together with the preceding observation implies

diversification. O

The proof shows that V(F®) > V(a-F) > V(F'), where the first inequality fol-
lows from risk aversion, and the second from quasiconcavity of V in F.
These two inequalities are important for understanding the results of this
paper. The necessity of risk aversion was shown by finding F¥'s such that
the second inequality held with equality because the assets had the same
distribution, while the first was reversed from lack of risk aversion (since the
equal proportion diversification among the assets gave the expected value of
the distribution). That risk aversion alone was not sufficient was demon-
strated by finding a case where the reversal of the second inequality through
lack of quasiconcavity of V in F was "stricter” than the first inequality
(which remained correct because of risk aversion). Finally I will now show
that quasiconcavity is not necessary by constructing a slightly non-
quasiconcave example where the risk aversion inequality is always “stricter”

than the reversal of the second (quasiconcavity) inequality.

Given a concave increasing v (with strictly negative second derivative),

define V(F) = g(fudF) + g([dF), where g satisfies 0 < g%(c) < . ei.i.;r u""'(')]
and g'(¢) 2 [‘ :“I‘Plll,(‘)]z +1 >0 for all ¢ in the range of fdF and JwiF. The

following two Lemmas imply that this V exhibits diversification even though

it is not quasiconcave in F. Note that the convexity of ¥ in F will depend
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on the convexity of g. On the other hand the risk aversion coefficient for the

.
+

local utility functions of V is equal to N . And this is bound from below

by L1 +v) > L.
g g
LEMMA 1: V is convex.

PROOF: ViaF! + (1—a)F?] - glafdF! +(1—a)fdF?) +

glafrdF! + (1—a) fdFY) < ofg[fdF?} + g[fdF?) + (1—a)g[fdF"] + g[[rdF?)

= aV(F') + (1—a)V(F?). ©
LEMMA 2: V¥ exhibits diversification.

PROOF: Let V(F!) = V(F?), and I will show that this implies V(F*) > V(F}),
for a = (a!, 1—a!) with o! € [0, 1]. Consider H(a') = V(F®) as a function of
al, Since by assumption H(0) = H(1) = V(F!) it is sufficient to show that H"

<o.

H' = g'(JdF®)[(z'(s) — 2%(2))dNs)
+ g'(JodF®) [[/(2°(s)Xz"(e) — s*{s))ldN(s).
H" = g"(fdF){ f[z%(s) — 2%s)}dNa)}?
+ g"(JWF){ [ I/(z(s)Xx"(s) — s%(s))}dN0))?
+ g{(JrdF=) [/ (z%(s)X="(s) — s%(s))*|dNe)
< A{g"(JdF®) + B**([1dF*) + Cg(fdF?)}
where A = [[z'(s) = 2%e)l'dNs), B = aup /) and C = sup (6). Recall

that 0 < ¢” < —C so the last line is in fact less than or equal to:

AC[-1 - B*+ g'(f:/dF“)]. However, g' > 1 + B? so the last expression is in
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fact non-positive. O
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CHAPTER 3

COMMON KNOWLEDGE WITH PROBABILITY 1

1. Introduction

The idea of common knowledge is central in game theory and the
economics of uncertainty and information. For example, the noncooperative
analysis of a game (with complete information) starts with the assumption
that the structure of the game is common knowledge among the players.
Intuitively speaking, two people 1 and 2 are said to have common knowledge
of an event if both know it, 1 knows that 2 knows it, 2 knows that 1 knows

it, 1 knows that 2 knows that 1 knows it, and so on.

Common knowledge was first given a formal definition by Aumann in [1].
In 1], 1 and 2's private information is represented by a pair of partitions of
some state space {). Individual ¢ is said to know an event A at some state of
the world w if the member of i's information partition that contains w is
itself contained in A. Using this definition of what it means to know an
event, Aumann shows that an event A is common knowledge at w if and
only if A contains the member of the meet (finest common coarsening) of 1

and 2's partitions that contains w.

An important restriction on the information structure in [1] is that the
join (coarsest common refinement) of 1 and 2's partitions is assumed to con-
sist of nonnull events. But many decision problems naturally call for a gen-

eral — possibly infinite —- state space, in which case null events (in the join)
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must be permitted. In this chapter I define common knowledge in this more
general situation. (Of course, this definition coincides with Aumann’s when
his applies.) I start with the observation that according to Bayesian decision
theory, the basic definition of knowledge must be in terms of beliefs. That is,
to say a person knows an event A at some state w means that (s)he assigns
A posterior probability one at w. Having defined what it means for someone
to know an event A at w, I can go on to define common knowledge of A at
w. (Nielsen [9] provides a different definition of common knowledge on an
infinite state space using Boolean o-algebras.) The main result proven in this
chapter is an equivalence between a definition of common knowledge in
terms of beliefs and a definition in terms of the o-fields representing 1 and

2’s information.

Apart from the intrinsic interest in defining common knowledge on an
infinite state space, there is one fundamental issue which can only be
addressed if one is able to define common knowledge on an infinite Q. In
both [1] and this chapter, the information partitions and priors (i.e. the
information structure on 1) are assumed to be common knowledge in an
informal sense. I say "in an informal sense” because the information struc-
ture is not an event in I and a formal mathematical definition of common
knowledge applies only to events in §. Of course, any mathematical
theorems one proves on common knowledge — such as the equivalence result
in this chapter - are true whether or not one assumes that the information

structure is common knowledge, since the theorems hold regardless of
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interpretation. However, to interpret the theorems as statements about com-
mon knowledge, it is necessary to make the assumption that the information
structure is common knowledge. As argued by Aumann in [1), if this assump-
tion is not satisfied then the state space can (and should) be expanded. In
Chapter 4 I find the expanded state space such that if common knowledge is
defined on this space, then the assumption that the information structure is
common knowledge is without loss of generality. And the point is that this
expanded state space is infinite even if the underlying state space is finite.
(The expanded state space in Chapter 4 is the product of the underlying
space of uncertainty, S say, and the spaces of all possible "types” of 1 and 2.
Following Harsanyi [5] and Mertens and Zamir (7], & type of person 1 (resp.
2) is an infinite hierarchy of beliefs -- over S, over 2's (resp. 1's) beliefs over

S, and so on. The type spaces are infinite even if S is finite.)

Bayesian decision theory suggests that the basic definition of common
knowledge should be in terms of beliefs -- a person knows an event means
that (s)he assigns it (posterior) probability one. Another approach would be
to say that a person knows an event if (s)he is informed that it occurs — this
is a definition in terms of an information partition/o-field. The main result I
prove in this chapter is an equivalence between the definition of common
knowledge in terms of beliefs (probability measures) and a definition in
terms of the intersection (meet) of 1 and 2's o-fields. To obtain this result,
these two approaches have to be reconciled. This is achieved by assuming

that the probability measures are regular and proper (see Definition 2.2) and
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that the o-fields are completed in a suitable manner (see Definition 3.2).

Recall that Bayes' rule says nothing about how individual i updates
his/her beliefs over 0 if informed that a null event occurs. Regularity says
that ¢ must have a belief over 01 even if informed of some null partition cell
h. But it is quite possible for i to ignore the fact that (s)he was informed
that the true state lies in A, i.e. to assign positive (posterior) probability to
states outside of h. Properness requires that after being informed of any par-
tition cell A, s assigns (posterior) probability one to A even if A has prior
probability zero. The use of the term “properness” originated in [3] (see also
[2]). In [2] and (3] it is argued that an intuitively satisfactory theory of pro-

bability should involve proper regular conditional probabilities.

To see the role of completion of the o-fields, suppose that s has no infor-
mation, i.e has the trivial partition {f2}, but i assigns probability one to
some proper subset A of ). Then the only event of which s is informed is Q,
but i knows A according to the definition in terms of beliefs. ¢’s partition
should be refined by adding in the events to which (s)he assigns probability
one or — what amounts to the same thing - the events to which i assigns
probability zero. That is, i's partition must be completed. Actually, the issue
of completion is rather more delicate than this argument suggests. What is
needed is "posterior completion,” which is different from the standard

definitions of completion in probability theory.

The organization of the rest of the chapter is as follows. Section 2 begins

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-50-

with a review of Aumann's definition of common knowledge, and then the
definition in terms of beliefs (Definition 2.1) is introduced. I go on to
motivate the restriction that the conditional probabilities be proper, and
using properness show that Definition 2.1 is implied by an “informational”
definition in terms of o-fields (Proposition 2.1). In Section 3 I start by show-
ing that the converse to Proposition 2.1 is false, and then explain how poste-
rior completion of the o-fields rectifies this situation. I conclude with the

main equivalence result (Proposition 3.3).
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2, Common Knowledge in Terms of Beliefs

I begin with a review of Aumann's definition of common knowledge [1].
There is a measurable space (f2, F), where 01 is the space of states of the
world and F is a o-field of subsets of . Individual i's (i=12) information
about the state of the world is represented by a partition H of 0.1 and 2
have a common prior which assigns positive probability to every event in the

join HIVH? of 1 and 2’s partitions.

Consider an event A € F and a state of the world w€ Q. i is said to
know A at wif Hi(w) C A, where H'(w) is the member of H' that contains w.
An event A is said to be common knowledge at some state wif 1 knows A at
w, 2 knows A at w, 1 knows 2 knows A at w, 2 knows 1 knows A at w, and so
on. Aumann shows that A is common knowledge at w if and only if
(H*A H?{w)CA where (H'A H?)w) is the member of the meet of H' and H?

that contains w.

As argued in the Introduction, many decision problems naturally call for
an infinite state space f1, in which case null events (in the join) must be
allowed. So start again with a measurable space (£}, F). Individual i (§=1,2)
has & sub o-field F* of F and a prior P'. (I consider two individuals. All the
results generalize immediately to the case of n individuals.) For each i, fix a
version of a regular conditional probability given F*, that is, a function
Q*: F X 01 = [0,1] such that:

(1) for each A € F, Q¥(A, *) is a version of Pi(Aal F);
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(2) for each w € N, Q'(-, w) is a probability measure on F.

(This can be done if, for example, 0 is a complete separable metric space
and F is the Borel field on f.) This completes the description of the informa-
tion structure. The elements of this structure — the state space (2, F), the
o-fields F!, F?, and the conditional probabilities Q!, Q? — are assumed to be
common knowledge among 1 and 2. In particular, notice that the conditional
probabilities @', @* must be specified and hence must be common knowledge
-- it is not enough for just the priors P!, P? to be common knowledge. As
stated in the Introduction, it is shown in Chapter 4 that this assumption
that the information structure is common knowledge is without loss of gen-

erality.

Consider an event A € F and a state of the world we . I define "i
knows A at w " to mean Q'(A4, w)=1. The event that i knows A, to be
denoted K(A), is then the set of w’s such that i knows A at w:

KiA) = {wl (4, w) =1}.
K'(-} is a function from F to F*. The following properties of K*(-) show that

this function captures some aspects of one's intuitive notion of what "to

know" means. (The proofs are straightforward and are omitted.)

(P1) For any A € F, K'(A) € F'.
(P2) For any A, B € F, if A C B, [i], then K(A) C K‘(B).

(P3) For any Al’ Az,--- € F, K‘( N :lAl) = ) an‘(An).

“A C B, [i]" means that for every w€f, Q(4 —B, w)=0. So if A C B,[i],
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then ¢'s posterior belief at every state of the world w is that B happens
whenever A happens. (P2) says that in this case if i+ knows A then i knows
B. Note that A C B, [i] implies that P‘(A —B) = 0 (which says that i’s prior
belief is that B happens whenever A happens), but not conversely. (P2) has
the form of most of the subsequent results in this chapter in that it uses the
conditionals @° and not the prior P, (P3) says that ¢ knows A, and A, and

... if and only if i knows A, and i knows A, and ... .

Now consider the event: 1 knows A, 1 knows 2 knows A, 1 knows 2
knows 1 knows A, and so on. Call this event L'A. Formally:
L'A =K'ANKK’ANK'KCK'AN....
(Note that by (P1) all sets of the type K'k%..A lie in F!. Therefore LA,
being a countable intersection of such sets, also lies in FL.) Let L?4 denote

the corresponding event: 2 knows A, 2 knows 1 knows A, and so on.

DEFINITION 2.1: An event A € F is common knowledge at a state of the

world weNif we LA NL2A.

Definition 2.1 formalizes the notion of common knowledge using 1 and 2's
beliefs, i.e. their posteriors Q!, @2, as Bayesian decision theory dictates. An
“informational” approach would suggest that common knowledge can be
defined using the o-fields F!, F?, i.e. using 1 and 2’s private information. I
now want to relate Definition 2.1 to an “informational” definition. To see the
first issue which arises, consider Figure 1. The dotted ovgls belong to 1's

partition H'. The heavy line ovals belong to 2’s partition H®. P! assigns
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positive probability to {w}, {w}, and {w;}, while PY({uy, w})=0. If 1
observes {ws, w,} then 1 "ignores" this information so that the conditional
probability PY(: | {wy, w,}) is equal to P}(:). P? assigns positive probability to
every w. Consider the state w,. It looks like A should be common knowledge
at w, since the member of the meet of H' and H? that contains w, is con-
tained in A. But A is not common knowledge at w; in the sense of Definition
2.1. To see this, note that whereas w; € K'A and w, € K*A, «, ¢ K*K'A since

after observing {wy, w,} 1 does not assign probability one to A.

The example uses a finite 0. It would seem that with a finite 0 the
difficulty above only arises if the priors P!, P? are not mutually absolutely
continuous (i.e. have different null events), since otherwise one can simply
throw out all the null events. (In fact, throwing them out would be the
"wrong" procedure. Adding them in would be better — see the discussion of
completion below.) One can view the example in two ways: first, the possibil-
ity of non-mutually absolutely continuous priors is not excluded; second, it is

illustrative of the difficulties which arise in the infinite case.

In the example, if 1 is informed of {uy, w,}, (s)he ignores this information.
To rule out this somewhat implausible situation 1 should assign (posterior)
probability one to any partition cell, even if that cell has P’-probability zero.
Another justification for imposing this restriction is that if it does not hold,
1 may not know his/her own beliefs. For example, suppose that when

informed of {wy, w,}, 1 assigns posterior probability 0.5 to {w;, w} (and hence
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to the belief P(-| {w,, w,})) and posterior probability 0.5 to {w;} (and hence
to the belief P(-| {w;})). The general version of the restriction on conditional

probabilities which is needed is called properness (see [2], [3]).

DEFINITION 2.2: Q' is proper if for each w € 0, Q¥(B, w) = 15(w) for every

B € F,

Rather surprisingly, the standard assumptions -- (Q2, F) Borel, F* countably
generated -- do not suffice to guarantee the existence of a proper regular
conditional probability. (Theorem 1 in [3] provides a necessary and sufficient
condition for the existence of a proper version.) Nevertheless, for the pur-
poses of this chapter there is no loss of generality in assuming that Q° is
proper. This is because on the expanded state space in Chapter 4, proper-
ness is automatically satisfied provided the underlying state space is com-
plete separable metric (see Chapter 4, Section 5). The assumption of proper-
ness is also made in the literature on (extensive form) refinements of Nash
equilibrium. It is implicit in the intuition behind subgame perfection and in
the definition of a sequential equilibrium (Kreps and Wilson [6]). It is explicit
in Myerson’s definition of a conditional probability system ({8, p.21]). Given
properness, the function K*(-) defined earlier ¢can be shown to satisfy the fol-

lowing properties in addition to (P1)-(P3).

(P4) For any A € F, KA C A, [i].

(P5) For any B € F', K'B = B.
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Under the assumption that Q!, Q2 are proper I can now prove a one-way
implication between the definition of common knowledge in terms of beliefs
(Definition 2.1) and an “informational” definition in terms of the o-fields F!

and F32,

PROPOSITION 2.1: Suppose there is a set B in the meet F!A F? with w€ B

and B C A, [i], s=1,2. Then A is common knowledge at w.

PROOF: If B C A, [1], then K'A C K'A by (P2). But by (P5) B C K'B, so
B C K'A. Hence we K'A. Similarly, K?B C K?°A by (P2) and B C K*B by
(P5). So B C K?A and thus B C K'A C K'K?A by (P5) and (P2). Hence
w € K'K2A. Continuing in this way shows that w € L'A. A similar argument

shows that we L?4. D

In the next section I start with an example to demonstrate that the converse
to Proposition 2.1 is false. I go on to show how to complete 1 and 2’s o-fields
in order to obtain an equivalence between Definition 2.1 and an "informa-

tional” definition.

— - —_— e— —
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3. Common Knowledge in Terms of o-fields

I start this section by asking whether the converse to Proposition 2.1
holds. That is, is it true that if A is common knowledge at w then there is a
set B € F1A F? with w€ B and BCA, |5}, i=1,2! The answer is no, as the fol-
lowing example shows. Consider Figure 2 where 1's (resp. 2's) information
partition consists of the three vertical (resp. horizontal) strips. 1 and 2 have
the same prior P on 0. P assigns probability zero to {w;}, k =2, 4, 6, 8, and
positive probability elsewhere. K'A = {wy, wy, wy}. KA = {w, wj, w}. So
K'K?A = {uw,, wy, w} = K'A. Continuing in this way, one can see that L'A =
{«y, wy, wg)}. Similarly, L24 = {w,, wj, wp}. So wy €L'A NL%A, ie. A is com-
mon knowledge at w; in the sense of Definition 2.1. On the other hand, the
meet of 1 and 2's information partitions is just the trivial partition .{ﬂ}.
Hence this example shows that the converse to Proposition 2.1 is false since

although w; € £, it is not true that 2 C A, [1], 1=1,2.

It looks like the way to deal with the problem in the example is to throw
out the null events {w,}, k =2, 4, 6, 8. But clearly this cannot be the right
intuition for a general (infinite) f2. Instead let’s do the opposite — add in the
null events to i's partition. That is, add to i's partition all the events which
a priori i knows will not happen. So 1's refined partition is {{w, w}, {w},
{wn}, {ws}, {wg), {ws, wy}, {wy}}. Similarly, 2's refined partition is {{w), wy}, {us)},
{w,}, {ws}, {ws}, {w, wp}, {«u}}. Now there is a set B in the meet of 1 and 2's

partitions such that wy € B and B C A, [i], ¥=1,2, namely the set {w;}. The
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general version of this procedure is to complete i's sub o-field 4, p. 31 Exer-

cise 20].

DEFINITION 3.1: The completion of F* is the o-field / generated by F' and
the class of sets

N' = {G e F| Pi(G) =0}.

PROPOSITION 3.1: Suppose A is common knowledge at w. Then there is a
set B in the meet F'A F? of the completed o-fields such that w € B and

BCA, Il i=12.

The proof of Proposition 3.1, which is a partial converse to Proposition 2.1,

is omitted since it is a trivial corollary to Proposition 3.2 proved below.

Our goal is to prove an equivalence result between Definition 2.1 and a
definition of common knowledge in terms of F! and F2. But Propositions 2.1
and 3.1 are not strict converses. There are two reasons for this. To see the
first difficulty, consider the following variation on the previous example. The
information structure is unchanged except that now 1’s prior P! assigns pro-
bability zero to {w,}, k =2,4,5,6,8, and positive probability elsewhere.
Since the middle vertical strip {uy, wj, w4} is now Pl-null, 1’s posterior proba-
bility PY-| {wy, ws, wy}) is no longer determined by Bayes' rule. Set
PY({wp} | {wg, wy, wy}) = P{{uwy}| {wy, wy, wy}) = 0.5. There is still a set B in the
meet of 1 and 2's completed partitions such that w;€B and

B C A, [i], i=1,2, namely the set {uw;} as before. But now there is no w at
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which 1 knows A (i.e. assigns posterior probability one to A), so clearly A is
not common knowledge at w; (or any other w) in the sense of Definition 2.1.
What has gone wrong here is that too many events have been added to 1's
partition. Only those events to which 1 assigns posterior probability zero at
every state of the world should have been added. In this case, 1’s refined
partition would include {w,, w;} but not {wy} and {ws} separately. I call the

general version of this procedure “posterior completion.”

DEFINITION 3.2: The posterior completion of F' is the o-field F* generated
by F' and the class of sets

N ={G € F| Q(G, w) =0 for every w€ 01}

Clearly, N' C N' and so F*' C F'. Hence the posterior completion of F* is
coarser than the completion of F' used in probability theory (Definition 3.1).
By a standard method of argument on completion [4, p.31 Exercise 20], Ft
can be written as

FF={G€F| G ABE€N forsome B € F'}
where G A B =(G —B) U(B —G). Lemma 3.1 provides an alternative charac-
terization of F* which will be more convenient. This second characterization

relies on Qf being proper, which the first did not.
LEMMA 3.1: F' = {G € Flforevery weR, QYG, w)=0o0r 1}.

PROOF: First suppose that G AB€E€N' for some B €F'. For any

w, @G, v) = Q(G-B,w) + Q(GNB,w. But G-BCGAB =0
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G ABEN implies Q(G—B,w) = 0. That is, @(G,w) = Q'(G NB,w).
Furthermore, Q°(G N B, ) = Q*(B, w) — @(B—G, w). And Q'(B—G,w) =0
since G A B € N', Q(B, w) = 15(w) since Q* is proper. So Q‘(G, w) = 1g(w),

i.e. Q'(G, w) =1 or 0 according as w does or does not lie in B.

Conversely, suppose for every w, @(G,w) = 0 or 1. Set B = K*G. Thus
for every w, Q(B—G, w) = 0 by (P4). But 2—B = K'(1—G) so G—B =
G N(Q-B) = GNK'(N-G) = K'(—G) —(0—G). That is, for every w,
Q'(G—B, w) = Q'[K'(1—G)—(2—G), «| = 0 by (P4). So I have shown that

for every w, Q'(B—G, w) = Q'(G—B, w) =0. Thatis, G ABEN'. O

Lemma 3.1 says that i’s posterior completed o-field F' contains all the
events G in the underlying o-field F such that, whatever state of the world
occurs, i knows either G or the complement of G. As stated above, F' is
coarser than #°. Hence the following proposition is an improvement on Pro-

position 3.1.

PROPOSITION 3.2: Suppose A is common knowledge at w. Then there is a
set B in the meet F!A F2 of the posterior completed o-fields such that w€ B

and B C A, [i], y=1,2.

PROOF: Set B = L'A NL3A. Clearly L'A N L*A C LA C K'A, and (P4)
says that KA C A, [1]. So L'A N L?A C A, 1]. ] now want to show that L4
A L2A4 €F, i.e. that for every w, Q(L'A NL%A, «) = 0 or 1 (using the char-

acterization in Lemma 3.1). By definition if w€ KYL'A NL%A),
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QYL'A NL%A, w) = 1. So to prove that L'A N L?4 € F, it will be enough to
show that if w€Q—KY(L'A NL2A), then QYL'A NL2A,w)=0. Now
KNANL*ANL'A) = KMANLA)NK'L’A = L'A by (P3) and the
definitions of L'A, L?A. But KYA NL3A NL'A) C K¥L'A N L3A) by (P2).
Hence L'A N L2A C KYL'ANL?A). If we—KYL'A NL32A), then
Q!N-KYL'A NL%A),«] = 1 by properness. That is, if
w€N—KYL'A NL%A), then Q(L'A NL2A, w) = 0 as required. Similar argu-

ments establish that L'’A NL?A CA,[2), and L'A NL%4A €F%. D

There is one more difficulty to overcome before I can state the
equivalence result. The remaining problem is that when the o-fields are com-
pleted one gets events in the meet which are believed never to happen. To
see this, refer back to the example in Figure 2. {w,} is a member of both 1
and 2's posterior completed o-fields, hence it lies in the meet. But even if w,
happens, 1 and 2 both assign posterior probability zero to {w,}. So certainly
{w,} is not common knowledge at any state of the world in the sense of
Definition 2.1. In order to rule out such situations one should consider only
“nonnull” members of the meet. (I say an event G € F is nonnull at w if

Q'(G, w) > 0, i=1,2.)

PROPOSITION 3.3: A is common knowledge at w if and only if there is a

set BEF'A F? which is nonnull at w with w€ B and B C A, [¢], i=1,2.

PROOF: Only if: Set B = L'A N L?A and proceed as in the proof of Proposi-
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tion 3.2. The only additional step is to show that B is nonnull at w. But this
follows immediately from L'A NL%A C K*(L'A NL%A), i=12, which was
shown in the course of that proof.

If: Suppose w€B and B C A, [i], i=1,2, where B is a member of the meet
which is nonnull at w. Let B’ = B N K*B. I claim that w€ B' C K*B'. To see
this, first note from Lemma 3.1 that if B is nonnull at w, then we K*B.
Hence w € B'. Second, K‘B’' = KB by (P1), (P3) and (P5). So B’ C K'B'. The
proof now follows exactly the lines of the proof of Proposition 2.1 -- replac-

ing the set B there with the set B’. D

Note that the definitions and results in this chapter (with the exception
of Definition 3.1 and Proposition 3.1 which were later replaced with
Definition 3.2 and Proposition 3.2) depend only on the conditionals @' and
not the priors P'. In particular, the definition of common knowledge
(Definition 2.1) and the completion of the o-fields (Definition 3.2) must both
be stated in terms of the conditionals in order to obtain the main

equivalence result Proposition 3.3.
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CHAPTER 4

HIERARCHIES OF BELIEFS AND COMMON KNOWLEDGE

1. Introduction

Consider an n-person decision problem in which each individual faces
some (common) space of uncertainty S. In order to determine his /her
optimal decision, each individual must have a belief (probability measure)
over the space S. But if other individuals' beliefs affect their decisions, then
each individual must also have beliefs over everyone else’s beliefs over S.
This argument leads to each individual having an infinite hierarchy of beliefs
(over S, over others’ beliefs over S, and so on). Thus each individual is
characterized by an infinite hierarchy of beliefs, which is called his/her type

(cf. Harsanyi [5)).

The first question asked in this chapter is: when does a hierarchy of
beliefs of individual i determine a belief over the underlying space S and the
set of the other individuals’ types? Proposition 2.1 says that this happens
provided i's type is coherent (defined below). The idea is that any coherent
hierarchy of beliefs can be mapped to a probability measure over § and
other individuals’ types. Furthermore, this map is one-to-one and onto so
any belief over S and the others’ types comes from a unique coherent hierar-

chy.

I now provide a definition of coherency. Consider the hierarchy of beliefs

of an individual 5. One must sllow for the possibility that i's beliefs over S
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and ¢’s beliefs over other individuals’ beliefs over S are correlated. So a com-
plete specification of i's hierarchy of beliefs must include with i's beliefs over
S, i's joint beliefs over S and others' beliefs over S, and so on. To say that
i's hierarchy of beliefs is coherent means that the marginal on S of ¢'s joint
belief on S and others’ beliefs on S is equal to i’s belief on §, with similar

restrictions on s's higher order beliefs.

Of course, each individual only knows his/her own type and not the
types of the others. So it seems that one needs a "second level” hierarchy of
beliefs -- each individual must also have beliefs over the types of the others,
over others' beliefs over types, and so on. As stated above, Proposition 2.1
shows that a coherent first level hierarchy of beliefs, i.e. a coherent type, of
individual i determines ¢'s beliefs over others' types. But a coherent type of
¢ does not necessarily determine i's beliefs over others’ beliefs over types.
This happens if ¢ believes some individual j may be of a type which is not
coherent -- for then i thinks it possible that j's type does not determine a
belief over S and others’ types. A product of type sets [, T is belief-
closed if for every i, T' is a set of coherent types of individual i and each
type in T¢ assigns probability 1 to the others’ types lying in Il T/ It i's
type lies in T then ¢ knows that the others are of coherent types, so now i's
type does determine i's beliefs over others’ beliefs over types. In fact, it is
clear that in a belief-closed set common knowledge of coherency is satisfied,
so that all of i's beliefs in the "second level” hierarchy are determined by ¢’s

type. It is in this sense that the model of beliefs is "closed" when one looks
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at belief-closed sets. In Section 3 it is shown that a union of belief-closed
sets is belief-closed, so that there is a largest (in terms of set inclusion)
belief-closed set. Proposition 3.1 shows that this is the belief-closed set
satisfying common knowledge of coherency (and nothing more). It is also
equivalent to the universal type space constructed in Mertens and Zamir {6,

Theorem 2.9].

In Chapter 3 a generalization of Aumann’s definition of common
knowledge was presented. There, as in [1}, the information structure on §
was assumed to be common knowledge in an informal sense. I say “in an
informal sense” because the information structure is not an event in S and
of course the mathematical definition of common knowledge in Chapter 3
and in [1] applies only to events in §. In (1] Aumann argued that if the
assumption that the information structure is common knowledge is not
satisfied, then the state space S should be expanded. In Section 5 of this
paper it is shown that the appropriate expanded state space is S X T X T
where T X T is the belief-closed set satisfying (just) common knowledge of
coherency. Proposition 5.1 shows that if common knowledge is defined on
this expanded space as in Chapter 3, then the assumption that the informa-
tion structure is common knowledge entails no loss of generality. In effect,
the assumption that the information structure is common knowledge is

replaced with the assumption of common knowledge of coherency.

The problem of constructing hierarchies of beliefs has also been studied
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in Boge and Eisele (3] and Mertens and Zamir [6]. The former are
specifically interested in solving games with incomplete information. Mertens
and Zamir implicitly incorporate the assumption of common knowledge of
coherency within their construction of hierarchies of beliefs. The approach in
this chapter distinguishes between: (1) showing when a hierarchy of beliefs
determines a belief over S and others’ types (which only requires coherency);
and (2) closing the model using belief-closed sets (which satisfy common
knowledge of coherency). Making common knowledge of coherency an expli-
cit mathematical assumption has certain advantages. First, as stated above,
common knowledge of coherency plays a central role in understanding the
assumption of common knowledge of an information structure. Second, this
formulation uses somewhat simpler mathematical arguments than those in
[6). (At a technical level, the assumption in [8] that S is compact is replaced

with the assumption that S is a complete separable metric space.)
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2. Types and Coherency

In this section the hierarchies of beliefs are constructed. I define the type
of an individual, and show when a hierarchy of beliefs determines a belief

over S and other individuals’ types.

Consider two individuals i and j who face some common space of uncer-
tainty S. (I consider the two-person case. The generalization to n individuals
is straightforward.) I assume that S is a complete separable metric (Polish)
space. According to Bayesian decision theory, i and j must each have a
belief (probability measure) over the space S. For any metric space Z let
A(Z) denote the space of probability measures on the Borel field of Z,
endowed with the weak topology. ¢ and j's first-order beliefs (beliefs over 5)
are then elements of A(S). But since i does not know j's beliefs over S, i
must also have a (second-order) belief over S and j;'s possible first-order
beliefs. So i’s second-order belief is an element of A[S X A(S)]. Similarly for
§. Formally, define the spaces:

Xo=S

X, = Xp X A(Xo)
X, = X; X A(X)) = X, X A(Xp) X A(X))

Xy =Xp1 X A(X, 1) = X X A(Xp) X A(X;) X...X A(X,_;)

A hierarchy of beliefs for ¢ is an element (&, 6, &,...) € A(X,) X A(X)) X

A(X,) X... , where & is i’s belief over S; 65 is i's joint belief over S and j's
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first-order belief; & is i’s joint belief over S, j's first-order belief, and j's
second-order belief; and so on. Similarly, a hierarchy of beliefs for j is an
element (4], &, ...) € A(Xy) X A(X,) X ... , where & is j's belief over S; & is

J's joint belief over S and i's first-order belief; and so on.

A type t' of individual i is just a hierarchy of beliefs ¢ = (5, &,...)
€ A(Xp) X A(X;) X.. . Similarly for individual j. Let Ty = A(X,) X

A(X,) X... be the space of all possible types of individual s or j.

The question asked in this section is: when does i's hierarchy of beliefs
determine a belief over the underlying space S and the space of ;s possible

types?

DEFINITION 2.1: A type ¢t =(§,,§,,...) € T, is coherent if for every n > 2,

margy 6, = 6,.;, where margy &, is the marginal on X, _, of the probability

measure §,.

Recall that 6, is a measure on the space X, _, = X,_, X A(X,_,), while §,_, is
a measure on X, _,. Coherency requires that the two measures agree on X, _,.
Notice that what I've called a coherent sequence of probability measures is
called a consistent sequence in the theory of stochastic processes. (I use the
term coherent to avoid confusion with Harsanyi's use of the term consistent,
which means something different. The examples in Section 4 should help
clarify the distinction.) This analogy with the theory of stochastic processes

will be used to prove the result of this section. Let T, be the set of all
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coherent types.
PROPOSITION 2.1: There is a homeomorphism f: T, — A(S X T,).

Proposition 2.1 will be an easy consequence of Kolmogorov's Existence
Theorem. Kolmogorov's theorem says, roughly speaking, thr . iven any
coherent sequence of probability measures there is a unique measure on the
infinite product space (which is § X T, in the present context) with the
prescribed marginals. In other words, Kolmogorov’s theorem tells us that
associated with the hierarchy of beliefs of any coherent type (§,, 4,,...) € T, is
a unique measure § € A(S X T,) such that the marginal of § on each X, _, is
exactly é,. On the other hand, any measure § € A(S X T,) defines a coherent
type (6, 6;...) € T; (just set 6, =margy &), and by uniqueness this type
must be associated with é. Hence the existence of an isomorphism
J: Ty — A(S X T,) is essentially just a statement of Kolmogorov's theorem.
That f is in fact a homeomorphism is a technical result. Formally, Proposi-

tion 2.1 is a consequence of the following lemma:

LEMMA 2.1: Suppose {Z,}5%, is a collection of Polish spaces, and let

D ={(6, &,..)| 6, € A(ZyX..X Z,_,), margzy 5 S0 =60y V n}.
Then there is a homeomorphism f: D — A(TI3%.Z, )

PROOF: (1) Consider any sequence (4, 4,,...) € D. By a generalized version of

Kolmogorov’s Existence Theorem ({4, p.68]), there is a unique measure
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6 € A([1R%02,) such that margz y 7,08 =6, for every n.

(2) It follows immediately that there is an isomorphism f: D — A(T]%0Z, )
where / maps any sequence (§;, &,,...) € D to the unique § € A(]]:20Z,) whose
existence is guaranteed by (1). (Recall the discussion in the paragraph
preceding this lemma.)

(3) For any 6 € A(JI - 02,), f/7(6) = (margs 6, margz  z6...). So /™ is con-
tinuous since the mappings of & into margz » y z 6 are all continuous. To

see that f is continuous, consider a sequence (4f, §;,...) €D converging to
(6;, 65,...) €D, ie. §;=> 6, for every n. Let & = f(&§, &;,...), § = (6, 6,,...). ]
have to show that &= 6. Now the cylinder sets form a convergence-
determining class, that is, if §{(C) — §C) for every cylinder set C such that
§8C) =0, then & => 6 (see [2, p.22 Problem 7]). Since the values of &, 6 on
the cylinder sets are given by the &I’s, §,’s respectively, it is clear that

8§/ => &, for every n implies that §=> 6. So f is continuous. O
To see why Proposition 2.1 follows from Lemma 2.1, set

z° = XO
Z, = A(X,.,) forn2>1
80 Zy X...X Z, = X, and J[322, =S X To. If S is a Polish space then so is

A(S) [4, p.73]. Hence the Z,’s will be Polish spaces provided S is. A coherent
type ¢t € T, is just a sequence of probability measures (4, 6,...)€ED. So
Lemma 2.1 implies that there is a homeomorphism between the set of

coherent types T, and A(S X T,).
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3. Common Knowledge of Coherency and Belief-Closed Subsets

In this section I define belief-closed subsets. It is shown that a union of
belief-closed subsets is belief-closed, so that there is a largest (in terms of set
inclusion) belief-closed subset. Proposition 3.1 shows that this set is equal to

the belief-closed subset which satisfies just common knowledge of coherency.

DEFINITION 3.1: (cf. [6, Definition 2.15)) A subset T X TV C T, X T, is
belief-closed if

for every t* € T*, f(t'YS X T7) =1,

for every 7 € T/, f('YS X T*) =1.
Definition 3.1 says that a subset T° X T is belief-closed if every type ¢' in
T’ of individual i believes that j can only be of a type ¢/ in T/, and simi-
larly for individual j. Clearly, if T® X TV is belief-closed, then every type ¢*
in T® of individual s also believes that j believes that ¢ can only be of a type
in T, and so on. Hence if every type in T* or T’ satisfies a certain property
(such as assigning certain probabilities to events in the underlying space of
uncertainty S), then this property is common knowledge. In particular, it
follows that any belief-closed set T® X T’/ satisfies common krowledge of
coherency (since every type ¢' in T' or ¢/ in T/ is in T, and therefore

coherent).
If the individuals’ types ¢, t/ are in a belief-closed subset T X T’ then

their types fully specify their beliefs. Of course a coherent type, say t’,

induces a belief over j's types. But if T' X T/ is belief-closed, then i 's beliefs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-75-

over j's beliefs over ¢'s type can also be calculated -- by examining the asso-
ciated beliefs marg,.f(t/) of every t/ which i considers possible. Similarly i’s
beliefs over j's beliefs over ... i's type can be calculated. These beliefs will
induce a “second level” hierarchy, where the set of "second level” types thus
calculated from all types in T¢ X T/ will be belief-closed. And then one
could calculate “third level” hierarchies, and so on. Clearly all beliefs are
specified. It is in this sense that the model is closed by looking at belief-

closed subsets.

The following properties should be noted: (1) if T' X T’ is belief-closed,
then so is T/ X T%; (2) if T{ x T4, 4 €T, is a collection of belief-closed sets,

then 1LeJrTf’ queJrTQ; is "almost” belief-closed in the sense that for every
t e 1LeJl“T"; there is a subset of § X 1LEJPT.’; to which f(¢') assigns probability 1
(in fact if ¢ € T it is the subset S X T), and similarly for j. (The slight
qualification is needed since a priori there is no reason for .,léJrT"; to be a

measurable set.) (1) and (2) imply that the component-by-component union
of all belief-closed sets is symmetric, i.e. of the form T’ x T° for some

T* C T,, and is (almost) belief-closed.

I now start from the "other end.” Rather than considering belief-closed
subsets of T, X T, and taking unions, I begin with T, X T, and impose com-
mon knowledge of coherency. Formally, the sequence of sets T,, k>2 is

defined by:
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Ty ={t€T,| f(4XS X T,;) =1}.
(Notice that for T, to be well-defined, T,_, must be a Borel set. This is
proved in Lemma A.l in the Appendix.) Let T =Nf2,7T,. T X T is the subset
of T, X T, obtained by requiring all statements of the form "i knows j
knows ... i's type is coherent” to be true. To say that i knows j's type is
coherent means that if s’s type is t', then the associated belief /(') assigns
probability 1 to types ¢t/ which are coherent. T, is the set of all such types

for i. The interpretation of other T,'s is similar.

PROPOSITION 3.1: T* = T.

PROOF: It is easy to check that T ={t € T,| f(t}S X T) =1} so that
T X T is belief-closed. To complete the proof it is enough to show that
every belief-closed set T® X T7 is a subset of T X T. Without loss of general-
ity a belief-closed set can be taken to be a symmetric set, say T'x T'. (This
follows from properties (1) and (2) stated above.) I have to show that
T'C T. T' C T, by definition. And since for every t € T', f(t(S X T') =1, it
follows that T'C T,  Clearly T"C T, for every k by induction, so

rcnoy=T.0

T' % T' is the component-by-component union of all belief-closed sets,
and T X T was constructed as the subset of T, X T, which satisfies common
knowledge of coherency. So Proposition 3.1 says that the largest belief-closed

set is equal to the set satisfying just common knowledge of coherency.
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PROPOSITION 3.2: T is homeomorphic to A(S X T).

PROOF: From the proof of Proposition 3.1 T = {t € T||f(tS X T) =1}, or
J(T)={6€ A(S X To)| 5 X T) =1} since f is onto. But the set on the
right-hand side is homeomorphic to A(S X T) (for any metric space Z and
measurable subset W of Z, {6 € A(Z)| W) =1} is homeomorphic to A(W)),

and f(T) is homeomorphic to T. So T is homeomorphic to &A(S X T). O

I have argued that any belief-closed set closes the model of beliefs. But in
Proposition 3.2, T cannot be replaced with any T’ where T'X T’ is belief-
closed. Proposition 3.2 tells us that any type in T determines a belief over
S X T. Likewise, any type in T, where T' X T’ is belief-closed, determine a
belief over S X T'. But in general it is not true that any belief over S X T'
comes from a type in T'. If T' is not to "miss” any beliefs in this sense, then

it must be equal to T (as implied by Proposition 3.2).

The set T is equivalent to the universal type space constructed in Mer-
tens and Zamir [8, Theorem 2.9]. At a technical level, however, the assump-
tion in [6] that S is compact has been replaced with the assumption that §

is a Polish space.

et — ————— . e ——— e
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4. Coherency and Consistency

In this section some simple examples of hierarchies of beliefs are pro-
vided. The examples should also help clarify the distinction between
coherency and consistency (in Harsanyi's sense). Roughly speaking, a subset
CXT XT/of §XTXxT is consistent if each individual’s beliefs are deter-
mined by the conditional probability, given his/her private information,
derived from some “prior” probability measure on C X T* X T7. A little more
formally, € X T* X T7 is consistent if there is a probability measure P on
C X T® X T? such that for every ¢ € T¥, f(¢') is determined by the condi-
tional P-probability given ¢*, and similarly for j. Notice that if ¢ X T% x TV
is consistent then T° X T/ must be a belief-closed set. But the converse is
not true as shown by Example 4. Let a and b be points in S. For any

measurable space Z, let g(z) denote the Dirac measure at the point z € Z.

1. A coherent pair of hierarchies which constitutes a belief-closed set:

& = p(a) &f = p(a)
& = u(a, &) & = ula, &)

8 = wla, 8, 8y 61_)8 = (e, &, 8., 55_)

This says. that i assigns proba'bility 1 to {a}, ¢ assigns probability 1 to {a
and j; assigns probability 1 to {a}}, and so on. Similarly for j. Let
¢! = (8], 8§...) and ¢/ = (5 &..). Then i's hierarchy determines the belief
#{a, t’) and j's hierarchy determines the belief u(a, t°). {(¢*, t7)} is a belief-

closed set, and {(a, ¢, t)} is consistent.
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2. An incoherent hierarchy for j:

& = p(b),
8 =8 for n>2.

This says that j assigns probability 1 to {6}, but also that j assigns proba-

bility 1 to {a and  assigns probability 1 to {a}}. Let & = (3}, &....).

3. A coherent hierarchy for ¢ which does not satisfy that i knows j is
coherent, and hence cannot be part of any belief-closed set:
5 = (a),

3.: = u(a, 8;’, 3{,..., 8;‘"_1) for n 2>2.
This hierarchy determines the belief u(a, #).

4. A coherent pair of hierarchies which constitutes a belief-closed set:

& = p(a) & = p(a)

B =ua, 8) & = p(a, &)
8 = u(a, 6f, 8,..., 61_))87 = u(a, &, &,..., 6i_y)

This say; that ¢ assigns proba.bility 1 to {a}, ¢ assigns probability 1 to {a
and j assigns probability 1 to {8}}, and so on; while j assigns probability 1
to {b}, § assigns probability 1 to {5 and i assigns probability 1 to {a}}, and
80 on. Let # -(E‘, 3;",...) and ¢’ -(3'{, E{,...). Then the hierarchies determine
the beliefs u(a, l?), p(b, !~"). {(F, t?)} is a belief-closed set, but there is no

& € S such that (s, f", ¢ ) lies in a consistent subset of § X T X T.
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5. Common Knowledge

In Chapter 3 a generalization of Aumann’s definition [1] of common
knowledge was presented. That definition will be referred to in this section
as the "standard” definition. The assumption that the information structure
(o-fields, etc.) is common knowledge in an informal sense was necessary there
(as in [1]) in order to justify the interpretation of the results. In particular
note that K*K’A is, by definition (since K/A is an event in Q) the event “i
knows K7A." To replace the latter with "s knows j knows A" is implicitly to

assume that ¢ knows j's information structure.

This section looks at common knowledge of events E in the underlying
state space S of Section 2. The question asked is what can be done if the
information structure on S is not common knowledge. Aumann (1] argued
that in this case the state space should be expanded. Proposition 5.1 below
implies that if one takes the expanded state space to be S X T X T, and
applies the standard definition of common knowledge to this expanded
space, then the assumption that the information structure is common
knowledge entails no loss of generality. Since the assumption that the infor-
mation structure is common knowledge is an informal one, I will now clarify

the sense in which it is implied by Proposition 5.1.

Even if the information structure on $ is not common knowledge, one can
easily provide a definition of common knowledge of an event E in § using

types. To say E is common knowledge is to impose certain restrictions on i
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and j's types, namely to require that + knows E (i.e. i assigns probability 1
to E), i knows j knows E, and so on, and similarly for j. Let V(E) C T, be
the set of types of i or § which satisfy these restrictions (by symmetry it is
the same set for both i and j). So E is common knowledge if
(¢, ¢) € V(E) x V(E). It is important to note that V(E) is a subset of T, but
not in general of T. That is, it is quite possible for an event E to be com-
mon knowledge without common knowledge of coherency being satisfied. For
example, if one sets £ =S, then V(E)= T, To see this, recall from the
definition of T, (see Section 2) that for any pair of types (¢, t/) € T, o X To ¢
knows S, i knows j knows S, and so on, and similarly for j. (In fact, the
only case in which common knowledge of E implies common knowledge of

coherency is when L is a singleton.)

We have just seen how to define common knowledge of an event £ in §
in terms of types and without using an information structure. Proposition
5.1 says that if common knowledge of coherency is satisfied, then E is com-
mon knowledge in terms of types if and only if E is common knowledge
according to the standard definition applied to S x T' X T. (Of course
strictly speaking E is not an event in the expanded space S X T X T, but E
is naturally identified with E X T X T.) More precisely, Proposition 5.1 says
that (¢,¢/) € [V(E)NT] X [V(E)YNT] if and only if (s t,¢)) €
L'(E X T X T)NL(E X T x T). The interpretation of (¢¢, t) € V(E) X V(E)

is that ¢ knows E, ¢ knows ; knows E, and so on, and similarly for j. So
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Proposition 5.1 implies that if common knowledge of coherency is satisfied,
then this is also the interpretation of (s, t',¢/) € LYEXTXT) N
L’(E X T X T). But to make this latter interpretation, one needs the infor-
mation structure on S X T X T to be common knowledge. Hence Proposition
5.1 implies that this assumption entails no loss of generality. In effect, the
assumption that the information structure is common knowledge has been

replaced with the assumption of common knowledge of coherency.

Notice that even if S is finite, § X T X T is an infinite space. So Proposi-
tion 5.1 must be stated using the definition provided in Chapter 3 of com-
mon knowledge. Of course, to write down this definition one needs an infor-
mation structure on S X T X T. Let F denote the Borel field of S X T x T.
Since i knows his/her own type, the natural sub o-field of F for i is F' =
{S X B X T | B a Borel subset of T}. Similarly, the natural sub o-field for j is
F! = {S§ X T X B| B a Borel subset of T}. For any event A € F, i's natural
conditional probability of A at a state w = (s, t*, t/) is Q'(A, «) = f(t')(A,)
where A, is the t'-section of A. Only the conditional probabilities Q' are

specified since these are in fact all that are needed to define common
knowledge as in Chapter 3 — i's prior P’ is irrelevant. Notice that Q° is
proper as required. For any event A € F, j's natural conditional probability
of A at wm=(s, t', t/) is Q/(A, w) = f(t/YA,,) where A, is the t/-section of A.
Having defined the information structure on S X T X T, | can now define

K', K’ and then L%, L7 as in Chapter 3.
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PROPOSITION 5.1: For any event £ in S,

SXVIEYNT|X[VIE)NT)|=LEXTXT)NLYEXTXT)

PROOF: K'(EXT X T)={wl QUEXT XT,w)=1}
= {(s, ¢, t9)| J('NE X T) =1}
=SXV(E)XT
where V(E) = {t€T|f(tXEXT) = 1}). Similarly, K(EXTXT) =

8§ X T X V{(E). So
KKEXTXT)m{wl QFIKIEXTXT), o =1}
= {wl Q°[S X T X V|(E), o] = 1}

=S X Vy(E)X T
where V,(E)={t € T| f(t)|S X V,(E)] =1)}. Continuing in this fashion, for

any k > 2 let V(E)={t € T| f(t)[S X V,_y(E)] = 1}. (Notice that for V,(E)

to be well-defined, V,_,(E) must be a Borel subset of T. This is proved in

Lemma A.2 in the Appendix.) Then
LEXTXT)=KEXTXT)INK'K(EXTXT)N..

=SX N E)X T
But clearly N2,V (E) = V(E)NT,s0 LYEXTXT)=SX|[V(E)NT|X T.

Similarly, LY(E X T X T) = S X T X [V(E) N T). Therefore L'(EX T X T) N

LIEXTXT)=Sx|V(E)NT| X [V(E)NT]. O
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Appendix

This section deals with two measure-theoretic questions in the text. The
first relates to the sequence of sets {T,}:2, defined on p.8. I claimed that

each T, is a Borel set. This follows from:
LEMMA A.1: T, k > 1, is closed.

PROOF: First note that the set D defined in Lemma 2.1 is closed since the
mappings taking &, into margz ,  ; 06, are all continuous. From this and
the remarks following Lemma 2.1 it follows that T, is closed. Now assume
inductively that T, , is closed, and consider a sequence ¢, — ¢ where
tm €T, Y m. Since f is continuous and § X T,_, is closed by assumption,
limsup,, f(tmys X Tpy) < f(t)(S X T,_,) (this is criterion (iii) of the Portman-
teau Theorem in [2, p.11]). But by assumption J(tuys X T4) =1V m so

J(')(S X Ti-l) = l, l.e. ¢t € Tﬁ' So T‘. is closed. D
The second measure-theoretic question relates to the sequence of sets
{Vi(E)}{2, defined in the proof of Proposition 5.1.

LEMMA A.2: V. (E), k > 1, is a Borel set.

PROOF: I first show that for any A € F (F is the Borel field of S X T X T)

S XA,,) is measurable as a function of t?. (For notational reasons it will be
easier to prove the result for j.) If A =A'X A" where A'C SX T and

A" C T then f(t/YA,,) =1,-(t/) f(t}A"). Since f is continuous f(t7}A’)} is
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lower semicontinuous if A’ is open (this is criterion (iv) of the Portmanteau
Theorem in [2, p.11]), and clearly 1,-(t/) is lower semicontinuous if A" is

open. So f(t’)A,,) is lower semicontinuous - hence measurable — on the =-

system of open rectangles A = A’ X A" which generates F. But it is straight-

forward to check that the class of sets A on which f(¢/)A,,) is measurable
must be a A-system, hence by the x-\ Theorem, f (t")(A,,) is measurable for

all A €. It follows that V,(E)={t/ € T| f(t/E X T) =1} is a Borel set.

Now proceed by induction. O
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CHAPTER 5

RATIONALIZABILITY AND CORRELATED EQUILIBRIUM

1. Introduction

The fundamental solution concept for noncooperative games is that of a
Nash equilibrium [13]. Probably the most common view of Nash equilibrium
is as a self-enforcing agreement. A game is envisaged as being preceded by a
more or less explicit period of communication by the players. It is argued
that if an agreement is reached to play a Nash equilibrium, then no player
will have an incentive to violate it. Aumann [1] proposed the idea of objec-
tive and subjective correlated equilibrium as an extension of Nash equili-
brium to allow for correlation between the players’ randomizations and for

subjectivity in the players' probability assessments.

The Nash equilibrium solution concept has been criticized from two
opposing directions. On the one hand, the literature on refinements of Nash
equilibrium (e.g. Myerson [11], Kreps and Wilson [9], Kohlberg and Mertens
[8]) starts from the contention that not every Nash equilibrium can be
viewed as a plausible agreed-upon way to play the game. On the other hand,
Bernheim [3] and Pearce {14] have argued that Nash equilibrium is too res-
trictive in that it rules out behavior that does not contradict the rationality
of the players. Bernheim and Pearce propose instead the concept of rational-
izability as the logical consequence of assuming that the structure of the

game and the rationality of the players (and nothing more) is common
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knowledge.

This chapter starts with the solution concept of rationalizability, since
this is what is implied by the basic decision-theoretic analysis of a game.
However, it is shown that rationalizability is more closely related to an
equilibrium approach than one might at first think. An equivalence between
rationalizable payoffs and payoffs from a posteriori equilibria — a refinement
of subjective correlated equilibria is proven. (A slightly specialized version of
the results in this chapter appeared in [5].) Notice that the equivalence is
stated in terms of payoffs and not strategies. There are two reasons for
doing this. First, the equivalence is most readily stated in this form. Second,
all that matters to a player in a game is what hLis/her expected payoff is --

(s)he does not care about the strategies played per se.

The equivalence results come in two parts depending on whether I start
with “correlated” or "independent” rationalizability. The difference between
correlated and independent rationalizability is that the second requires a
player to believe that the others choose their actions independently, while
the first does not. (Of course, the two versions of rationalizability coincide
for two-person games.) Independent rationalizability is the appropriate con-
cept if one thinks of the players in a "laboratory” situation: i.e. any correlat-
ing devices are explicitly modelled, the players are placed in separate rooms,
and then are informed of the game they are to play. Correlated rationaliza-

bility seems more appropriate when the players are able to coordinate their
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actions via a large collection of correlating devices (such as sunspots) which
are not explicitly modelled in the game but which are taken into account by

allowing for correlated beliefs.

In Section 2 an equivalence between correlated rationalizable payoffs and
payoffs from a posteriori equilibria is proven (Propositions 2.1 and 2.2). In
view of this result one would also expect to be able to prove an equivalence
between independent rationalizable payofis and payoffs from "mixed” a pos-
teriori equilibria. This intuition is correct, but the definition of mixed needed
to prove the result is different from the standard notion of mixed strategies.
Choosing the appropriate definition is quite delicate -- it turns out that
there are several possible definitions depending on how players update their
beliefs on null events. In Section 3 the appropriate definition of mixed in
order to prove the equivalence result (Proposition 3.1) is presented. I go on
to show that if a small change in this definition is made, then far from get-
ting an equivalence with independent rationalizability, one gets an

equivalence with Nash equilibrium (Propositions 4.1, 4.2).

The viewpoint of this chapter is that rationalizability is the solution con-
cept implied by the "Bayesian rationality” of the players. It is then shown
that there is a close relationship between rationalizability and s posteriori
equilibrium. In a related paper [2], Aumann adopts a somewhat different
notion of Bayesian rationality. In [2], Bayesian rationality is taken to mean

that all players face some common state space {2 over which they have a
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common prior. There is a random variable mapping each state w into a vec-
tor of actions for the players. Each player has a commonly known partition
of 0, and is assumed to choose an action to maximize his/her expected util-
ity given his/her private information. Aumann shows that this set-up leads

to an objective correlated equilibrium.

To obtain the results in this chapter and [2] within a unified framework,
it is best to use types as in [5]. A type of a player is an infinite hierarchy of
beliefs of that player -- over other players’ actions, over other players’
beliefs over other players’ actions, and so on (cf. Chapter 4, Harsanyi (7],
Mertens and Zamir [10]). If the only restriction on beliefs is common
knowledge of rationality then by definition one gets rationalizability -- or
according to the results in this chapter, a posteriori equilibrium. To get
objective correlated equilibrium, two additional assumptions are needed. The
first is consistency (in Harsanyi's sense), which corre;ponds to the assump-
tion of common priors in [2]. The second is common knowledge of measura-
bility (defined in [5]), which plays a similar role to the assumption in [2] of a

commonly known random variable mapping states into actions.

—_——
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2. Correlated Rationalizability and A Posteriori Equilibria

This section starts with a definition of the sets of correlated rationali'z-
able strategies and payoffs in a game. The approach is based on that in [14].
However, unlike in {14], players are not allowed to select mixed strategies —
doing so would not expand the set of rationalizable payoffs. Also, a player's
beliefs over the actions of the other players is allowed to be correlated (cf.
(14, p.1035]). In the next section the case in which these beliefs are indepen-

dent is examined.

Consider an n-person game I' = <Al ... A": ul.., u"> where for each
i=1,...n, A* is player i’s (finite) set of pure strategies and u’ is i's payoff
function. For any finite set Y, let A(Y) denote the set of probability meas-
ures on Y. So A(A’) (with typical element o°) denotes the set of mixed stra-
tegies of player i. The following notation will be used. Given sets Y!,..., Y™,
Y™ denotes the set Y! x..X Y"! X Y'*! x..x Y*. I will also write y~* for

the element (y',..., y*~, y**1..., y") € Y.

DEFINITION 2.1: A subset B! X...X B" of A X...X A® is a best reply set if
for each i and every a’ € B, there is a 0 € A(B™¥) such that a‘ is a best
reply to 0. The set of correlated rationalizable strategies R! X...X R* is then

the (finite) component by component union (ch B})x...x(g B2) of all best

reply sets Bl x..x Bl. For any o € A(R™*), i's maximal expected payoff
against o is a correlated rationalizable payoff to i. Let II' denote the set of

all correlated rationalizable payofis to s.
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I now want to define an a posteriori equilibrium [1, Section 8] of the
game I'. I start by reviewing the definition of a correlated equilibrium of T,
and then define an a posteriori equilibrium as a special type of correlated
equilibrium. To define a correlated equilibrium of I', one must add to the
basic description of the game a finite space 1. The finiteness of 0 involves no
loss of generality. Each player i has a prior P’ — a probability measure on
N1 - and a partition H® of Q. A strategy of player ¢ is an H'-measurable map
J': Q= A%, An n-tuple of strategies (f',..., /*) is a correlated equilibrium if

for every i

L w'lfi(w) £ w)] PP({}) 2 u?ﬂ e [f(w), £~ (W) P({w))

wEen

for every strategy f* of i.

In this definition the players’ strategies are only required to be ex ante
optimal. In an a posteriori equilibrium the players’ strategies must be
optimal even after they have learned their private information. The follow-
ing example motivates this distinction. Consider the game in Figure 1. N
consists of two points w;, w,. Row is informed of the true state, Column has
no private information. Row assigns (prior) probability 1 to «, Column
assigns probability % to w, % to wy. The following strategies form a corre-
lated equilibrium: Row plays U if informed that w, happens, D if w, happens;
Column plays L. However, we (and Column) would not expect Row to play D
if w, happens (D is strongly dominated) unless Row is committed to do so ex

ante. But such a commitment seems implausible. As in the refinement litera-
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ture, one wants to require optimal behavior even on null events -- in this
case after a move by Nature which is assigned prior probability zero. The
definition of an a posteriori equilibrium (see below) is designed to rule out
such situations. The unique a posteriori equilibrium of this game has Row

playing U and hence Column playing R for sure.

To define an a posteriori equilibrium formally, the players’ revised beliefs
over {1 at every w must be specified. In other words, for each player ¢ and
every h' € H', P'(-| h*) is required to be a probability measure on 2 and to
be proper, i.e. to satisfy P*(h*| A®) =1 (cf. [4]). Of course if P‘(h*) > 0, then
by Bayes' rule Pi(-| &) automatically satisfies both requirements, but the
point is that P(-| A’) must satisfy them even if P'(h') =0. For each i, let

H'(w) denote the cell in ¢'s partition that contains w.

DEFINITION 2.2: An n-tuple of strategies (f!,..., f") is an a posteriors equsli-

brium of I if for each 1 and every w € (1

v |fiw), £ PP{} ] (W) 2

Y vild, 17 W)] PPi{WH Hiw)] Vo' €4F.
vJEN

Notice that by a change of variables, i's optimality condition requires that

for every w € (&

T i), o) P S W)me} | B(W) 2

Y ui(dt, a=) PI{] S (W)ma~} | Hi(W)] Vo' €A°
e EAT

i's conditional expected payoff at any w is called an interim payoff to i from
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the a posteriori equilibrium. i's ez ante payoff is the expectation of i’s

interim payoffs with respect to P’.

The basic equivalence result proven in this section (Proposition 2.1) is
between correlated rationalizable payofis and interim payofls from a pos-
teriori equilibria. The idea behind rationalizability is that (according to
Bayesian decision theory) player s has a certain given belief over the actions
of the other players, and this determines i's (maximal) expected payoff. On
the other hand, at the ex ante stage in an a posteriori equilibrium s does not
yet know what his/her belief over the other players’ actions will be. This
belief will be equal to i's conditional probability which is determined by i's
information, i.e. it is i's belief at the interim stage. This is why the basic
equivalence result is stated in terms of interim payoffs. In fact, because of
convexity of the set of correlated rationalizable payoffs to i (Lemma 2.3) one
can also prove an equivalence between correlated rationalizable payoffs and

ex ante payoffs from a posteriori equilibria -- see Proposition 2.2.

PROPOSITION 2.1: (»,..., #*) € II' X...X II" if and only if there is an a pos-

teriori equilibrium of T in which (#,..., #*) is the vector of interim payoffs.

Proposition 2.1 is a consequence of the following two lemmas.

LEMMA 2.1: If (',..., »*) € IT' X..X TI"* then there is an a posteriori equili-

brium of T in which (x'-... #") is the vector of interim payoffs,

PROOF: A mediator {cf. Myerson [12]) randomly selects a joint action
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(al,..., a") and recommends to each player ¢ to play a°. Since # is a corre-
lated rationalizable payoff to i, there is an d* € R’ and a ¢ € A(R~¥) such
that d° is a best reply to ¢ and = is i's expected payoff from playing d°
against o. If § is recommended to play d' than the conditional probability
with which ¢ believes the mediator chooses actions in R~ is . Similarly, for
any other a' in R’ choose a o € A{R™¥) to which a' is a best reply. If ¢ is
recommended to play a' then the conditional probability with which i
believes the mediator chooses actions in R~ is 0. With these conditional pro-
babilities i will be willing to follow the mediator’s recommendations, and
when informed of d*, i’s conditional expected payoff from this a posteriori

equilibrium is . O

Observe that if ¢ assigns probability 1 to the recommendation 4* then s's
ex ante expected payoff is also #, so the term “interim" payoffs in Lemma

2.1 can be replaced with “ex ante".

LEMMA 2.2: The vector of interim payofls from an a posteriori equilibrium

(f%,..., f*) of I is an element of I X...x IT".

PROOF: Let A} ={a' €Al o’ = fi(w)forsome wEN}. Al X..XAL Is 2
best reply set. To prove this, I show that for every  and o €AY, thereisa
o € A(AS') to which a’ is a best reply. Given such an o' choose an w so that
J%(w) = a*. Since (f,..., f") is an a posteriori equilibrium, and only strategies

a~' € A7* “enter into” the equilibrium,i’s optimality condition at « can be
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written as:

Y ui(a’, a7) P{] S (W)mai} | B (W) >

s €A

SA wi(d, a=) P[{/ | f()ma=i} | Hi(W)) V' €A’
e EAT

This says that a’ is a best reply to the strategy o which assigns probability

Pl{o ] £ ()ma~} | H(w)) to each o~ € A .

Now choose any w € 1. ] show that i's conditional expected payoff at wis
a correlated rationalizable payoff to ¢. i's conditional expected payoff at @ is
the expected payoff from playing fi(w) against the strategy which assigns
probability P'[{«/] f~%(«/)=a~} | H*(T)] to each a~* € A7'. That is, i's condi-

tional expected payofl at @ is a correlated rationalizable payoff toi. D

I have shown that ¢’'s interim payoff, conditional on H*(w}, is a correlated
rationalizable payoff. Therefore i’s ex ante payoff is a convex combination of
correlated rationalizable payoffs to s. Lemma 2.3 below says that the set of
correlated rationalizable payoffs to ¢ is convex, so in fact Lemma 2.2 implies
that a vector of ex ante payoffs from an a posteriori equilibrium is a vector
of correlated rationalizable pﬁyoﬂ's. Together with the observation following

Lemma 2.1 this implies:

PROPOSITION 2.2: The set of ex ante expected payoff vectors from a pos-

teriori equilibria of T is equal to IT° x...x IT*,

As argued above, Proposition 2.2 will be implied by:
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LEMMA 2.3: The set of correlated rationalizable payoffs to 5 in I' is a closed

interval in E.

PROOF: For any o € A{R™), let v/(a’, 0) be j’s expected payoff from playing
a’ against 0. The set of correlated rationalizable payoffs to j5 is

{mu:,v"(af, o)l 0 € A(R~7)}. This set is the image of the continuous map
s’ €

o — max vi(a’, 0), and is therefore compact, connected since the domain
ot EAJ

A(R™7) is compact, connected. O
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3. Independent Rationalizability and Mixed A Posteriori Equilibria

I begin by defining the set of independent rationalizable payoffs (cf. [3],
{14]). This is the subset of the set of correlated rationalizable payoffs
obtained by restricting a player's beliefs over the actions of the other players
to be independent. To see that the set of independent rationalizable payoffs
is_ a proper subset of the set of correlated rationalizable payoffs, consider the
game in Figure 2, Player 1 chooses the row, 2 the column, 3 the matrix. 0.7
is a correlated rationalizable payoff to 3 as follows. 3 believes 1, 2 play (U,
L) with probability %, (D, R) with probability % (to which B is the best
reply). 1 believes 2 plays L with probability %, R with probability %, and 3
plays B (to which U and D are best replies). 2 believes 1 plays U with proba-
bility %, D with probability %, and 3 plays B (to which L and R are best
replies). On the other hand, 1 is the unique independent rationalizable payoff
to 3. To see this, first note that B is not a best reply to any pair of mixed
strategies of 1, 2. Hence 1, 2 must assign probability 0 to 3 playing B. But

then U, L strongly dominate D, R for 1, 2 respectively.

DEFINITION 3.1: A subset B' X..X B® of A! X...X A* is an independent

best reply set if for each i and every a* € B', there is a o~ € [JA(B*) such
i

that o' is & best reply to o~*. The set of independent rationalizable strategies
R'x.XR* is then the (finite) component by component union

(UB}) x...x (U B%) of all best reply sets By X...X B:. For any 0™ € IIA(R'),
a a i
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i's maximal expected payoff against o' is an independent rationalizable

payoff to i. The set of independent rationalizable payoffs to i is denoted IT'.

The results of the last section would suggest an equivalence between
independent rationalizable payoffs and interim payofis from "mixed"” a pos-
teriori equilibria (and if the set of independent rationalizable payoffs is con-
vex that the equivalence holds for ex ante payoffs also). This intuition is
correct, however choosing the right definition of mixed a posteriori equili-
brium is quite subtle. One might expect "mixed" to mean independence of
the players’ partitions of 2 in terms of their priors. In fact a form of condi-
tional independence (which is not implied by a definition in terms of priors)

is needed.

DEFINITION 3.2: H!.., H" are P'— prior independent if P‘(.rnﬁlh") -

" ) 3 » »
I1Pi(h*) for every h* € H k=l,.,n. H'..., H'"', H'*1 . H" are P'— condi-
kwl]

tionally independent given H' if for every &'eH', P‘(tr'}!l”h") -

TIPi(h* | A%) for every h* € H*, kyi.
ki

Prior independence is the standard definition of independent o-fields ([6,
p.61]). It is also the notion of independence used in [1] to define mixed stra-
tegies. The above definition of conditional independence is a strengthening
of the standard definition of conditionally independent o-fields ([6, p.306))

from an almost everywhere to an everywhere requirement. Conditional
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independence says that whatever information ¢ receives, i believes that the
other players choose their actions independently. Prior independence implies

that if Pi(A")>0, then P"(.Q_h‘ | h%) = JTP*(h*). So prior independence implies
i i

that the equality in the definition of conditional independence is satisfied for
non P'-null A° 's. (In fact one can see that it implies more than this for such
h''s -- see Section 4.) But prior independence says nothing about

P‘(‘Q_h" | 4%) if A% is P’-null, so prior independence does mot imply condi-
]

tional independence. Nor does conditional independence imply prior indepen-
dence. A mixed a posteriori equilibrium will mean an a posteriori equili-
brium in which for every i, H',..., H'), H'*! ., H" are P'—conditionally

independent given H'.

LEMMA 3.1: Given a vector (7,..., #") € IT' X...x IT*, there is a mixed a pos-
teriori equilibrium of T' in which (x',..., #*) is a vector of interim and ex ante

payofis to the players.

The proof is like that of Lemma 2.1. A mediator randomly selects a joint
action (al,..., a") € R' X...X R" and recommends to each player to play a'.
Since = is an independent rationalizable payoff to ¢, there is an é' € R and

a ¢~ € JIA(R’) such that ¢ is a best reply to 4 and «* is i's expected
i

payoff from playing d* against ¢, If i is recommended to play 4’ then the
conditional probability with which ¢ believes the mediator chooses actions in

R~ is ¢°. Note that ¢~ is a product measure on R~. Continuing in this
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way, after any recommendation ¢'s conditional probability on R~ is a pro-
duct measure. So the a posteriori equilibrium constructed is mixed, and ° is
the interim payoff to i. By letting ¢ assign prior probability 1 to the media-

tor recommending d* this is also the ex ante payoff tos. ©O

LEMMA 3.2: Consider a mixed a posteriori equilibrium (f,..., f*)} of I'. The

interim expected payoff to each player is an element of IT',

The proof is essentially the same as that of Lemma 2.1. Let A! x..X A" =
{a° € A*| a*=f%(w) for some w € N2}. A! X..X A is an independent best reply
set. This follows from essentially the same argument as before, noting that

P |y (uh)ma~)} | H(w)] = TIP'I{/| f¥()mat} | Hi(u)) because of condi-

ki

tional independence. It follows that for any w €1, j's conditional expected

payoff at wis an independent rationalizable payoff to 5. ©O

Lemma 3.2 implies that in any a posteriori equilibria each players ex
ante payofl will be a convex combination of independent rationalizable
payoffs, while a trivial modification of Lemma 3.2 shows that I is convex.
These remarks and Lemmas 3.1 and 3.2 provide an analog to Propositions

2.1 and 2.2.

PROPOSITION 3.1: The set of interim and ex ante payoff vectors in the

mixed a posteriori equilibria of T is equal to IT* x...x IT",

In order to prove an equivalence with independent rationalizability, the
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appropriate definition of mixed a posteriori equilibrium involves conditional
independence. Recall that conditional independence does not in general
imply prior independence. Nevertheless, when considering mixed a posteriori
equilibria there is a sense in which prior independence can be assumed
without loss of generality. More precisely, the set of interim and ex ante
payoffs from mixed a posteriori equilibria which satisfy prior independence
are also equal to II' x...x TI*. This is because the a posteriori equilibrium
constructed in the proof of Lemma 3.1 satisfy prior independence. And
requiring the a posteriori equilibria of Lemma 3.2 to satisfy also prior
independence will leave the conclusion that the payoffs are elements of IT*

for each § as valid.
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4. A Posteriori Equilibria and Nash Equilibria

In this section I make a small change in the definition of conditional
independence. Now, far from proving an equivalence with independent
rationalizability, it is shown that for two-person games a posteriori equilibria
satisfying the modified form of conditional independence are in fact
equivalent to Nash equilibria. This result is extended to games with more
than two players under an additional assumption of concordant priors

(Definition 4.2).

Recall that conditional independence says that after observing any parti-
tion cell, i believes that the other players choose their actions independently.
Prior independence says that i believes with probability 1 that (s)he will not
update his/her prior. However, even both assumptions allow for a situation
where P(- | h%) % Pi(-| K') if P’(h*) P*(K') =0. This says that i can update
his /her prior if a null event happens. A possible restriction on beliefs is that

the players do not update on null events either.

DEFINITION 4.1: H!... H"! H'*', ., H® are P‘—cverywhere independent

given H' if for every A’ € H', P"(.Qih" | A%) = TTPi(A*) for every h* € H*, kybi.
i

Clearly, everywhere independence implies both conditional and prior

independence. But the converse is false as the following proposition implies.

PROPOSITION 4.1: (cf. [1, Proposition 8.1]) Suppose I' is a two-person

game. Then the sets of interim and ex ante payoff vectors from the a
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posteriori equilibria of T' which satisfy everywhere independence are both

equal to the set of payoff vectors from the Nash equilibria of T.

(An a posteriori equilibrium of I' satisfies everywhere independence if for
every i, H\,..., '), H'*),. H" are P‘-—everywhere independent given H'.)
The proof is omitted since Proposition 4.1 is a special case of Proposition 4.2
below. Note that in Proposition 4.1 one gets Nash payofls without requiring
the players' priors over 2 to coincide. This is because everywhere indepen-
dence implies that each player's posterior over the other player's actions is
common knowledge. This idea can be extended to n-person games by requir-

ing any two players to agree about a third player's actions.

DEFINITION 4.2: Pl,.., P" are concordant if for each ¢ and j, ks,

Pi(h') = P*(h’) for every h' € H'.

The assumption of concordant priors is closely related to that of common
priors. It differs from the latter in that player i's prior over events in H'
need not be the same as the (common) prior of the other players. Techni-
cally, concordant priors differ only slightly from common priors. however,
assuming the former is more natural since i's prior over events in H* has no
decision-theoretic significance for the play of the game. In any case, under
the assumption of concordant priors there is an n-person analog to Proposi-

tion 4.1.

PROPOSITION 4.2: The sets of interim and ex ante payoff vectors from the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 105 -

a posteriori equilibria of I' which satisfy everywhere independence and have
concordant priors are both equal to the set of expected payoff vectors from

the Nash equilibria of T.

PROOF: Consider an a posteriori equilibrium (f,..., f*) of ' and let
Al,.., A} be defined as in the proof of Lemma 2.2. On any A° € H', i's con-

ditional expected payoff from playing a' is

3 ui(a’, a”¥) Pi{w] fi(w)=a—*} | A¥)

s EAY

which is equal to

B vi(@, ™) Pi{wl 1/ (w)ma’}]
ST EAT Sooi
by everywhere independence. Write P'[{w| f(w)=a’}] =0'(a’) and let
0/ € A{A]) be the mixed strategy which assigns probability ¢’(a’) to each
¢’ € AJ. Note that o/ does not depend on i by the assumption of concor-
dant priors. In other words, i's expected payoff from playing &' is the
expected payoff from playing a* against the vector of mixed strategies o~'.
Let BR'(c™') be the set of i's best replies against o=, Then A C BR'(c™%).
Hence there are sets Al,. A% and mixed strategies
o' €A(AL),..., 0" € A(A}) such that A} C BRYo™),.., A% C BR*(e™"). So
(¢,...,0") is a Nash equilibrium. In other words, i’s conditional expected

payoff on any A' — and hence i’s ex ante payoff — is equal to ¢'s expected

payoff from a Nash equilibrium. The converse is straightforward. O
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5. Concluding Remarks

This chapter began with the basic decision-theoretic concept of rational-
izability. It was then shown that there is a close connection between
rationalizability and a posteriori equilibrium. The formal results fell into two

. groups depending on whether I worked with correlated or independent
rationalizability. The structure of the argument was the same in both cases.
First, an a posteriori equilibrium with an interim payoff equal to a given
rationalizable payoff was constructed, and then it was shown that any
interim payoff from an a posteriori equilibrium is a rationalizable payoff.
Second, the convexity of the set of rationalizable payoffs was used to extend
the equivalence to ex ante payoffs. Two properties of the solution concepts
which were derived in the course of the proofs are of some interest in their
own right: first, the sets of correlated and independent rationalizable payoffs
to a player are convex; second, the set of payoffs to a player from "mixed” a
posteriori equilibria shifts from the set of independent rationalizable payofls
to the set of Nash payoffs depending on how players update their beliefs on

null events.
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