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Abstract

Epistemic game theory formalizes assumptions about rationality and mutual beliefs in a formal
language, then studies their behavioral implications in games. Specifically, it asks: what do different no-
tions of rationality and different assumptions about what players believe about. . .what others believe
about the rationality of players imply regarding play in a game? Being explicit about these assumptions
can be important, because solution concepts are often motivated intuitively in terms of players'beliefs
and their rationality; however, the epistemic analysis may show limitations in these intuitions, reveal
what additional assumptions are hidden in the informal arguments, clarify the concepts or show how
the intuitions can be generalized. A further premise of this chapter is that the primitives of the model—
namely, the hierarchies of beliefs—should be elicitable, at least in principle. Building upon explicit
assumptions about elicitable primitives, we present classical and recent developments in epistemic
game theory and provide characterizations of a nonexhaustive, but wide, range of solution concepts.

Keywords: Epistemic game theory, Interactive epistemology, Solution concepts, Backward induction,
Forward induction, Rationalizability, Common-prior assumption, Hierarchies of beliefs, Conditional prob-
ability systems, Lexicographic probability systems

JEL Codes: C72,D81

12.1. INTRODUCTION AND MOTIVATION

Epistemic game theory formalizes assumptions about rationality and mutual beliefs in a
formal language, then studies their behavioral implications in games. Specifically, it asks:
what do different notions of rationality and different assumptions about what players
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believe about...what others believe about the rationality of players imply regarding
play in a game? A well-known example is the equivalence between common belief
in rationality and iterated deletion of dominated strategies.

The reason why it is important to be formal and explicit is the standard one in
economics. Solution concepts are often motivated intuitively in terms of players’ beliefs
and their rationality. However, the epistemic analysis may show limitations in these
intuitions, reveal what additional assumptions are hidden in the informal arguments,
clarify the concepts, or show how the intuitions can be generalized. We now consider a
number of examples.

Backward induction was long thought to be obviously implied by “common knowl-
edge of rationality.”” The epistemic analysis showed flaws in this intuition, and it is now
understood that the characterization is much more subtle (Sections 12.7.4.3 and 12.7.5).

Next, consider the solution concept that deletes one round of weakly dominated
strategies and then iteratively deletes strictly dominated strategies. This concept was first
proposed because it is robust to payoff perturbations, which were interpreted as a way to
perturb players’ rationality. Subsequent epistemic analysis showed this concept is exactly
equivalent to “almost common belief” of rationality and of full-support conjectures—an
explicit robustness check of common belief in rationality (see Section 12.5). Thus, the
epistemic analysis generalizes and formalizes the connection of this concept to robustness.

The common-prior assumption (Section 12.4.3) is used to characterize Nash
equilibrium with # > 2 players, but is not needed for two-player games (compare
Theorems 12.5 and 12.7). This result highlights the difference between the assumptions
implicit in this solution concept across these environments. Furthermore, the common
prior is known to be equivalent to no betting when uncertainty is exogenous. We
argue that the interpretation of the common-prior assumption and its connection to
no-betting results must be modified when uncertainty is endogenous, e.g, about players’
strategies (see Example 12.4).

Finally, recent work has shown how forward induction and iterated deletion of
weakly dominated strategies can be characterized. These results turn out to identify
important, nonobvious, assumptions and require new notions of “belief.” Moreover,
they clarify the connection between these concepts (see Section 12.7.4.4).

Epistemic game theory may also help provide a rationale, or “justification,” for or
against specific solution concepts. For instance, in Section 12.6, we identify those cases
where interim independent rationalizability is and is not a “suitable” solution concept
for games of incomplete information.

We view nonepistemic justifications for solution concepts as complementary to the
epistemic approach. For some solution concepts, such as forward induction, we think
the epistemic analysis is more insightful. For others, such as Nash equilibrium, learning
theory may provide the more compelling justification. Indeed, we do not find the
epistemic analysis of objective equilibrium notions (Section 12.4) entirely satisfactory.
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This is because the epistemic assumptions needed are often very strong and hard to view
as a justification of a solution concept. Moreover, except for special cases (e.g., pure-
strategy Nash equilibrium), it is not really possible to provide necessary and sufficient
epistemic conditions for equilibrium behavior (unless we take the view that mixed
strategies are actually available to the players). Rather, the analysis constitutes a fleshing-

3

out of the textbook interpretation of equilibrium as “rationality plus correct beliefs.”
To us this suggests that equilibrium behavior cannot arise out of strategic reasoning
alone. Thus, as discussed earlier, this epistemic analysis serves the role of identifying
where alternative approaches are required to justify standard concepts.

While most of the results we present are known from the literature, we sometimes
present them differently, to emphasize how they fit within our particular view. We have
tried to present a wide swath of the epistemic literature, analyzing simultaneous-move
games as well as dynamic games, considering complete and incomplete-information
games, and exploring both equilibrium and non-equilibrium approaches. That said,
our choice of specific topics and results is still quite selective and we admit that
our selection is driven by the desire to demonstrate our approach (discussed next),
as well as our interests and tastes. Several insightful and important papers could not
be included because they did not fit within our narrative. More generally, we have
ignored several literatures. The connection with the robustness literature mentioned
earlier (see Kajii and Morris, 1997b, for a survey) is not developed. Nor do we study
self-confirming based solution concepts (Battigalli, 1987; Fudenberg and Levine, 1993;
Rubinstein and Wolinsky, 1994)." Moreover, we do not discuss epistemics and k-level
thinking (Crawford et al., 2012; Kets, 2012) or unawareness (see Schipper, 2013, for a
comprehensive bibliography). We find all this work interesting, but needed to narrow
the scope of this paper.

12.1.1 Philosophy/Methodology

The basic premise of this chapter is that the primitives of the model should be observable,
at least in principle. The primitives of epistemic game theory are players’ beliefs about
the play of the game, their beliefs about players’ beliefs about play, and so on; these are
called hierarchies of beliefs. Obviously, these cannot be observed directly, but we can ask
that they be elicitable from observable choices, e.g., their betting behavior, as is standard
in decision theory (De Finetti, 1992; Savage, 1972).

However, there are obvious difficulties with eliciting a player’s beliefs about his own
behavior and beliefs. Our basic premise then requires that we consider hierarchies of

! The concept of RPCE (Fudenberg and Kamada, 2011) is a recent example where epistemics seem to us
useful. Its definition is quite involved, and, while examples illustrate the role of various assumptions, the
epistemic analysis confirms the equivalence of the solution concept to the assumptions used in its intuitive
description.
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beliefs over other players’ beliefs and rationality, thereby ruling out “introspective” beliefs
(see also Section 12.2.6.3). With this stipulation, it is possible to elicit such hierarchies
of belief; see Section 12.2.6.2.

By contrast much of the literature, following Aumann’s seminal developments,
allows for introspective beliefs (Aumann, 1987). This modeling difference does have
implications, in particular in characterization results that involve the common-prior
assumption (Theorems 12.4 and 12.8).

Rather than working with belief hierarchies directly, we use a convenient modeling
device due to Harsanyi (1967), namely type structures. In the simple case of strategic-
form games, these specify a set of “types” for each player, and for each type, a belief
over the opponents’ strategies and types. Every type generates a hierarchy of beliefs over
strategies, and conversely, every hierarchy can be generated in some type structure; details
are provided in Sections 12.2.3 and 12.2.4.

We emphasize that we use type structures solely as a modeling device. Types are not
real-world objects; they simply represent hierarchies, which are. Therefore, although
we will formally state epistemic assumptions on types, we will consider only those
assumptions that can also be stated as restrictions on belief hierarchies, and we will
interpret them as such. In particular, our assumptions cannot differentiate between two
types that generate the same belief hierarchy. One concrete implication of this can be seen
in the analysis of solution concepts for incomplete-information games (Section 12.6.1).

To clarify this point further, note that type structures can be used in a different way.
In particular, they can be used to represent an information structure: in this case, a type
represents the hard information a player can receive—for example, a possible outcome
of some study indicating the value of an object being auctioned. Here, it makes perfect
sense to distinguish between two types with different hard information, even if the two
pieces of information lead to the same value for the object, and indeed the same belief
hierarchy over the value of the object. However, in this chapter, types will only be used
to represent hierarchies of beliefs, without any hard information.”

Finally, it is important to understand how to interpret epistemic results. One
interpretation would go as follows. Assume we have elicited a player’s hierarchy of beliefs.
The theorems identify testable assumptions that determine whether that player’s behavior
is consistent with a particular solution concept. We do not find this interpretation very
interesting: once we have elicited a player’s hierarchy, we know her best replies, so it is
pointless to invest effort to identify what assumptions are satisfied. Instead our preferred
interpretations of the results are as statements about play that follow without knowing
the exact hierarchy. That is, the theorems we present answer the following question: if all
we knew about the hierarchies of beliefs was that they satisfied certain assumptions, what
would we be able to say about play? Naturally, we cannot identify necessary conditions:

2 We can add hard information to our framework, at the cost of notational complexity: see Footnote 49.
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a player might play a Nash-equilibrium strategy “just because” he wanted to. (There is,
however, a sense in which the results we present provide necessary conditions as well:
see the discussion in Section 12.3.2.)

12.2. MAIN INGREDIENTS

In this section, we introduce the basic elements of our analysis. We begin with notation
and a formal definition of strategic-form games, continue with hierarchies of beliefs and
type structures, and conclude with rationality and beliefs.

12.2.1 Notation

For any finite set Y, let A (Y) denotes the set of probability distributions over Y and
any subset E of Y is an event. For Y/ C Y, A(Y’) denotes the set of probabilities on
Y that assign probability 1 to Y’. The support of a probability distribution p € A(Y) is
denoted by supp p. Finally, we adopt the usual conventions for product sets: given sets
X;, withi eI, welet X_; = Hj;ﬁi‘Xj and X = [[,¢; Xi.

All our characterization theorems include results for which infinite sets are not
required. However, infinite sets are needed to formally present hierarchies of beliefs, their
relationship to type structures and for part of the characterization results. To minimize
technical complications, infinite sets are assumed to be compact metric spaces endowed
with the Borel sigma algebra. We denote by A(Y) the set of Borel probability measures
on Y and endow A(Y) with the weak convergence topology.® Cartesian product sets
are endowed with the product topology and the product sigma algebra. Events are a
measurable subsets of Y.

12.2.2 Strategic-form games

We define finite strategic-form games and best replies.

Definition 12.1. A (finite) strategic-form game is a tuple G = (I, (S;, u;)icq), where I is
finite and, for every i € 1, S; is finite and u; : S; X S_; — R.

As is customary, we denote expected utility from a mixed strategy of i, o; € A(S)),
and a belief over strategies of opponents, 0_; € A(S_;), by u;(0;,0_;). We take the
view that players always choose pure strategies. On the other hand, certain standard
solution concepts are defined in terms of mixed strategies. In the epistemic analysis,
mixed strategies of i are replaced by strategic uncertainty of i’s opponents, that is, their
beliefs about i’s choice of a pure strategy. We allow for mixed strategies as actual choices
only when there is an explicit mixing device appended to the game.

3 For detailed definitions see, e.g., Billingsley (2008).
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Definition 12.2. Fix a game (I, (S;, u;)icr). A strategy s; € S; is a best reply to a belief
o_i € A(S=) if, for all §; € S, ui(si,o—i) > ui(st,0_); the belief o _; is said to justify
strategy s;.

12.2.3 Belief hierarchies

The essential element of epistemic analysis is the notion of hierarchies of belief. These are
used to define rationality and common belief in rationality, which are then used to
characterize solution concepts. A belief hierarchy specifies a player’s belief over the basic
space of uncertainty (e.g., opponents’ strategies), her beliefs over opponents’ beliefs, and
o on.

To formally describe belief hierarchies, we first specify the basic space of uncertainty
X_; for each player i. In the epistemic analysis of a strategic-form game, the basic
uncertainty is over the opponents’ strategies, so X_; = S_;. More generally, we will
allow for exogenous uncertainty as well, which is familiar from the textbook analysis of
incomplete-information games. For instance, in a common-value auction, each player i
is uncertain about the value of the object, so X_; includes the set of possible values.

Once the sets X_; have been fixed, each player /s hierarchy of beliefs is a sequence of
probability measures (p], piz, ...). It is simpler to discuss these beliefs in the case of two
players. Player i’s first-order belief p} is a measure over the basic domain X_;: p} € A(XL).
Player i’s second-order belief pl-2 is a measure over the Cartesian product of X_; and the set
of all possible first-order beliefs for player —i: that is, pl.2 € A(X_; x A(X))), where X is
the domain of —i’s first-order beliefs. The general form of this construction is as follows.
First, let Xgi = X_, for each player i = 1, 2; then, inductively, for each k = 1,2, ..., let

xk, = xE s A, [12.1]

—1

Then, for each k=1,2,..., the domain of player i’s kth order beliefs is Xf?l.
Consequently, the set of all belief hierarchies for player i is HlO = [0 A(Xfi); the
reason for the superscript “0” will be clear momentarily. -

Note that, for k > 2, the domain of i’s kth order beliefs includes the domain of her
(k — 1)th order beliefs. For instance, pi2 € A(X_; x A(X))), so the marginal of pi2 also
specifies a belief for i over X_;, just like p}. For an arbitrary hierarchy (pil, pl-2, ...), these
beliefs may differ. The reader may then wonder why we did not define i’s second-order
beliefs just over her opponent’s first-order beliefs, i.e., as measures over A(X;) rather
than X_; x A(X)).

Intuitively, the reason is that we need to allow for correlation in i’s beliefs over X_; and
—i’s beliefs over X;. Specifically, consider a simple 2 X 2 coordination game, with strategy
sets S; = {H, T} for i = 1,2. Suppose that the analyst is told that player 1 (i) assigns
equal probability to player 2 choosing H or T, and (ii) also assigns equal probability to
the events “player 2 believes that 1 chooses H” and “player 2 believes that 1 chooses T”
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(where by “believes that” we mean “assigns probability one to the event that”). Can the
analyst decide whether or not player 1 believes that player 2 is rational? The answer is
negative. Given the information provided, it may be the case that player 1 assigns equal
probability to the events “player 2 plays H and believes that 1 plays T” and “player 2
plays T and believes that 1 plays H.”

To sum up, i’s second-order belief pi2 must be an element of A(X_; x A(X;)). Hence,
we need to make sure that its marginal on X_; coincides with s first-order belief
p}. More generally, we restrict attention to coherent beliet hierarchies, i.e., sequences
(p},pl-z, ...) € HiO such that, for all £ > 2,

marg ge-2 pr=pt [12.2]
Let Hl-1 denote the subset of Hl0 consisting of coherent belief hierarchies.

Brandenburger and Dekel (1993) use Kolmogorov’s theorem (see Aliprantis and
Border, 2007, Section 15.6, or Dellacherie and Meyer, 1978, p. 68) to show that there
exists 2 homeomorphism

n;: H — A(X_; x H)) [12.3]

that “preserves beliefs” in the sense that for h; = (pf")Zo:l, margy 1; (hy) = pf+1_ To
understand this, first note that n; maps a coherent hierarchy h; into a belief over
i’s basic space of uncertainty, X_;, and —i’s hierarchies, Hgi. Therefore, we want
this mapping to preserve i’s first-order beliefs. In particular, h;s first-order beliefs

should equal the marginal of n;(h;) on X_;. Now consider second-order beliefs.
Recall that H”, = [Te=o AXH = AXD) x [Te>1 A(XY). Therefore, X_; x H, =

X i X A(X)) % 1_[231 A(Xf) = Xli X 1_[521 A(Xf). Hence, we can view 1;(h) as a

measure on Xli X [ =1 A(Xf), so we can consider its marginal on Xii. Preserving
beliefs means that this marginal is the same as i’s second-order belief p? in the hierarchy
h;. Higher-order beliefs are similarly preserved.

The function n; in [12.3] maps coherent hierarchies of player i to beliefs about the
basic uncertainty X_; and the hierarchies of the other player, Hgi. Thus, in a sense, 1;
determines a “first-order belief” over the expanded space of uncertainty X_; X Hgl-.
However, since 7; is onto, some coherent hierarchies of i assign positive probability
to incoherent hierarchies of —i. These hierarchies of —i do not correspond to beliefs
over X; X Hl0 Therefore, there are coherent hierarchies of i for which “second-order
beliefs” over the expanded space X_; x Hgi are not defined. To address this, we impose
the restriction that coherency is “common belief™; that is, we restrict attention to

H; = N HF, [12.4]
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where for k > 0 Hik = {hi € Hf_l 2, (hi) (X_l- X Hff) = 1}. It can then be shown

that the function 7, in [12.3] restricted to H; is one-to-one and onto A(X_; x H_;).*
In the next subsection, we will interpret the elements of H; as “types.” With this
interpretation, that 7; is one-to-one means that distinct types have distinct beliefs over
X_; and the opponent’s types. That n; is onto means that any belief about X_; and the
opponent’s types is held by some type of i.

It is important to note that belief hierarchies are elicitable via bets. We elaborate on
this point in Section 12.2.6.

12.2.4 Type structures

As Harsanyi noted, type structures provide an alternative way to model interactive beliefs.
A type structure specifies for each player i the space X_; over which i has uncertainty,
the set T; of types of i, and each type f’s hierarchy of beliefs, B; (f;).”

Definition 12.3. For every player i € 1, fix a compact metric space X_;. An (X_;)icr-based
type structure is a tuple T = (I, (X_;, T}, B,)ier) such that each T; is a compact metric space
and each B; - T; — A(X_; x T_;) is continuous.® A type structure is complete if the maps B,
are onto.

We discuss the notion of completeness immediately before Definition 12.7.

An epistemic type structure for a strategic-form game of complete information models
players’ strategic uncertainty: hierarchies are defined over opponents’ strategies. This is
just a special case of Definition 12.3. However, since epistemic type structures play a
central role in this chapter, we provide an explicit definition for future reference. Also,
when it is clear from the context, we will omit the qualifier “epistemic.”

Definition 12.4. An epistemic type structure for the complete-information game G =
(I, (S, ui)ier) is a type structure T = (I, (X_;, T;, B;)ier) such that X_; = S_; forall i € I.

Given an (epistemic) type structure 7, we can assess the belief hierarchy of each
type t;. As discussed earlier, type ;s first-order belief is what she believes about S_;; her

* For further details on the construction of belief hierarchies, see Armbruster and Bége (1979), Boge and
Eisele (1979), Mertens and Zamir (1985), Brandenburger and Dekel (1993), Heifetz (1993), and Heifetz
and Samet (1998), among others.

5> As we discussed in the Introduction, in this definition, players do not have introspective beliefs—that is,
beliefs about their own strategies and beliefs: see Section 12.2.6 for a discussion of this modeling choice.

% The topological assumptions we adopt are for convenience; we do not seek generality. For instance,
compactness of the type spaces and continuity of the belief maps §; provides an easy way to show that sets
corresponding to assumptions such as, “Player i is rational,” or “Player i believes that Player j is rational,”
are closed, and hence measurable.
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second-order belief is what she believes about S_; and about other player ;s beliefs about
S—j, and so on. Also recall [12.4] that the set of all hierarchies of beliefs over strategies
for a player i is denoted by H;.

Definition 12.5. Given a type structure T, the function mapping types into hierarchies is
denoted by ¢; (T) : T; — H. The type structure T is redundant if there are two types t;, f. €
T; with the same hierarchy, i.e., such that ¢, (T)(t;) = (pi(T)(t;); such types are also called
redundant.

When the type structure 7 is clear from the context, we will write ¢;(-) instead of
o (T)().

Because a type’s first-order beliefs—those over S_;—play a particularly important
role, it is convenient to introduce specific notation for them:

Definition 12.6. The first-order beliefs map f; : T; — A(S_;) is defined by fi(t;)) =
margg_ B;(t;) for all t; € 'T.

Example 12.1. We illustrate these notions using a finite type structure.

In the type structure on the right-hand side of Figure 12.1, type t% of player 1 (the row
player) assigns equal probability to player 2 choosing L and C: these are type t s first-order beliefs.
Similarly, the first-order beliefs of type tf of player 1 assign probability one to player 2 choosing
L. The second-order beliefs of player 1°s types are straightforward, because both t} and t% assign
probability one to t;, and hence to the event that player 2 is certain that (i.e., assigns probability
one to the event that) 1 chooses T. Thus, for example, the second-order beliefs of type t% are that,
with probability %, player 2 chooses L and believes that 1 chooses T, and with probability %,
player 2 chooses C and believes that 1 chooses T .

Now consider type t% of player 2, who assigns equal probability to the pairs (M, t%) and
(B, t%) This type’s first-order beliefs are thus that player 1 is equally likely to play M or B; his
second-order beliefs are that, with equal probability, either (i) player 1 plays M and expects player
2 to choose L and C with equal probability or (i) player 1 plays B and is certain that 2 plays
L. We can easily describe type t%’s third-order beliefs as well: this type believes that, with equal
probability, either (i) player 1 plays M, expects 2 to choose L and C with equal probability, and

(L) LB (Cih) (Cd) Rt ((RB)
L C R piah |1 0 3 0 0 0

! 2 3
T |21 31 0,0 A | 1 0 0 0 0 0
M |43 02 40 )y (A ond) d) B B
B |30 12 25 Ba (i) 1 0 0 0 0 0
B2 () 0 0 1 0 0 i

Figure 12.1 A strategic-form game and an epistemic type structure.
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is certain that 2 is certain that 1 plays T or (i) player 1 plays B, is certain that 2 chooses L, and
is certain that 2 is certain that 1 plays T

A number of questions arise in connection with type structures. Is there a type
structure that generates all hierarchies of beliefs? Is there a type structure into which
any other type structure can be embedded?’ Is a given type structure complete, as in
Definition 12.3, i.e., such that every belief over Player i’s opponents’ strategies and types
is generated by some type of Player i? These are all versions of the same basic question:
is there a rich enough type structure that allows for “all possible beliefs?” We ask this
question because we take beliefs as primitive objects; hence, we want to make sure that
using type structures as a modeling device does not rule out any beliefs.

Under our assumptions on the sets X_;, the answer to these questions is affirmative.
Indeed, we can consider H; (defined in [12.4]) as a set of type profiles and define 7 =
I, (X—, T}, B)ic1), where T; = H; and B; = n; (where n; was defined in [12.3]). This
is the “largest” nonredundant type structure, that generates all hierarchies, embeds all
other type structures, and is complete.®

Once again, type structures are devices and belief hierarchies are the primitive objects
of interest. Therefore, asking whether a player’s hierarchy of beliefs “resides” in one type
structure or another is meaningless. In particular, we cannot ask whether it “resides” in a
rich type structure. We state results regarding the implications of epistemic assumptions
in both rich and arbitrary type structures. The interest in rich type structures is twofold.
First, one of convenience: while rich type structures are uncountable and complex
mathematical objects, the fact that they are complete simplifies the statements of our
characterization results. The second appeal of rich type structure is methodological:
because they generate all hierarchies, they impose no implicit assumption on beliefs.
Any smaller type structure does implicitly restrict beliefs; we explain this point in Section
12.7.4.4, because it is particularly relevant there. On the other hand, small (in particular,
finite) type structures are convenient to discuss examples of epistemic conditions and
characterization results.

12.2.5 Rationality and belief

We can now define rationality (expected payoff maximization) and belief, by which we
mean “belief with probability one.”

7 We are not going to formally define the relevant notion of embedding. Roughly speaking, it is that each
type in one type space can be mapped to a type in the other in such a way as to preserve hierarchies of
beliefs.

8 Because we restrict attention to compact type spaces and continuous belief maps, these notions of
“richness” are all equivalent. See the references in Footnote 4 for details, as well as Friedenberg (2010).
In particular, it is sufficient that X_; and T; are compact metrizable and that the sets T; are nonredundant.
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Definition 12.7. Fix a type structure (I, (S—;, T;, Bi)ier) for a strategic game (I, (S;, u;)ier)-
For every playeri € I:
1. Strategy s; € S; is rational for type t; € T; if it is a best reply to fi(t;); let
R; = {(si,t;) € S; x T; : s is rational for t;}.
2. Type t; € T; believes event E_; C S_; x T_; if B;(t)(E—=;)) = 1; let
Bi(E—)) = {(si, ;) € S; x T; : t; believes E_;}.

Note that R;, the set of strategy-type pairs of i that are rational for i, is defined as a
subset of S; x Tj, rather than a subset of S x T. This is notationally convenient and also
emphasizes that R; is an assumption about Player i alone.

For any event E_; C S_; x T_;, Bi(E_;) represents the types of i that believe E_;
obtains. It is convenient to define it as an event in S; X T;, but it is clear from the
definition that no restriction is imposed on i’ strategies.” We abuse terminology and for
sets E; C S; x T; write “t; in E;” if there exists s; such that (s;, t;) € E;.

The map associating with each event E_; C S_; x T_; the subset B;(E_;) is some-
times called Player i’s belief operator. While we do not develop a formal syntactic analysis,
we do emphasize two important related properties satisfied by probability-one belief,
Monotonicity and Conjunction:]O forallevents E_;, F_; C S_; x T_;,

E_;CF; = B(E-) CB(F-) and B{(E-;NF-;)= Bi(E-;) NBj(F).
[12.5]

Finally, we define mutual and common belief. Consider events E; C S; x T; (with
E= l_[iE,' and E_; = Hi#i E; as usual). Then the events “E is mutually believed,” “kth
order believed,” and “commonly believed” are

B'(E) = B(E) = [ [ B(E_), B'(E)=B <Bk_1(E)> fork > 1,
iel
CB(E) = [ BX(E). [12.6]
k>1

Note that each of these events is a Cartesian product of subsets of S; x T; for i € I, so
we can write Bf(E) and CB;(E) for the ith projection of these events. !

9 That is, if (s;, ;) € Bi(E—;) for some s; € S;, then (s?, t;) € B;(E—;) for all s; € S;.

19 We can split the “=""in the Conjunction property into two parts, “C” and “D.” It is easy to see that the
“C” part is equivalent to Monotonicity for any operator, no matter how it is defined.

The “p-belief,” “strong belief,” and “assumption” operators we consider in Sections 12.5, 12.7, and 12.8,

a fact that has

«

respectively, do not satisfy Monotonicity, and hence the “C” part of Conjunction:

consequences for the epistemic analysis conducted therein.

" Thus, CB(E) ==y BYE) =TT, B(E-) N Mo [T, BB () =[T,(Bi(E=) N Nz BB (E))
=[], CBi(E). Hence, CBi(E) = B} (E)N mkzz B,-(Bk:l(E)) = ﬂ@ Bik(E) and also CBi(E) =
Bi(E~; NNz BY,(E)) = B(E—; N CB_i(E)).
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12.2.6 Discussion

The above definitions of a game, type structure, rationality, and belief all incorpo-
rate the assumption that players have state-independent expected-utility preferences.
This modeling assumption raises three issues, discussed next: relaxing state independence,
relaxing expected utility, and eliciting beliefs. Another modeling assumption discussed
subsequently is that the type structure in principle allows any strategy to be played by
any type. We conclude this discussion section by commenting on our use of semantic
models rather than the alternative syntactic approach.

12.2.6.1 State dependence and nonexpected utility

A more general definition of a game would specify a consequence for each strategy
profile, and a preference relation over acts that map opponents’ strategies into con-
sequences. > Maintaining the expected-utility assumption one could allow for state
dependence: the ranking of consequences may depend on the opponents’ strategies (as in
Morris and Takahashi, 2011). One could also allow for a richer model where preferences
may be defined over opponents’ beliefs (as in Geanakoplos et al., 1989) or preferences
(as in Gul and Pesendorfer, 2010), as well as material consequences. All these interesting
directions lie beyond the scope of this chapter.

Moreover, type structures can also be defined without making the expected-utility
assumption. Some generalizations of expected utility are motivated by refinements: in
particular, lexicographic beliefs (Blume et al., 1991) and conditional probability systems
(Myerson, 1997; Siniscalchi, 2014).'> We discuss these, and the type structures they
induce, in Sections 12.7 and 12.8. Other generalizations of expected utility are motivated
by the Allais and Ellsberg paradoxes; Epstein and Wang (1996) show how type spaces

can be constructed for a wide class of non-expected utility preferences.'*

12.2.6.2 Elicitation

Our analysis puts great emphasis on players’ beliefs; thus, as discussed in the Introduction,
it is crucial that such beliefs can in fact be elicited from preferences. Indeed one would
expect that Player 1% beliefs about 2 strategies can be elicited by asking 1 to bet on which
strategy 2 will in fact play, as in Savage (1972) and Anscombe and Aumann (1963). Given

this, one can then elicit 2’ beliefs about 1’ strategies and beliefs by having 2 bet on 1’

strategies and bets, and so on.'” (Similarly, we could elicit utilities over consequences.)

12 A5 in Anscombe and Aumann (1963), consequences could be lotteries over prizes.

13 See also Asheim and Perea (2005). Morris (1997) considers alternative, preference-based definitions of
belief.

14 See also Ahn (2007), Di Tillio (2008), and Chen (2010).

15 See Morris (2002) and Dekel et al. (2006). More generally, one can in principle elicit Player 1’ preferences
over acts mapping 2’ strategies to consequences, then elicit 2’ preferences over acts mapping 1’s (strategies
and) preferences to consequences, and so on; this underlies the aforementioned construction of Epstein
and Wang (1996).
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However, adding these bets changes the game, because the strategy space and payoffs
now must include these bets. Potentially, this may change the players’ beliefs about the
opponents’ behavior in the original game. Hence, some delicacy is required in adding
such bets to elicit beliefs.

12.2.6.3 Introspective beliefs and restrictions on strategies

Our definition of a type structure assumes that each type ¢ has beliefs over S_; x T_,.
This has two implications. First, players do not hold introspective beliefs, as we noted in
the Introduction. Second, by specifying a type space, the analyst restricts the hierarchies
the player may hold, but does not restrict play. An alternative popular model (Aumann,
1999a,b) associates with each type #; a belief on opponents’ types and a strategy, o ;(f;).
Such a model restricts the strategies that a player with a given hierarchy may choose;
moreover, such restrictions are common belief among the players. We can incorporate
such assumptions as well, but, in keeping with our view of the goals of the epistemic
literature, we make them explicit: see, for example, Section 12.4.5.

12.2.6.4 Semantic/syntactic models

Finally, we note that our modeling approach is what is called semantic: it starts from a type
structure, and defines the belief operator, B;, using the elements of the type structure;
its properties, such as conjunction and monotonicity, follow from the way it is defined.
An alternative approach, called syntactic, is to start with a formal language in which a
belief operator is taken as a primitive; properties such as the analogs of conjunction and
monotonicity are then explicitly imposed as axioms. There is a rich literature on the
relation between the semantic and syntactic approaches; see for example, Fagin et al.
(1995), Aumann (1999a,b), Heifetz and Mongin (2001), and Meier (2012). Due to its
familiarity to economists, we adopt the semantic approach here.

12.3. STRATEGIC GAMES OF COMPLETE INFORMATION

In this section, we study common belief in rationality, as this is a natural starting point.
Like the assumptions of perfect competition or rational expectations, common belief in
rationality is not meant to be descriptively accurate. However, like those notions, it is a
useful benchmark. We present the equivalence of the joint assumptions of rationality
and common belief in rationality with iterated deletion of dominated strategies,

16 Aumann and Dreze (2009) raise this concern and propose a partial resolution, although they do not elicit

unique beliefs and only study first-order beliefs. (A related concern was raised by Mariotti, 1995, and
addressed by Battigalli, 1996b.) Aumann and Dreze (2009) also note that, by assuming common belief in
rationality—as we will through most of this paper—beliefs can also be elicited by adding to the game bets
with payoffs that are suitably small. Siniscalchi (2014) adds bets differently, avoiding all these concerns.
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i.e., (correlated) rationalizability, and best-reply sets. We also discuss a refinement of
rationalizability that allows for additional restrictions on beliefs.

12.3.1 Rationality and common belief in rationality

As noted, we focus on the joint assumptions of rationality and common belief in
rationality. There is more than one way of stating this assumption. The immediate
definition is

RCBR=RNBR)NB*(R)N---NB"(R)N---=RNCB(R)." [12.7]

In words, RCBR is the event that everybody is rational, everybody believes that
everyone else is rational, everybody believes that everyone else believes that others are
rational, and so on. However, there is an alternative definition. For all i € I, let:

R! = R;; [12.8]
and for any m > 1,
R" = R" N B/(R™)). [12.9]
Finally, we let
RCBR;= [ R" and RCBR=]]RCBR;. [12.10]
m>1 iel

To see how [12.7] and [12.10] relate consider the case m = 3. We have
R} = Ry N B (R2) N Bi(R2 N Ba(Ry))
whereas
Ry N Bi(R2) N B{(Ry) = Ry N By (R2) N By (Ba(Ry)).

Inspecting the last term, the definition of R? is seemingly more demanding. However,
thanks to monotonicity and conjunction (see [12.5]), the two are equivalent. Inductively,
itis easy to see that the two definitions of RCBR; in [12.7] and [12.10] are also equivalent.
However, when we consider nonmonotonic belief operators—as we will have to for
studying refinements—this equivalence will fail.

Having defined the epistemic assumptions of interest in this section, we now turn
to the relevant solution concepts. In general, different (but obviously related) solution
concepts characterize the behavioral implications of epistemic assumptions such as
RCBR in complete type structures, where nothing is assumed beyond RCBR, and

17 A typographical note: we write “RCBR” in the text as the acronym for “rationality and common belief
in rationality,” and “RCBR” in equations to denote the event that corresponds to it.
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smaller type structures, in which players’ beliefs satisty additional (commonly believed)
assumptions. Here, the relevant concepts are rationalizability and best-reply sets.

Definition 12.8. (Rationalizability) Fix a game (I, (S;, u;j)ier). Let S? = §; for all
i € 1. Inductively, for m > 0, let S?H_l be the set of strategies that are best replies to conjectures
o_;j € A(S"). The set S° = ﬂmzo S is the set of (correlated) rationalizable strategies of
Player i.

Bernheim (1984) and Pearce (1984) propose the solution concept of rationalizability,
which selects strategies that are best replies to beliefs over strategies that are themselves
best replies, and so on. Intuitively, one expects this to coincide with the iterative deletion
procedure in Definition 12.8. Indeed, these authors prove this, except that they focus
on beliefs that are product measures, i.e., stochastically independent across different
opponents’ strategies.

A strategy s; € S; is (strictly) dominated if there exists a distribution o; € A(S))
such that, forall s_; € S_;, u;j(0;, s—;) > u;(s;, s—;). It is well known (Gale and Sherman,
1950; Pearce, 1984; Van Damme, 1983) that a strategy is strictly dominated if and only if
it is not a best reply to any beliefabout the opponents’ play.'® Therefore, S7° is also the set
of strategies of i that survive iterated strict dominance, i.e., the solution concept that
selects the iteratively undominated strategies for each player. In the game of Figure 12.1,
it is easy to verify that S' = {T, M} x {L, C,R} and $* = S® = {T, M} x {L, C}.

A best-reply set is a collection of strategy profiles with the property that every strategy
of every player is justified by (i.e., is a best response to) a belief restricted to opponents’
strategy profiles in the set. A best-reply set is full if, in addition, all best replies to each
such justifying belief also belong to the set.!”

Definition 12.9. Fix a game (1, (S;, uj)jer). A set B = ]_[iel B; C S is a best-reply set (or
BRS) if, for every player i € 1, every s; € B; is a best reply to a beliefo _; € A(B_;).

B is a full BRS if, for every s; € B, there is a belief o —; € A(B_;) that justifies s; and such
that all best replies to o _; are also in B;.

Notice that the player-by-player union of (full) BRSs is again a (full) BRS.?" Thus, there
exists a unique, maximal BRS, which is itself a full BRS; it can be shown that it is equal
to S°.

To clarify the notion of full BRS, refer to the game in Figure 12.1. The profile (T, C)
is a BRS, but not a full BRS, because, if player 1 plays T, then L yields the same payoft’

18 This equivalence holds for games with compact strategy sets and continuous payoff functions (in particular,
the finite games we consider here). See also Dufwenberg and Stegeman (2002) and Chen et al. (2007).

19 For related notions, see Basu and Weibull (1991).

20 That is: if B = []; B; and C = [, C; are (full) BRSs, then so is [ [,(B; U C;).
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to player 2 as C. On the other hand, {T} x {L, C}is a full BRS, because T is the unique
best reply for player 1 to a belief that assigns equal probability to L and C, and L and C
are the only best replies to a belief concentrated on T.

We can now state the epistemic characterization result.

Theorem 12.1. (Brandenburger and Dekel, 1987; Tan and da Costa Werlang,

1988) ?! Fix a game G = (I, (S;, uj)ier)-

1. In any type structure (I, (S—;, T;, B)ier) for G, projgRCBR is a full BRS.

2. In any complete type structure (I, (S—;, T, B)icr) for G, projgRCBR = S°.

3. For every full BRS B, there exists a finite type structure (I, (S—;, Ti, B,)icr) for G such that
projgRCBR = B.

We do not provide proofs in this chapter; they can be found in the cited papers or can
be adapted from arguments therein. For some results, we provide the details in an online

of Theorem 12.1, consider the type structure of Figure 12.1. Then, projqRCBR =
{T, M} x {L, C}, which is a full BRS and indeed equals S*°. Next, consider the smaller
type structure 7’ containing only type t} for player 1 and type t% for player 2. Now
projqRCBR = {T} x {L, C}, which, as noted earlier, is indeed a full BRS.

12.3.2 Discussion

Theorem 12.1 characterizes the implications of RCBR. One could also study the weaker
assumption of common belief in rationality (CBR). The latter is strictly weaker because
beliefin an event does not imply it is true. Hence, CBR only has implications for players’
beliefs; we focus on RCBR because it also restricts behavior. Epistemic models that allow
for introspective beliefs have the feature that, if a player has correct beliefs about her own
strategy and beliefs, then, if she believes that she is rational she is indeed rational. Hence,
in such models, CBR is equivalent to RCBR.

The interpretation of part (1) in Theorem 12.1 is that, if the analyst assumes that
RCBR holds, but allows for the possibility that the players’ beliefs may be further
restricted (i.e., something in addition to rationality is commonly believed), then the
analyst can only predict that play will be consistent with some full BRS.?> This implies
that, unless the analyst knows what further restrictions on players’ beliefs hold, he must
allow for the player-by-player union of all full BRSs. As we noted, this is equal to S*°.

Part (2) in Theorem 12.1 is an epistemic counterpart to this. A complete type
structure embeds all other type structures; it is therefore “natural” to expect that the
predictions of RCBR in a complete structure should also be S*°. Theorem 12.1 shows
that this is the case. This convenient equivalence fails when we consider refinements.

21 See also Armbruster and Boge (1979) and Bége and Eisele (1979).
22 It must be a full BRS because we do not restrict play: see the discussion at the end of Section 12.2.
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Part (3) confirms that the result in part (1) is tight: every full BRS represents the
behavioral implications of RCBR in some type structure. If this was not the case,
then RCBR would have more restrictive behavioral implications than are captured by
the notion of full BRS. Furthermore, the result in part (3) indicates a sense in which
RCBR is “necessary” for behavior to be consistent with a full BRS. While, as noted
in the Introduction, players may choose strategies in a given full BRS B by accident, or
following thought processes altogether different from the logic of RCBR, the latter is
always a possible reason why individuals may play strategy profiles in B.

12.3.3 A-Rationalizability

As we discussed, a type structure encodes assumptions about players’ hierarchies of
beliefs. This may provide a convenient way to incorporate specific assumptions of
interest. For example, one may wish to study the assumption that players’ beliefs over
opponents’ play are independent or that players believe that, for some reason, a particular
strategy—even if it is rationalizable—will not be played, and so on. An alternative
approach (Battigalli and Siniscalchi, 2003) is to make them explicit. In this subsection,
we outline one way to do so.

For every player i € I, fix a subset A; C A(S_;). Given a type structure, the event
that Player s beliefs lie in the set A; is

(A = {Gin8) (1) € A}

We wish to characterize RCBR combined with common belief in the restrictions A;.%?

Definition 12.10. Fix a game (I, (S;, u;)icr) and a collection of restrictions A = (Ap)jer. A
set B=[],c; Bi C Sis a A-best-reply set (or A-BRS) if; for every playeri € I, every s; € B
is a best reply to a belief o _; € A(B—;) N A;; it is a_full A-BRS if, for every s; € B, there is
a beliefo_; € A(B_;) N A; that justifies s; and such that all best replies to o _; are also in B;.

Definition 12.11. Fix a game (I, (S;, u;)icr). For each i € I, let SiA’O = S;. Inductively,

form > 0, let SiA’m+1 be the set of strategies that are best replies to conjectures 0 _; € A; such
A,m

that o _j(S”:

") = 1. The set SiA’Oo = (=0 SiA’m is the set of A-rationalizable strategies of
Player i.

Obviously, the set of A-rationalizable strategies may be empty for certain restric-
tions A. Also, note that SiA’(>O 1s a full A-BRS.

23 For related solution concepts (albeit without a full epistemic characterization) see Rabin (1994) and Gul
(1996).
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Theorem 12.2. Fix a game G = (I,(S;, B;)ict and a collection of restrictions A =

(Adier-

1. In any type structure (I, (S—;, T, B))icr) for G, projg (RCBR N CB([A])) is a _full A-
BRS.

2. In any complete type structure (I, (S—;, T, B))icr) for G, projs (RCBR N CB([A]))
= §h,

3. For every full A-BRS B, there exists a finite type structure (I, (S—;, Ti, u;)ier) for G such
that projg (RCBR N CB(|A])) = B.**

Results (1)-(3) in Theorem 12.2 correspond to results (1)-(3) in Theorem 12.1.

The notion of A-rationalizability extends easily to games with incomplete informa-
tion and is especially useful in that context. We provide an example in Section 12.6.5;
more applied examples can be found, e.g., in Battigalli and Siniscalchi (2003). In the
context of complete-information games, Bernheim’s and Pearce’s original definition of
rationalizability required that beliefs over opponents’ strategies be independent. This can
also be formulated using A-rationalizability: for every player i, let A; be the set of product
measures over S_;. Restrictions on first-order beliefs may also arise in a learning setting,
where players observe only certain aspects of play in each stage. We return to this point
in Section 12.7.6, where we discuss self-confirming equilibrium in extensive games.

12.4. EQUILIBRIUM CONCEPTS
12.4.1 Introduction

A natural question is what epistemic characterizations can be provided for equilibrium
concepts. By this we mean solution concepts where players best reply to opponents’
actual strategies. This is in contrast with solution concepts like rationalizability, where
players best-reply to conjectures about opponents’ strategies that may be incorrect.

Before turning to Nash equilibrium, we consider two weaker solution concepts,
objective and subjective correlated equilibrium. Somewhat surprisingly, it turns out that
the latter equilibrium concept is equivalent to correlated rationalizability. Hence, RCBR
does provide a characterization of an equilibrium concept as well. Subsection 12.4.2
develops this point. The main idea is that any incorrect beliefs about opponents’ strategies
can be “shifted” to incorrect beliefs about a correlating device, thereby maintaining the
assumption that players have correct beliefs about the mapping from correlating signals
to strategies.

24 In fact, one can define a type structure in which the restrictions A hold for every type. In such a structure,
projg (RCBR N CB([A])) = projgRCBR. It is also possible to construct a type structure that is not
complete, but is infinite and contains all belief hierarchies that are consistent with it being common
belief that players’ first-order beliefs satisfy the restrictions A. Unlike the type structures constructed to
obtain part (3), this contains no other assumptions on beliefs beyond common beliefin A. Consequently,
RCBR characterizes S® in this structure.
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Subsections 12.4.3 and 12.4.4 characterize objective correlated and Nash equilib-
rium. In contrast to other results in this paper, in which epistemic conditions fully
characterize play, in Subsections 12.4.3 and 12.4.4, epistemic conditions only imply
that beliefs correspond to equilibrium. For example, we do not show that under
certain conditions players play Nash-equilibrium strategies, only that the profile of their
first-order beliefs is an equilibrium profile. Indeed, this is one of the insights that emerges
from the epistemic analysis: Nash equilibrium is usefully interpreted as a property of
(first-order) beliefs, not play. This point was made by Harsanyi (1973) and Aumann
(1987), among others.

A critical assumption in Subsections 12.4.3 and 12.4.4 is the existence of a “common
prior” that generates beliefs. While we mostly follow Aumann (1987) and Aumann
and Brandenburger (1995), in contrast to their approach we do not allow players to
have beliefs over their own strategies.”> Due to this difference, a direct adaptation of
the common-prior assumption to our setting turns out to be weaker than in those
papers (indeed betting becomes possible). Hence, we formulate an additional assumption
that is needed for a full characterization of these equilibrium concepts. The final
subsection presents an alternative sufficient—but not necessary—assumption to obtain
these concepts.

12.4.2 Subjective correlated equilibrium

Aumann (1987) defined (subjective) correlated equilibria; these are equivalent to Nash
equilibria of a game in which players observe signals from a correlating device prior to
choosing their actions. A correlating device consists of a finite set €2 of realizations, and,
for each player, a partition I1; of this finite set, and a conditional probability distribution
w;(-|7;) for each cell 7r; in the partition.?® In a correlated equilibrium of a strategic-form
game G = (I, (S;, uj)ier), players choose strategies in S; as a function of their signal 7r; €
I1;, so as to maximize their conditional expected payoff, taking as given the equilibrium
behavior of their opponents.

Definition 12.12. Fix a game G = (I, (Si, uj)ier)-

A correlating device for the game G is a tuple C = (2, (I1;, 1,)icr), where Q2 is a finite set,
forevery i € I, I; is a partition of Q2 with typical element 7t ;, and [, is a conditional belief map,
e, U;: 29 % 1, — [0, 1] satisfies w;(:|m;) € A(2) and p;(wwi|m;) =1 for all m; € I1;.
If there exists i € A(S2) such that, for every i € I, and 7w; € I1;, w;(-|m;) = pu(-|m;), then it
is an objective correlating device.

25 For other approaches, see Tan and da Costa Werlang (1988), Brandenburger and Dekel (1987), and Perea
(2007).
26 Aumann (1987) defines correlating devices slightly differently; for details and to see how this affects the

results herein, see his paper (see also Brandenburger and Dekel, 1987).
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A subjective corvelated equilibrium is a correlating device and a tuple (s;);c where, for each
i€l s;: Q2 — S;is measurable with respect to I1; and, for every ; € T1;,

Z wi{w}m ui(si(w), s—i(w)) = Z wil{w}m ui(si, s—i(@))  Vsi € S [12.11]
WET | WET
An objective correlated equilibrium is a subjective correlated equilibrium where the correlating
device is objective.
Given an objective correlated equilibrium C = (2, I1;, t), the objective correlated equilib-
vium distribution induced by C is the probability distribution o € A(S) defined by o (s) =
w({ow : s(w) =s}) forall s € S.

There are obvious formal similarities between type structures and correlating
devices—although their interpretation is very different. As noted repeatedly, a type
structure is merely a mathematical construct used to represent belief hierarchies. On
the other hand, a correlating device is meant to represent a real signal structure—
something the players and (potentially) the analyst observe. The formal similarities yield
the following result.

Theorem 12.3. [Brandenburger and Dekel, 1987] Fix a game G = (I, (S;, u;)ier)-

1. Forany type structure (1, (S—;, T;, B,)ier) for G, there exists a subjective correlated equilibrium
((,10)),s) of G such that, for all i € I, projg RCBR; = s;(<).

2. Given any subjective correlated equilibrium ((Q, 1), s) of G there exists a type structure
I, (S—;, T, B)ier) for G such that projs, RCBR; 2 s;{(S2) foralli € I.

The essence of this theorem is that, under RCBR, the strategic uncertainty in an
epistemic type structure (or, equivalently, in rationalizability) is interchangeable with the
exogenous uncertainty of a (subjective) correlating device in a correlated equilibrium.
The proof of part 1 sets 2 = RCBR C S x T, defines the cells in each player’s partition
I[1; to be of the form {(s;, )} x RCBR_;, and chooses the belief u; given the cell
{(si, )} x RCBR_;, so that its marginal on RCBR_; equals B,(t;). For part 2, let T; =
I[T; and, for any m; € I1;, let B;(w)(s—i, ) = pn;({w : V), sj(w) = s; and Ij(w) =
7;}lm;), where IT;(w) denotes the element of IT; that contains w. Note that, in part
2, there may be strategies in RCBR; that are not played in the correlated equilibrium,
but the set of (interim) payoffs under RCBR and in the equilibrium are the same.

12.4.3 Objective correlated equilibrium

To characterize objective correlated equilibrium and Nash equilibrium, we want to
define the event that Player /s beliefs are “consistent with a common prior.” By this we
mean that her belief hierarchy can be generated in some type structure where the beliefs
held by each type f; can be obtained from some probability measure p (the common

639



640

Handbook of game theory

prior) over the profiles of strategies and types S x T, by conditioning on the event that
i’s type is indeed f;. Note that we state the common-prior assumption as a property
of belief hierarchies, rather than type structures; in this, we deviate from the received
literature, but are consistent with our premise that the primitives of our analysis should
be elicitable.

To make this formal, we proceed in two steps. First, a type structure 7 =
(I, (S—;, Ti, B)ier) admits a common prior g on S x T if the belief maps B, are
obtained from w by conditioning on types. This differs from the standard definition
(e.g., Aumann, 1987) because it conditions only on types, not on strategies; we discuss
this important point after Example 12.3. However, it is as “close” as possible to the
standard definition, given our premise that players do not hold beliefs about their own
strategies.

Definition 12.13. A finite type structure T = (I, (S—;, Tj, B;)ic1) admits (or is generated
by) a common prior p € A(S x T) if, for all t; € T;, u(S; x {t;} x S—; x T_;) > 0 and
Bi(t) = margg p pw(|S; x {t;} x S—;j x T_)).

We now translate Definition 12.13 into one that is stated in terms of hierarchies,
rather than types. Given any type structure 7, we deem type #; € T; consistent with a
common prior w if its induced hierarchy is the same as the one which would arise in the
ancillary type structure 7# which admits @ as a common prior, where the type spaces
of T* are subsets of those in 7>’ The following definition makes this precise.

Definition 12.14. Fix a finite type structure T = (I, (S_;, Tj, B,)ic1), a player i € I, and
a probability € A(S x T). Consider the type structure TH = (I, (S—;, ﬂ“,ﬂf}“)iel) that
admits (4 as a common prior and such that, for every i € I, TiM C T;. The event “Player i’s
beliefs are consistent with a common prior 1" is

CPi) = {5 1) = (S x {1} x T=) > 0 and 9T &) = ¢(TH (W} [12.12]
The prior  is minimal for t; if t; is in CP;() and, for allv € A(S x T) with t; in CP;(v),
suppv ¢ supp/i.

The following examples illustrate Definition 12.14.

Example 12.2. Definition 12.14 is stated in terms of hierarchies, which are elic-
itable. 'This example shows a further benefit of this formulation. Let Ty = {n}, Tr =

(o}, Ts = {8, &5}, Si={si} foralli, By (1) (12, £y, 50,53) = 1, B2 (1) (11,85, 51,53) = 1,

27 To clarify, to obtain 7* from 7" we may eliminate some types and replace the belief maps 8; with maps
/37 derived from u by conditioning.
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B (t3) (t1, 12,51, 52) = 1 for t3 € T3. Since all players have a single strategy, all types commonly
believe the profile (s1, s2, s3), so the hierarchies of beliefs over strategies should be deemed consistent
with a common prior; indeed, this is the case according to our Definition 12.14. Yet this type space
does not have a common prior in the standard sense of Definition 12.13 because of the redundancy.
Specifically, £y and t§ induce the same hierarchies, even though they are distinct types: Player 1
is sure 3’ type is ty while 2 is sure 3’ type is t;. Note that, as an alternative to the definition
above, another way around this difficulty is to rule out redundant type spaces.

Example 12.3. W illustrate two aspects of Definition 12.14: first, the role of minimality, and
second, why we allow the type spaces Ti“ in the ancillary structure T to be a strict subset of the
type spaces T; in the original structure.

Let T be the type structure with T; = {tl‘?, tlb} , S = {sf, stb}, Bi (tfe) (s/ii, t/ii) = 1. This
type structure is really the combination of two separate structures, T and T": in each structure
T*, for k= a, b, the type spaces are Tik = {tik’} Jor i=1,2 and the profile s* is commonly
believed. The structure T is consistent with any common prior ( that assigns probability i, > 0
¢ ( k k
0 Si’ti
components T® and T distinctly. In particular, the minimal common prior for both types t assigns
probability one to (sf, t?)i ) it generates the beliefs in the ancillary type structure T

Treating T as distinct from T° is important to characterize correlated equilibrium. Assume
that s? is strictly dominant for i = 1,2. Consider type structure T . Then at (s{,t);=1 2 RCBR

holds and by construction beliefs are consistent with the common prior . However, marggt assigns

)iel with w, + w, = 1. However, focusing on minimal common priors treats the two

positive probability to the strictly dominated strategies s?, i = 1,2, and hence, it is not a correlated
equilibrium distribution. On the other hand, marggu” is a correlated equilibrium distribution.

Aumann proved the important result that a common prior together with common
belief in rationality implies that the distribution over actions is an objective correlated
equilibrium distribution. Aumann’s framework is different from ours: in his model,
player i’s “type” incorporates i’s strategy, and hence corresponds to a pair (s, f;) in our
framework. As a result, the existence of a common prior in Aumann’s framework requires
that ;s beliefs be obtained by conditioning on (s;, ;), rather than just #; as in Definition
12.13. This implies that a common prior in the sense of Definition 12.13 need not be a
common prior in Aumann’s framework. The implications of this distinction are apparent
in the following example (due to Brandenburger and Dekel, 1986).

Table 12.1 A two-player game

L C R
T 7,0 0,5 0,7
M 5,0 2,2 5,0
B 0,7 0,5 7,0
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Table 12.2 The common prior

(L,n) (C.n) (C.1) (R1)
(T, t) 0 0 1 0
(M,n) | 1 0 0 0
1
(M, /t/l) 0 (1) 0 !
(B, 1)) 0 1 0 0

Table 12.3 Player 1’s beliefs over S; x T,
(L,1 n) (C.n) (Ci ) (R 1)

B1(t)
B1(t)

SlE e}

(e} N
Sl e
(@) S]]

Table 12.4 Player 2’s beliefsover S1 x Ty
(T,t) M,tn) (M,1)  (B.1)

Ba(2)
Bo(15)

SIE )
pi= O

O NI
[eRSIEY

Example 12.4. Consider the game in Table 12.1 (due to Bernheim, 1984) and the type
structure T generated by the common prior W in Table 12.2 as per Definition 12.13 (adapted
from Brandenburger and Dekel, 1986).%% A fortiori, each type’s belief hierarchy is consistent with
the common prior (4 in the sense of Definition 12.14; furthermore, RCBR holds for every strategy-
type profile, i.e., RCBR = S x T. Forinstance, (T, t1) and (M, t;) are both rational because T
and M are best replies to type t1’s first-order belief that 2 plays L and C with equal probability. Yet,
the distribution over strategies induced by (b is not an objective correlated equilibrium distribution.
(The only objective correlated equilibrium places probability one on the profile (M, C).) Thus, a
common prior in the sense of Definition 12.13 and RCBR do not characterize objective correlated
equilibrium.

Moreover, the beliefs in the example permit a form of betting between individual players and an
outside observer (or dummy player) whose beliefs are given by the prior pu. Consider the bet described
in ‘lable 12.5, where the numbers specify the payments from the outside observer to Player 1.

The outside observer computes the value of this bet using the prior @ from Table 12.2; the
marginal on S is given in Table 12.6. The observer expects to receive % with probability one. The
unusual feature of this example (relative to the literature) is that Player 1 is betting on his own
actions as well as those of Player 2. Suppose his type is t1; in this case he is indifferent between

28 For convenience, Tables 12.3 and 12.4 indicate the beliefs associated with the types of players 1 and 2,
respectively, induced by the common prior p of Table 12.2.
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Table 12.5 A bet between player 1 and
an outside observer

L C R
1

T 3 -1 0

B 0 —1 1

Table 12.6 The outside observer’s
beliefs over S

O rIm O
1= © =1+ O
or— O x

SR

T and M in terms of his payoffs in the game. Moreover, by playing either T or M, he expects to
get 1 or —% with equal probability from the bet. As type t1 is indifferent between T and M, and
strictly prefers both to B in the game and in the bet, the outside observer has no concern that the
bet will affect type t1’s incentives. The same analysis applies to type t|. Therefore, the observer and
both types of Player 1 expect strictly positive payoffs from the bet.

The preceding example may seem puzzling in light of the so-called “no-trade
theorems.” These results state that, in a setting in which type structures are used to
model hierarchical beliefs about exogenous events, rather than strategic uncertainty, the
existence of a common prior is equivalent to the absence of mutually agreeable bets.’
Example 12.4 instead shows that, in an environment in which the events of interest are
endogenous—each player chooses his strategy—certain bets are not ruled out by the
existence of a common prior in the sense of Definition 12.14.>" These bets can be ruled
out if we impose a further assumption on the common prior—one that is automatically
satisfied in Aumann’s model, due to the way “types” are defined. This assumption,
condition Al of Definition 12.15, states that conditioning the prior on a player’s strategy
does not imply more information than conditioning only on his type. Clearly, the prior
in Table 12.2 violates this: w (-| (t1, T)) # w (-| (t1, M)). We conjecture that, in the
present setting where uncertainty is strategic, a suitable definition of “no betting” that

29 That a common prior implies no betting follows from Aumann (1976) and the subsequent no-trade
literature (Milgrom and Stokey, 1982; Rubinstein and Wolinsky, 1990). The opposite direction requires
a more involved statement; see Morris (1994), Bonanno and Nehring (1999), Feinberg (2000), and Samet
(1998a). For different characterizations (not in terms of betting), see Samet (1998b) and Heifetz (2006).

30 As noted previously, another difference with the received literature is that here players do not have beliefs
about their own strategies, whereas no-trade theorems consider environments in which every agent’s
beliefs are defined over the entire state space.
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takes into account the fact that players can choose their own strategies, do not have
beliefs about them, but can bet on them as well as on opponents’ play, can characterize

this additional assumption on the common prior.”!

Definition 12.15. A prior u € A(S x T) satisfies Condition Al if;, for every i € 1, event
E_;j C S—j x T, strategies s;,s: € S; and type t; € T; with L({(s;, 1))} X S—i x T—}) > 0
and p({(s, )} x S_j x T_;) > 0,

W(E—; x S x Til{(si, )} x S—j x T_) = p(E—; x Si x Til{(s;, )} x S—j x T_;).
[12.13]

Roughly speaking, Condition Al requires that the conditional probability w(E_; X
Si x Til{(si, 1)} x S—; x T—;) be independent of s;. We discuss this condition further
in Subsection 12.4.6.1.

We then obtain a version of Aumann’s celebrated result: correlated equilibrium is
equivalent to RCBR and hierarchies consistent with a common prior that is minimal
and satisfies Condition AI.>?

Theorem 12.4. Fix a game G = (I, (S;, uj)ier)-

1. For every type structure (I, (S—i, Ti, B)ic1), if (si, i) € CPi(u) N RCBR; for some . €
A(S x T), and p is minimal for t; and satisfies Condition Al, then marggu is an objective
correlated equilibrium distribution.

2. Conversely, for every objective correlated equilibrium distribution v of G, there are a type
structure (I, (S—j, Ty, B)ier) and a prior pp € A(S x T) satisfying Condition AI, such that
marggu = Vv and, for all states (s, t) € supp i, (s,t) € CP(u) N RCBR.

12.4.4 Nash equilibrium

We turn now to Nash equilibrium. We start with two players as the epistemic assump-
tions required are much weaker. In particular, this is the only objective equilibrium
assumption for which no cross-player consistency assumptions (such as a common prior
or agreement) must be imposed.

For every i € I, let ¢; € A(S—;) be a conjecture of Player i about her opponents’
play. In any type structure (1, (S—i, T Bien), let [¢,] = {(51) + fi(k) = &} be the
event that Player is first-order beliefs are given by ¢;. Then, the following theorem
says that if 1’s and 2’s first-order beliefs are (¢>2, (1)1), their first-order beliefs are mutually
believed to be ((;52, ¢1) and rationality is also mutually believed, then (¢1, ¢2) is a Nash

31 For a different perspective on obtaining objective correlated equilibrium from no-betting conditions, see
Nau and McCardle (1990).

32 Barelli (2009) shows that a characterization of correlated equilibrium in the Aumann (1987) setting can
be obtained using a weaker common-prior assumption that only restricts first-order beliefs.
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equilibrium. As discussed in the introduction to this section, this result, as well as the
subsequent generalizations, provides conditions under which beliefs—not play—form a
Nash equilibrium.

Theorem 12.5. Assume that I =2. If [¢] N B(R N [@]) £ O, then (¢p5,¢4) is a Nash

equilibrium.>>

We can obtain a straightforward extension of Theorem 12.5 to n-player games by
explicitly adding the assumptions that players’ beliefs over opponents’ strategies are
independent and that any two players have the same beliefs over any common opponent’s
strategies. In particular, define the events “i has independent first-order beliefs” and “i’s
opponents agree’’:

tnd = {5, i(t) = Memargg fis |
Agree_; = {(s_i, t—):ViktelstjFik#ijELlkF Z,margse]j(tj)
= margsef/e(t/e)} .

It is worth emphasizing that Agree_;, like the common prior, is a restriction that relates
different players’ beliefs, in contrast to all the other assumptions throughout this paper.

Theorem 12.6. If [¢] N (),c; Bi(R_; N [@]_; N Ind_; N Agree_;) # O, then there exist
o € A(S)) for all j such that o is a Nash equilibrium and ¢; = ]_[/e#j oj forallj.

Aumann and Brandenburger (1995) show that these additional conditions can be
derived from arguably more primitive assumptions: the common prior and common
belief in the conjectures. For the reasons discussed in the preceding section, we need to
add Condition AL>*

33 Aumann and Brandenburger (1995) require only mutual belief in rationality and in the conjectures.
This is because, in their framework, players have beliefs about their own strategies and hierarchies, and
furthermore, these beliefs are correct. Thus, mutual belief in the conjectures ¢ implies that i’s conjecture
is ¢;. As we do not model a player’s introspective beliefs (here beliefs about her own beliefs), we need to
explicitly assume that the conjectures are indeed ¢.

Alternatively, in Theorems 12.5,12.6,12.7, and 12.9, we could drop the event [¢] and replace “B”
with “B?2 We could also state these results using only assumptions on one player’ beliefs, as in Theorem
12.4. For example, in Theorem 12.5 and for i = 1, the assumptions would be Bi([¢,]) N Bi(B2(R1)) N
By (Ba([1])) and By (Ba([$])) N By (B>(By (R2))) N By (Ba(B1 ([:])).

Finally, Aumann and Brandenburger allow for incomplete information in the sense of Section 12.6,
but assume that there is common belief in the game being played. Liu (2010) shows that this assumption
can be weakened to second-order mutual belief in the game, but not to mutual belief.

3 To see why assumption Al is necessary, consider the three-player game in Figure 5 of Aumann and
Brandenburger (1995). Let T; = {t;} for i = 1,2,3, and define u € A(S x T) by w(H, t1,h,to, W, 13) =
w(T ti,t, 0, W,t3) = 0.4, w(H, t1,t,t2, W, t3) = u(T, t1,h,to, W, t3) = 0.1. Define B and B, via [,
as in Example 12.4. The first-order beliefs of types t; and t» place equal probability on H, T and
h, t, respectively; therefore, R; = S; x T; = S; x {t;} for i = 1,2. Furthermore, player 3 assigns a high
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Theorem 12.7. If there is a probability pu € A(S x T) that satisfies Condition AI, and a
tuple (t1, ..., tr) in CP(u) N [¢] N CB([¢]) N B(R) for which w is minimal, then there exist
0 € A(S)) for all j such that o is a Nash equilibrivm and ¢; = Hk»;ﬁj o; forallj.

12.4.5 The book-of-play assumption

We now consider a related approach to dealing with the issues pointed out in Example
12.4 and footnote 34. We introduce a “book of play”: a commonly believed function
from hierarchies into strategies (Brandenburger and Dekel, 1986). The interpretation is
that, once we condition on a player’s hierarchical beliefs, there is no residual uncertainty
about her play. The existence of such a function reflects a (perhaps naive) determinism
perspective—a player’s hierarchical beliefs uniquely determine his strategy—and hence
may be of interest in its own right.

It turns out that common belief in a “book of play” implies that Condition Al in
Definition 12.15 holds. Therefore, we can obtain sufficient epistemic conditions for
objective correlated and Nash equilibrium by replacing Condition Al with common
belief'in a “book of play”” We do so in Theorems 12.8 and 12.9. The advantage relative
to Theorems 12.4 and 12.7 is that common belief in a “book of play” is a more easily
interpretable assumption. However, we will see in Example 12.5 later that, in the absence
of any exogenous uncertainty, this assumption is restrictive: essentially, it rules out certain
forms of randomization.”

Consider a game G = (I, (S;, ui)ier), a type structure 7 = (I, (S—;, Ti, B)ier), and a
function

ni o (T)(T) — S [12.14]

this specifies, for each type of Player i, the strategy she is “expected” to play, where any
given hierarchy is associated with a unique (pure) strategy.’® We then define the event

I3

that “/’s play adheres to the book n;”:
[m] = {Gis 1) = si = ni@i(T) (1))} - [12.15]

probability to players 1 and 2 playing either (H,h) or (T,t), so that R3 = {(W/,t3)}. Thus, there
is common belief in rationality and the first-order beliefs, as well as a common prior in the sense
of Definition 12.14. However, player 3 has a correlated first-order belief, so we do not get a Nash
equilibrium. Furthermore, players 1 and 3 could bet on the correlation between 1’s and 2 strategies, so
once again the common prior does not preclude bets.

5 One can also explore the implications of this assumption in nonequilibrium contexts. Under RCBR,
Brandenburger and Friedenberg (2008) consider weaker conditions that enable them to study the notion
of “intrinsic” correlation in games with more than 2 players, which corresponds to it being common
belief that there are no exogenous unmodeled correlating devices. Peysakhovich (2011) shows that objective

w
3]

correlated equilibrium outcomes are also consistent with RCBR and intrinsic correlation. The converse
is false, as Example 12.4 shows.

36 Here, as is the case throughout this chapter with the exception of Theorem 12.10, players do not have
access to randomizing devices. Rather, randomizations reflect opponents’ beliefs, as discussed in Section
12.2.2.



Epistemic game theory

Theorem 12.8. Fix a game G = (I,(S;,uj)ic;). For every type structure
I, (S—i, Ti, By)ier) and book of play n, if (s;, t;) € CPi(w) N RCBR; N CB([n]); for some
w e A(S x T), and (u is minimal for t;, then margg is an objective correlated equilibrium
distribution.

Theorem 12.9. Fix a type structure (I, (S—i, T;, B)icr). If there are a book of play n, a
profile of conjectures ¢, and a probability u € A(S x T) such that [¢] N B(R) N CP(w) N
CB([¢]) N CB([n]) # 9, then there exist o; € A(S)) for all j such that the profile o is a Nash

equilibrium and ¢; = [;.; 0} for all j.

Notice that we did not state a converse to the preceding theorems. In fact, as the
following example due to Du (2011) shows, the converses are false.

Example 12.5. Consider Matching Pennies. The unique correlated and Nash equilibrium is of
course 0| =0 =“% Heads, % Tails.”

First, consider the converse to Theorem 12.9. Fix a type t;. If there is common belief that
the conjectures are (02, 01), then every type t; to which t; assigns positive probability must have
the same belief hierarchy, and hence, by the book-of-play assumption, must play the same strategy,
either Heads or lails. But then type t;’s first-order belief cannot be o _;.

Next, consider the converse to Theorem 12.8. Fix a type structure, a type t1, and a common
prior (o minimal for t and such that its marginal on S is the equilibrium distribution. Because
common belief in the book of play holds (in the eyes of t1), we can partition the types of each player
i in the support of W into those that play Heads and those that play Tails, say TiH and TiT.
Consider a type t| € TlH; assuming wlog that he wants to match, (common belief in) rationality
requires that t| assigns probability at least % fo Heads. Repeating the argument for all types in
TlH implies that the common prior must assign probability at least % to Heads conditional on 1’
type being in TlH. This is equivalent to saying that, conditional on 1 playing Heads, 2 must
play Heads with probability at least % But by assumption, conditional on 1 playing Heads, 2
plays heads with probability exactly % This implies that all types in TlH have the same first-order
beliefs, i.e., 0. Repeating the argument shows that all types of i in the support of i have the
same first-order beliefs, for i = 1,2. Hence, all types of each player i have the same hierarchy of
beliefs, and by common belief in the book of play, they must actually be playing the same strategy.

The essence of the example is that the book-of-play assumption makes it impossible,
in certain games, to attribute mixed strategies to beliefs and not to actual mixing.
Thus, this important perspective, highlighted by Harsanyi and Aumann—indeed one
of the benefits of the epistemic perspective—is not possible under the book-of-play
assumption. Indeed, one way to obtain a converse to Theorems 12.8 and 12.9 is to either
explicitly allow for mixing or add extrinsic uncertainty (so as to “purify” the mixing).
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Once we allow for mixed strategies to be played, first-order beliefs are over mixed
strategies; that is, for player j, they are measures ¢; € A(]_[k,#j A(Sg)). It is then useful to
have a notation for the “expected belief” over pure strategies; given a first-order belief
¢;, let E¢p; € A(S—)) be defined by E¢;(s—j) = fnk# A(SY) 0 —j(s—j) ¢;(do ;) forall s_;.
We can then state the following converse to Theorem 12.9: given a Nash equilibrium,
there is a type structure where hierarchies of beliefs are consistent with a common prior,
and there is common belief in rationality, the book of play, and first-order beliefs whose
expectations are the equilibrium strategy profile.

Theorem 12.10. For any Nash equilibrium (0);c1, 0 € A(S)), there is a profile ¢ =
(@1)ier of furst-order beliefs, with ¢; € A (H;‘;ﬁi A (S,)) and E¢p; = Hﬁéi o for every i, and

a type structure (I, (]_[#i A (Sj) , Ti, Bier), such that, for all i, T; = CP;(r) N CB(R); N
CB([n]) N CB([¢]).

12.4.6 Discussion

12.4.6.1 Condition Al

In Theorem 12.4, we assume that a player’s hierarchy is consistent with a common prior
@ which satisfies Condition Al. This is an elicitable assumption because it is about beliefs,
but it is arguably somewhat opaque. As noted earlier, we conjecture that common priors
satistying Condition Al may be characterized via a suitable no-betting condition. This
would provide a more transparent behavioral characterization.

We emphasize that we cannot interpret Condition Al, i.e., [12.13], directly as a
restriction on Player i’s beliefs: in our environment, players do not have beliefs about
their own strategies. Instead, it is a restriction on the beliefs of the other players, and
perhaps those of an outside observer whose beliefs are given by . In Example 12.4, it
implies in particular that, conditional on f1, an outside observer must believe that Player
1’s and 2’s strategies are stochastically independent. Hence, the name of the condition:
Aumann Independence.’’

We observed that Condition Al is implied by the common-prior assumption in
Aumann’s model, due to the fact that a “type” therein comprises both a belief about
the other players and a strategy.”® Our framework instead requires that we make

37 Aumann deserves no blame for this definition; the label only indicates that it is inspired by his analysis.

38 By the common-prior assumption, the beliefs of an Aumann type for player i about the other players’
Aumann types is derived from a common prior @ by conditioning on i’s Aumann type, and hence by
definition on both that type’s beliefs and strategy. Therefore, if we condition @ on two Aumann types
that feature the same beliefs about the other players, but different strategies, the two resulting measures

must obviously have the same marginal on the set of other players’ Aumann types. This corresponds to
[12.13].



Epistemic game theory

this independence assumption explicit and, hence, helps us highlight a key epistemic
condition required to characterize objective correlated and Nash equilibrium.

Finally, at the risk of delving too far into philosophy, one can also relate Condition
Al to the notion of free will. If there is “free will” then players cannot learn anything
from their own choice of strategy. If instead players’ choices are predetermined, then
it is possible they would learn something from their own choices, unless one explicitly
assumes that there is enough independence to rule out any such learning. Condition Al
requires that there be no such learning, either because of “free will” or because there is
sufficient independence so that there is nothing to learn.

12.4.6.2 Comparison with Aumann (1987)
Our characterization of objective correlated equilibrium in Theorem 12.4 seems more
complex than Aumann’s original result. Translated to our setting, his result is as follows:

Let ‘T be a type structure that admits a common prior  (in the sense of Definition 12.13)
which satisfies Condition Al. If supp w C R, then margsu is an objective correlated equilibrium
distribution.

While elegant, this formulation involves hypotheses that are not directly verifiable.
To begin with, we cannot verify whether “the type structure admits a common prior”
because, as we have noted several times, we cannot elicit the type structure that
generated the players’ actual belief hierarchies. This is why we were led to Definition
12.14 rather than 12.13. Once we have elicited a player’s hierarchy, we can verify
whether that hierarchy is consistent with a common prior. Our Theorem 12.4 translates
Aumann’s result above into the language of hierarchies. Moreover, Aumann’s hypothesis
of rationality for every strategy-type pair in the support of the prior implies, but does
not explicitly state, that RCBR will also hold. Our focus on hierarchies forces us to
make this latter assumption explicit.

12.4.6.3 Nash equilibrium

As discussed, the epistemic analysis leads to the interpretation of Nash equilibria in
mixed strategies as descriptions of players’ conjectures, rather than their actual behavior.
The definition of Nash equilibrium then becomes a mutual consistency requirement:
conjectures must be mutually believed and consistent with rationality. In games with
more than two players, they must also be independent and suitably consistent across
players. Theorems 12.5 and 12.6 formalize the Nash consistency requirement in the
language of belief hierarchies.

A separate question is whether these results provide a “justification” for equilibrium
concepts. In games with more than two players, the assumptions of independence and
agreement (corresponding to the events Ind; and Agree_; used in Theorem 12.6) appear
strong; understandably, the literature has sought more basic conditions. Theorems 12.7—
12.10 clarify the need for Condition Al or common belief in the “book of play.”
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Ultimately, we interpret Theorems 12.6—12.10 as negative: they highlight the demanding
epistemic assumptions needed to obtain equilibrium concepts.?” Naturally, there is room
for other types of justification for equilibrium analysis, such as learning and evolution.

12.5. STRATEGIC-FORM REFINEMENTS

In this section, we provide a first introduction to the epistemic analysis of refinements
of rationalizability. These are important for two reasons. First, refinements yield tighter
predictions, and hence can be useful in applications. Second, the epistemic conditions
that yield them turn out to be of interest. In particular, this section introduces the notions
of admissibility/weak dominance and common p-belief.

Weak dominance is a strengthening of Bayesian rationality (expected-utility max-
imization). A strategy s; € S; is weakly dominated if there exists a distribution o; €
A(S;) such that, forall s_; € S_;, ui(o;,s—;) > u;(si, s—;), and the inequality is strict for at
least one s* ; € S_;. A strategy is admissible if it is not weakly dominated. Analogously
to strict dominance, a strategy is weakly dominated if and only if it is not a best reply
to any full-support belief about the opponents’ play (that is, a belief that assigns strictly
positive probability to every opponents’ strategy profile).

A natural first step to refine the assumption of RCBR might be to consider
“admissibility and common belief in admissibility” and try to obtain an analog of
Theorem 12.1 in the preceding text. However, there is a tension between the logic
of admissibility and that of common belief. Loosely speaking, the former is motivated
from the perspective that anything is possible, whereas the latter does restrict what is
possible.*’ To address this tension, one can relax the definition of belief.

Monderer and Samet (1989) introduce the notion of p-belief, i.e., belief with
probability at least p, to game theory.*! For p = 1, this is the notion of belief we have
considered so far. For p close to 1, p-belief has similar behavioral implications, but it
enables us to resolve the tension just discussed. It makes it possible to formulate “almost”
common belief in admissibility, which is consistent with full-support beliefs (anything is
possible).

As we just noted, one motivation for our discussion of p-belief is the observation
that, while admissibility is an interesting and common strengthening of rationality
(expected-payoff maximization), common belief in admissibility leads to difficulties.
Common p-belief in admissibility may be viewed as one way to approximate these

39 The examples here and in Aumann and Brandenburger (1995) demonstrate the extent to which the
theorems are tight and these demanding assumptions are needed. Barelli (2009) indicates one way in
which the common-prior assumption can be weakened.

40 See, e.g., Samuelson (1992).

*1 This notion originates in modal logic: see, e.g., Fagin and Halpern (1994), Fagin et al. (1990), and the
references therein.
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epistemic conditions of interest. However, there are two additional reasons. First, as
we shall see momentarily, for p sufficiently high, common p-belief in admissibility
characterizes a solution concept that was originally motivated by different considerations.
Thus, Theorem 12.11 below provides a different perspective on the derived solution
concept. Second, we can employ the notion of p-belief to carry out a robustness
check for our analysis of RCBR. It can be shown that, for p sufficiently close to 1,
rationality and common p-belief of rationality have the same behavioral implications
as RCBR (in stark contrast with admissibility and common p-belief thereof): see
Hu (2007).

Definition 12.16. Fix a game G = (I, (S;, u;)ier) and a type structure T = (I, (S—;, T;
Bicr) for G. The event that Player i assigns probability at least p € [0, 1] to E_; C S—; X
T_;is

Bi(E-) = {(si1) + Bi(t)(E—) = p}. [12.16]
The event that Player i has full-support beliefs is
FS; = {(s,', t;) : supp fi(t) = S_,'} . [12.17]

We can now define “admissibility” and “mutual and common p-belief of admissibil-
ity” as follows. We proceed analogously to the definition of the event RCBR; in [12.8]
and [12.9]. We assume full-support belief in addition to rationality, and weaken belief
to p-belief. (As noted, rationality and full support are equivalent to admissibility). For
every i € I, let

ACBA" = RN FS;,

ACBAP* = ACBA ™' N B'(ACBA"S ") and [12.18]
ACBA! = () ACBA*.
k>0

Here it does matter whether we define mutual and common p-belief as above, or by
iterating the p-belief operator as in [12.7].** The reason is that p-belief does not satisfy
the Conjunction property in [12.5]. On the other hand, given any finife type structure,
there is a w € (0, 1) such that, for all p > 7, Conjunction holds, i.e., player i p-believes
events A_; and B_; if and only if she p-believes A_; N B_;. A similar statement holds for
Monotonicity.

42 Indeed, B[;(Rz X S3 x T3) N BI;(SZ X Tr X R3) # B[;(Rg X R3) in general, whereas equality does hold
forp=1.
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To capture the behavioral implications of ACBA, consider the following adaptation
of the notion of best-reply sets (Definition 12.9).*3

Definition 12.17. Fixp € [0,1]. A set B= [],; Bi C S is a p-best-reply set (or p-BRS)
if, for every player i € I, every s; € B; is a best reply to a full-support belief o _; € A(S—;) with
o_i(B_;) = p; it is a _full p-BRS if, for every s; € B, there is a justifying full-support belief
o_; € A(B_;)) with o _j(B—;) > p such that all best replies to o _; are also in B;.

A basic refinement of rationalizability is to carry out one round of elimination of
weakly dominated strategies, followed by the iterated deletion of strictly dominated
strategies. This procedure was introduced in Dekel and Fudenberg (1990), who—
following Fudenberg et al. (1988)—were motivated by robustness considerations.** Let
ST denotes the set of strategy profiles that survive this procedure.

For every game, there exists w € (0,1) such that every p-BRS with p > 7w is
contained in S®W. Furthermore, S® W is itself a p-BRS, for p > . This inclusion
is a consequence of the fact that, as discussed earlier, p-belief satisfies Conjunction and
Monotonicity for p large enough.

Theorem 12.11. Fix a game G = (I, (S;, uj)ier). Then, there is w € (0, 1) such that, for
A5

p=T:
1. Inany type structure (I, (S—;, Ti, B)ier), projgACBAY is a full p-BRS contained in S* W ;
2. In any complete type structure, (I, (S—i, Tj, B))ic1), projgACBA? = S®W;

3. For every full p-BRS B, there exists a finite type structure (I, (S—;, Tj, B;)ier) such that

projgACBA? = B.

Note that 7 depends upon the game G. Consequently, the epistemic conditions that
deliver S depend upon the game. We view this as unappealing, because to some
extent the assumptions are tailored to the game. We will shortly mention an alternative
approach that avoids this issue. However, this approach requires a different notion of type
structure. The advantage of Theorem 12.11 is that it can be stated using the machinery
developed so far.

43 For related notions, see Tercieux (2006) and Asheim et al. (2009).

4 Like Bernheim’s perfect rationalizability (Bernheim, 1984), this procedure is a nonequilibrium analog to
trembling-hand perfection (Selten, 1975). Borgers (1994) (see also Hu, 2007) provided a characterization
using common p-belief. The main difference with perfect rationalizability is that in S IV it is not assumed
that players agree about the trembles of other players, and trembles are not required to be independent.
For refinements of rationalizability motivated by proper equilibrium (Myerson, 1978), see Pearce (1984)
Section 3, Schuhmacher (1999), and Asheim (2002).

B Ifp < 7, then these results are modified as follows. First, (1) holds except for the claim that the p-BRS
is contained in S W. Regarding (2), ACBA characterizes the largest p-BRS, which can be computed
using the procedure in Borgers (1994). Finally, (3) holds for all p.
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An alternative way to characterize S W builds on Schuhmacher (1999). Instead of
weakening belief to p-belief, we weaken rationality to “e-rationality”” This is easiest to
implement in a model where players can explicitly randomize, as in Theorem 12.10.%
Consider the mixed extension (I, (A(S;)), u;)ier) of the original game (I, (S;, u;)ier), and

a type structure <I, (]_[#l- A(S), T, ,3,')4 I). For given € > 0, a (mixed) strategy-type
IS

pair (0}, t;) is €-rational if o, assigns probability at most € to any pure strategy that is
not a best reply to type fs first-order beliefs;*” we thus define the event

R = { (0, 1) + ui(s;, Efi(1)) < max wi(sL, Bfi(t)) = oi(s)) < €.y,
Jesi
where, as in Theorem 12.10, Efi(#;) is the reduction of the measure f;(t;).

As in Theorem 12.11, we need a full-support assumption in order to obtain
admissibility. Given that we consider the mixed extension of the game, as in the
discussion preceding Theorem 12.10, player i’ first-order beliefs are now a probability
measure over profiles of mixed strategies of the opponents. The appropriate full-support
assumption remains over pure strategy profiles. We formalize this using “expected” first-
order beliefs: e.g., for type t;, Efi(t;)) € A(S—;) has full support. The event where this is
the case is

ESi={(oi, 1) : [Ef(t)] (=) > 0 Vs_; € S_i}.

Theorem 12.12. Fix a game G = (I, (S;, uj)icr). Then, there is € € (0, 1) such that, for

€ <€,

1. In any complete type structure (I, (Hj;éi A(S), T, BieD), s € SW if and only if there is
(0, t)ier € RE NFSN CB(RE N ES) such that oi(s)) > € for each i.

2. In any type structure (I, (1_[#1» A(S)), T, Bpien), if (0, t))ier € R°N FSN CB(R N
ES) and o:(s;) > € for each i then s € SW.

Schuhmacher (1999) uses this approach to define a counterpart to Myerson (1978)’s
notion of proper equilibrium. He strengthens e-rationality to “e-properness”: o; must
be completely mixed and, if a strategy s; is worse than another strategy s given
player i’s first-order beliefs, then o;(s;)) < eoi(s;), where o; is s mixed strategy.48

46 This characterization (Theorem 12.12) could also be stated without the mixed-strategy extension, but as
a result concerning beliefs and not play (see our discussion in the third paragraph of Section 12.4.1).

47 Note that this is not the same as saying that the strategy obtains within € of the maximal payoff; this is
also often called “e-rationality.” The definition in the text is in the spirit of Selten (1975) and Myerson
(1978), as well as Schuhmacher (1999).

8 Without the requirement that o; be completely mixed, e-properness may lose its bite: if, given i’ beliefs,
strategy s; is strictly better than s}, which in turn is strictly better than s/, then a mixed strategy that assigns
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A strategy o is then deemed “e-properly rationalizable” if there is a type structure
and a type t; such that the pair (s;, f;) is consistent with e-properness and common
belief thereof. Notice that this definition is epistemic; Schuhmacher (1999) provides
an algorithmic procedure that yields some, but not all properly rationalizable strategies;
Perea (2011a) provides a full algorithmic characterization. Finally, Asheim (2002) pro-
vides an epistemic definition of proper rationalizability using lexicographic probability
systems.

At this point, it would be natural to investigate epistemic conditions leading to
iterated admissibility. These would require strengthening common p-belief. It turns out
that it is possible to do so by replacing probabilistic beliefs with lexicographic probability
systems. This in turn necessitates modifying the notion of a type structure. (This is the
different type structure alluded to above in which an alternative version of Theorem
12.11 can be given: see Brandenburger, 1992.) It is convenient to present this material
after studying extensive-form refinements: see Section 12.8.

12.6. INCOMPLETE INFORMATION
12.6.1 Introduction

A game has incomplete information if the payoftf to one or more players is not fully
determined by the strategy profile; we, therefore, allow for a parameter 8 € ® that
enters players” payoff functions.* In this section, we provide an epistemic analysis of
such games, focusing mainly on RCBR.

The key issue that arises is to what extent the model is meant to be “complete,”’
that is, to describe all possible aspects of the world that might be relevant to the agents.
The alternative (to a complete model) is to adopt a “small worlds” perspective, where
we understand that many aspects are not included in our specification. This is a general
issue in modeling, that is particularly relevant in this chapter, and that is especially critical
in this section. The particular aspect of concern is whether there might be additional
uncertainty and information beyond what the model describes. Such information could
enable correlations that we might otherwise exclude.

One way to deal with this is to adopt the small-worlds approach and study solution
concepts that are “robust” to adding such unmodeled uncertainty explicitly. The other
is to insist on the model being complete. We consider both in this section.

probability one to s; would formally be e-proper, but one could not say that s is “much more likely”
than s

* To economize on notation, this formulation does not allow for hard private information (signals) the
players may receive. To accommodate private information, one can let ® = @ x ]_[,-€ 1 ©i, where O;
is the set of signals that / may receive and ®¢ represents residual uncertainty. For example, see Battigalli
etal. (2011a).
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To clarify this issue we consider two distinct solution concepts that embody
different degrees of correlation: interim independent and correlated rationalizability
(denoted IIR and ICR, respectively). Consider the game of incomplete information in
Table 12.7.

The players’ hierarchy of beliefs over ® = {61, 05} corresponds to it being common
belief that the two parameters are equally likely. (Neither player receives any hard infor-
mation.) These hierarchies can be modeled using two distinct type structures based on
O (e, X_j = 0),denoted TV = {1, (®, TN, BM)jer} and TR = {1,(©, TX, B et}
For both structures, player 1 has a single type: TI\ = {t1 } and TR = {t1 }. However,
TN { 5 }, whereas Tf = {tf,fg}. The belief maps ﬂf\ and ﬂF are described in
T1blc 12.8. Notice that these type structures describe beliefs about ® alone, and not
also about players’ strategies (that is, X_; = ®). Solution concepts for incomplete-
information games typically use such ®-based type structures. When we turn to the
epistemic analysis, we will need to consider type structures that model beliefs about
both ® and players’ strategies (i.e., X_; = ® x S_)).

Structure 7 R has redundant types (cf. Definition 12.5), since the hierarchies of beliefs
of types t§ and ?5 are the same. Furthermore, there is no hard private information in
this example: types are used solely to model hierarchies of beliefs.”" In this sense, t§ and
fg are indistinguishable.

We can (iteratively) delete strategies that are dominated (i.e., non-best replies) for
a given type. We now present some intuitive arguments about two different deletion
procedures; these are formally defined in Sections 12.6.2 and 12.6.3. First consider
structure 7R, One might argue that D is not dominated for tf: it is a best reply to
the belief that t§ plays R and f§ plays L. This conclusion crucially depends on the fact
that type tf believes that 2s type is t§ when 6 = 61 and ?5 when 6 = 65,. This induces
a correlation between the strategy that tf expects 2 to play and the payoft parameter 8;
this correlation is essential for D to be a best reply.

For structure 7 the analysis is more subtle. One could argue that D is dominated for
player 1% sole type ti\] since, for any belief over Sy independently combined with the belief
that 81 and 05 are equally likely, D is not a best reply. This is the perspective underlying
the solution concept of IIR, which we analyze in Subsection 12.6.3. Alternatively,
one could argue that D is not dominated: it is a best reply to the belief that, with

Table 12.7 An incomplete-information game

9, ] L R 6, ] L R
U |11 00 Uulo00 1,1
D| 10 10 D| 10 10

50 If there was private information, we would model it explicitly: see footnote 49.
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Table 12.8 A nonredundant (Top) and a redundant (Bottom) type structure for the game in Table
12.7

01.5)  (02.£) 01.1)  (02.1)
T T T T

Bra) | 3 3 OIEE 5
R R

61.5 0.5 0.5 (0,5 e o) @2 1)
G 0 0 ! Fata) | 3 7
= > . B2 (1) 2 2

probability one-half, player 2% sole type tjz\] plays R and the state is 61, and otherwise,
tjz\] plays L and the state is 6. This corresponds to ICR (Subsection 12.6.2). Is this latter
belief “reasonable”? Certainly yes if there is unmodeled uncertainty: player 1 can believe
that player 2’s actions are correlated with 8 through some unmodeled payoff-irrelevant
signal.®! If there is no unmodeled uncertainty however, one might want to exclude such
beliefs.

To do so, we introduce an explicit independence assumption into the epistemic
model. Intuitively, in the absence of unmodeled hard information, we want to rule
out the possibility of “excessive” correlation between the payoff-relevant parameter 6
and 2’s strategy. However, what is “excessive” needs to be defined with care. It certainly
seems reasonable to allow player 1 to believe that 2 plays differently depending on 2%
hierarchical beliefs about ®. However, conditional on 2’s hierarchy of beliefs over ©, 1’s
beliefs about 6 and 2% strategies should be independent. Thus, by definition—since
types that have the same hierarchy must be treated the same—an epistemic analysis that
adopts this independence assumption will not result in different solutions for the two
type structures.””

In the next two subsections, we develop this formally. First, we show ICR char-
acterizes RCBR. Then we show that IIR corresponds to RCBR plus common belief
of a suitable independence assumption if the type space is non-redundant (and IIR is a
coarser solution concept in general). We then briefly discuss A-rationalizability (Section
12.3.3) for incomplete-information games. In the last subsection, we briefly discuss
equilibrium concepts. Little has been done here in terms of using the ideas of Section
12.4 above under incomplete information to characterize standard equilibrium concepts,

5! Indeed, one view of ICR s that it is the same as IIR when certain types of unmodeled correlation are
explicitly added. For related ideas see Liu (2009), who discusses this idea in the context of Bayesian Nash
equilibrium. See also Sadzik (2011) and Bergemann and Morris (2011).

52 This formulation of independence is due to Battigalli et al. (2011a). These authors emphasize that
epistemic analysis should be carried out solely in terms of expressible assumptions about the primitives
of the model. For incomplete-information games, the primitives are the payoff states 6 and the strategy
sets; in our probabilistic setting, the only expressible assumptions are those about each player i’s hierarchies
of beliefs on ® x S_;. We agree with these authors’ emphasis on expressibility. In fact, as argued in the
Introduction, we take the stronger stand that assumptions should be elicitable.
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and in particular the many different versions of correlated equilibrium concepts in the
literature.

12.6.2 Interim correlated rationalizability

We begin by formally defining incomplete-information games. We then define ICR
and conclude this subsection by relating this solution concept to RCBR.

Definition 12.18. A (finite) (strategic form) incomplete-information game is a tuple G =
(1, O, (S, ui)icr), where I and © are finite and, for every i € I, S; is finite and u; = S; X S_; X
0 - R

This description is partial because it does not specify the players’ (hierarchies of)
beliefs about ®. One way to address this is to append to the game the players’ hierarchies
of beliefs over ®. We model these hierarchies using a ®-based type structure, i.e., a type
structure as in Definition 12.3 where we set X_; = ©.

As discussed, ICR is the solution concept that iteratively eliminates strategies that are
not best replies to beliefs over ® x S_;, where beliefs allow for correlation.”?
Definition 12.19. >* Consider agame G = (1,0, (S, u;)icr) and a O-based type structure
7 = (0, (Tt@,ﬁi@),’el). For every tlQ € Tt@, let
s ICRY(®) =S;

o fork>0,s € ICRf-"(tlQ) if there exists a map o _; : ® X T—®i — A(S_)) such that, for
all @ € © and 2, € T, o_1(0,(°)ICR*; (1°)) = 1 and

Vi€ S, Y BY)0,2) Y o i(0,10) (s )uisi, s—i, 0)

6,1, S—i
> Y BN O.19) Y o0, 2) (s_)uils} 51, 0).
0,69, S—i

The set ICR?® (tl@) =N k=01 CRf(ti@) is the set of interim correlated rationalizable strategies
for type tl@.

33 With I > 2 players, there are two forms of correlation: that between the underlying uncertainty
and opponents’ strategies, and (as in correlated rationalizability—Definition 12.8—and correlated
equilibrium—Definition 12.12) that among opponents’ strategies, even conditioning on the underlying
uncertainty. One could allow one but not the other, in principle. For simplicity we allow for both.

5% The definition of ICR we adopt differs in inessential ways from the one originally proposed by Dekel
et al. (2007). See also Liu (2014) and Tang (2011).
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To understand this definition, recall that, in a ®-based structure (O, (Ti®’ B ,@)ie 1), player
i's type tl@ represents her beliefs about ® x Tf)i, but not S_;. ICR then assumes that
beliefs over S_; are determined by a function o_; : ® x Tg. — A(S_)). Specifically,
the probability that type tlQ assigns to opponents playing a given profile s_; equals

> B 0.19)) 0 i(0.12) (). [12.19]

0.69)

The fact that o _;(-) € A(S—;) depends upon both 6 and t?i allows for the possibility of
unmodeled correlating information received by i’s opponents, as discussed. For example,
in the game of Table 12.7 augmented with ®-based type structure 7', the strategy D of
player 1 is a best reply for type #; given the belief on ® x S_; constructed by defining
02001, t/z)(R) =1lando,(6>, t/zl)(L) = 1. The strategy D s also a best reply for type #; of
player 1 in the structure T2 when we define 65(01, )(R) = 1 and 02(02, 1) (L) = 1.

To study the relationship between RCBR and ICR, we start with an epistemic type
structure where X_; = ® x S_;. It is important to keep track of the difference between
this and the ®-based type structure appended to the game of incomplete information
and used in defining ICR (Definition 12.19). Of course, in our epistemic analysis, we
will need to relate the belief hierarchies generated by the ®-based type structure to the
® x S_;-based hierarchies in the epistemic type structure.

Thus, consider an epistemic type structure 7 = (I, (® x S_;, T}, B))ier)- As in
Definition 12.6, continue to denote the first-order belief map for player i by f; : T; —
A(® x S_;), defined by fi(#;) = margg, s B;(#;). Naturally, first-order beliefs are now
over ® x S_;. Analogously to Definition 12.7, a strategy s; is rational for type t; € Tj,
written (s;, ;) € R;, iff

Vsi € S, Z Jit) (0, s—)uisi, s—i,0) > Z [t (0, s—)ui(s, s, 0).
0€®,s_;,eS_; 0€®,s_;,eS_;
The event, “Player i believes event E_; C ® x S_; x T_;” is defined as in Definition
12.7 part (2): (si, t;) € Bi(E—;) if B,(t)(E—;) = 1. As before, both R; and Bi(E—;) are
subsets of S; X T;. Recall that we defined mutual belief in a product event E = [[; E;,
where E; C S; x Tj, as B(E) = [[; B{(E—)). Since now beliefs are also about ®, in
order to simplify the definition of B(B(E)), and so on, it is convenient to instead have
B(E) be a subset of ® x S x T, as follows. For F = Q x [, E;, where Q C © and
E CS; xT; let
B(F) = © x [ [ B(Q x E_)).
i€l

This way, B(F) has the same product structure as F, so common belief can be defined
as before by iterating B(-). Correspondingly, we adapt the definition of RCBR:

RCBR = (® x R) N CB(® x R).
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As noted, in order to provide an epistemic analysis of ICR, we must discuss the
relationship between the epistemic type structure and the ®-based type structure that
we append to the game of incomplete information and use to define solution concepts.
We start with a type tl@ in a ®-based type structure—such as th in TN, or th in TR—
which induces a belief hierarchy over ®. Denote this hierarchy by (p?(ti@). We then ask
whether a type #; in the epistemic type structure, which induces belief hierarchies over
©® x S_;, has the same “marginal” hierarchy on ©, denoted ¢; g (#). To illustrate this,
we relate the type structure 7 of Table 12.8 to the epistemic type structure defined in
Table 12.9 below.

In this epistemic type structure, types # and f; both believe that 61 and 6, are equally
likely; furthermore, #1 assigns probability one to 2’ type being tp, and conversely. So, if
players’ belief hierarchies over ® x S_; x T_; are described by # and fp, respectively,
there is common belief that each payoff parameter 6; is equally likely. This is the same
belief hierarchy over ® held by types ti\‘r and té\] in the ®-based type structure 7.
Formally, we have (pl@(ttN) = @, 0 ().

To further illustrate how to construct ; g (+), consider type ¢1. This type also believes
that 01 and 65 are equally likely; however, #; has more complex second-order beliefs.
Specifically, 7| assigns probability % to the event that the payoff parameter is 81 and that
2 thinks 81 and 65 are equally likely, and probability % to the event that the payoff state
is 05 and 2 thinks that the probability of 61 is % Iterating this procedure yields the
hierarchical beliefs on ® held by 1], i.e., ¢; g(#}). Notice that no type in the ®-based
structure 7™ (or TR) generates this hierarchy over ©.

Thus, for an epistemic type structure 7 and ©-based type structure 7, we can

define the event that each player i’s hierarchy over ® is the one generated by some type
tl@ in 79:

(0O ()] = (6,5, 0) : Vi, p0() = 2D}

Then, we can ask what strategies are consistent with RCBR and the assumption that
hierarchical beliefs on ® are generated by a given type t;@ in the ©-based structure 7©.

Table 12.9 An epistemic type structure for the game in Table 12.7.
O1,L,n)  (01,L,6)  (01,R,)  (01,R, 1)  (B2,L,n)  (U2,L,15)  (02,R, )  (02,R, 1)
1 1

B, () 0 0 1 0 1 0 0 0

B (1) 1 0 0 0 0 i 0 0
(01,U,1)  (01,U,4)  (01,D,11)  (01,D, )  (02,U,n)  (62,U,1)  (02,D,11)  (02,D,145)

B, (12) 1 0 0 0 1 0 0 0

B, (1) 0 H 0 0 0 2 0 0
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The following theorem (due to Battigalli et al., 2011a; for a related result, see Dekel
et al., 2007) states that these are precisely the strategies in ICR?O(t@).55

i

Theorem 12.13. Fix a ©-based type structure and a complete epistemic type structure for a
game (I, (S)ier» 9, (u,')l-el). Then, for any ©-type profile {2 € T®,

ICR™(1®) = projg (RCBR N [p® (19)]) .

One important implication of this characterization is that the set of ICR strategies for
a ®-based type tlQ depends solely upon the hierarchical beliefs on ® that it generates. In
particular, if two such types tl@, ?l® induce the same hierarchies, i.e., if they are redundant,

they share the same set of ICR strategies (see Dekel et al., 2007).

12.6.3 Interim independent rationalizability

As noted earlier, a key feature of ICR is the fact that it allows a player to believe that
her opponents’ strategic choices are correlated with the uncertainty ®. The definition
of ICR does so by introducing maps o _; : ® X Tf)i — A(S_)), which explicitly allow
player i’s conjecture about her opponents’ play to depend upon the realization of 8, in
addition to their ®-based types f_;. Correspondingly, in an epistemic type structure, any
correlation between the ® and S_; components of the first-order beliefs is allowed.

As discussed, if there is no unmodeled uncertainty one might want to rule out such
correlations and assume that, conditioning on opponents’ hierarchies, opponents’ strate-
gies should be uncorrelated with ®. Interim Independent Rationalizability, or IIR, reflects
such considerations. Like ICR, this procedure applies to an incomplete-information
game augmented with a ®-based type structure (I, (O, Ti®, /3,@);'61), and iteratively
eliminates strategies that are not best replies for each player type. The difference is in
the way beliefs about S_; are constructed: IIR employs maps o _; : Tf)i — A(S_)) that
associate with each profile r_; € T_®i a distribution over strategy profiles. This explicitly
rules out the possibility that opponents’ strategies may be directly correlated with the
payoff parameter 6. The probability that a type tlQ attaches to strategy profile s_;, given
the function o _;, is then

D BRGONO x {21 - 019 (s, [12.20]
(C)

t

—i

in contrast with [12.19]. Any correlation between the payoff parameter 6 and opponents’
play must thus come from correlation between 6 and opponents’ types, because direct

55 For brevity, we only state the analog to part (2) in Theorems 12.1, 12.2, and 12.11. We could also define
a notion of best response set and provide analogs to parts (1) and (3) as well. In particular, in any epistemic
type structure, ICR®(1®) D projg (RCBR N [g0®(t®)]).
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correlation between 6 and s_; is ruled out by the definition of the maps o _;(-). This
implies that redundant types can matter. Consider the game in Table 12.7 and the
type structure 7R defined in Table 12.8. Strategy D is a best reply for type tX, given
the function o5 : Tf — A(S») such that O’Z(tg)(R) =1= 02(25)(14); notice how the
belief over ® x S, derived from ﬂf(tf) e A(® x Tf) and o5 induces correlation
between 0 and 2’s strategy via correlation between 8 and 2’ type. If we instead consider
the type structure 7, it is impossible to induce correlation between 6 and 2’s strategy in
this indirect way, because 2 has only one type. As a result, D is not a best reply given this
type structure. This indicates that IIR can deliver different predictions in type structures
that generate the same hierarchical beliefs about ©.
The IIR procedure (Ely and Peski, 2006) is formally defined as follows.

Definition 12.20. °° Consider agame G = (1,0, (S, u)ier) and a O-based type structure
7° = (0, (ﬂ®,ﬂi®)i€1). For every tlQ € Ti®’ let
o IIRV(P) = S;
o fork>0,s € IIRf(ti@) if there exists a map o _; : Tg — A(S_)) such that, for all t?i €
79, o i(t%) IR (19)) =1 and
Vsie S > BRUO.12) Y o i(1C) _)ui(si s, 0)
0.1°, S—i
>3 BPN0.12) Y o it )uis) s, 0).
0,6, S—i
The set HR?O(tl-@) = k>0 HRf? (tt@) is the set of interim independent rvationalizable
strategies for type tlQ.
We now turn to the epistemic characterization of IIR. The key is to formalize the
assumption that player i’s beliefs about ® x S_; are independent, conditional upon any
hierarchical beliefs about ® that i thinks may be held by her opponents. Thus, fix a finite

®-based type structure 7 and an epistemic type structure 7. We denote by T; cr the
set of i’s types f; whose beliefs satisfy this assumption: formally, t; € T; ¢y if

margg, s Bi(1) (-][02:(2)))

is the product of its marginals on ® and S_;, whenever the above conditional
probability is well-defined, i.e., for every type t?i in the ®-based structure 7© such
that B,(t) ([9°,(t%]) > 0.> Finally, let

CI={0,s,t) : Vi, t; € Ticr}.

36 IIR can also be described as “rationalizability in the interim strategic form”: see Battigalli et al. (2011a).
57 For completeness, [(p(:)i(tﬁ)i)] = {(9,37,', t-i) Vi F i, 9 et) = (p/@(t)@)}
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For example, consider the epistemic type structure in Table 12.9 and the ®-based
type structure 7 R, Recall that both types t§ and ?5 in TR generate the same hierarchy
of beliefs about ®, namely that it is common belief that 61 and 0> are equally likely.
Observe that epistemic type f» generates precisely this hierarchical belief about ©,
whereas epistemic type f, generates a different hierarchy. Therefore, the events [(,059 ()]
and [go;9 (fg)] coincide and are equal to ® X Sy X {2} in the epistemic structure of Table
12.9. Now consider player 1’s type #;. This type assigns probability one to 2’s type 2, and
hence to the event [(pg) (tg)]. Conditional on this event, f1’s beliefs over ® X S assign
equal probability to (65, L) and (61, R), which is not an independent product. Therefore,
ti & Ti,cr. On the other hand, type f] assigns positive probability to both types t> and
ty of player 2. Conditional on f, i.e., conditional on [<p2® ()], £ assigns probability one
to (61, L), which is trivially an independent product. Conditional independence does
not impose any further restriction on #], because the ®-hierarchy generated by 7, differs
from the hierarchy of any type in the ®-based structure 7X. Therefore, 7| € T cy.

We then have the following characterization (Battigalli et al., 2011a).

Theorem 12.14. Fix a finite ©-based type structure T© and a complete epistemic type
structure T for the game (I, (S)ier» 9, (“i)iel)- Then, for any profile of O-types (© € T®,

HR™® (1) D projg (RCBR N CI N CB(CI) N [p°(9)]) ;

if, furthermore, the ®-based type structure is not redundant (see Definition 12.5), then the above
inclusion is an equality.

Note that the inclusion in Theorem 12.14 may be strict when the ®-based structure
is redundant, even if the epistemic type structure is complete. This contrasts with the
results in Theorems 12.1, 12.2, 12.11, and 12.13, where completeness implies equality.
In those four theorems, inclusion may be strict only if some justifying beliefs are simply
not present in a given incomplete epistemic type structure.

To see that the inclusion in Theorem 12.14 may be strict in a redundant ®-based
structure, consider the game in Table 12.7 augmented with the type structure 7R, As was
argued before Definition 12.20, HRoo(t{Q) = {U, D}. Now consider a strategy-type pair
(s1,t1) € RCBR; N CI; N CB1(CIx) N [gz)l@(tf)] in a complete epistemic type structure
for this game. Since (s1,4) € [(p?(tf), epistemic type t; must satisfy common belief
that 61, 6, are equally likely. Hence, f1 must believe that 2 also commonly believes this.
Therefore, (s1,t) € CIy implies that f1’s beliefs about ® and S, must be independent
conditional on 2 commonly believing this. But then, D cannot be a best reply: that
is, (s1,11) € RCBRy N CIH N CB(CI>, N [go?(tf)] implies s = U. Thus, the epistemic
assumptions result in {U}, a strict subset of the IIR prediction of {U, D}. On the other
hand, repeating the analysis in the structure 7 leads to an equality: the only IIR strategy
for type t{\r s U.



Epistemic game theory

To summarize, the main point is quite simple: if the type space has redundant types,
then the solution concept should treat them symmetrically, since they are decision-
theoretically indistinguishable.>®

12.6.4 Equilibrium concepts

The characterization of Nash equilibrium in games of incomplete information requires
significantly stronger assumptions relative to the complete-information case (cf. The-
orem 12.5). There are two differences. One is that the first-order belief of a type in
an epistemic type structure is a belief about opponents’ strategies, s—; € S_;, whereas
an equilibrium of an incomplete-information game specifies maps from ®-types into
strategies. Therefore, while Theorem 12.5 obtained Nash equilibrium by assuming
that first-order beliefs are mutually believed, now this needs to be modified so that
the maps from ®-hierarchies into strategies are (at least) mutually believed. The other,
and more interesting, difference is that the assumption of mutual belief of these maps
and of rationality needs to be strengthened to common belief. The following example
illustrates this.

Example 12.6. Consider a 2-person game with payoff irrelevant uncertainty ® = {6,0'};
player 2 has only one action, L, player 1 has two actions, U, D where U is strictly dominant, and
the ©-based type structure T® is generated by the common prior in Table 12.10:

Consider the following maps from types in T® to strategies: wl(t?) =U, wl(??) =
D, 1//2(t§)) = 1//2(??) = L. The pair ¥ = (Y, ¥,) is obviously not a Bayesian Nash
equilibrium. However, consider the common-prior epistemic type structure T obtained from T©
and W being common belief: see Table 12.11.

The O-based hierarchies generated by the epistemic type structure T coincide with those
generated by T®: for example, ¢1.0(h) = go?(t?). The type profile (1, t2) satisfies rationality

Table 12.10 A ®-based type structure

;0 T O]9
90 t% t% «90 ty | b
L2 2 L A
£ 1010 01 0| g

58 In an intriguing and surprising result, Ely and Peski (2006) show that one can associate with each type
a hierarchy of beliefs about A(®), rather than ©, in such a way as to distinguish between types that
are redundant in the usual sense. However, we do not understand how their notion of hierarchy can
be elicited. For example, the first-order belief of player i in an Ely-Pesky hierarchy is an element of
A(A(®)), representing i’s beliefs about her own beliefs about ® (for details, see p. 28 in their paper).
As we argued in Section 12.2.6, introspective beliefs cannot easily be interpreted behaviorally. Moreover,
a probability measure in A(A(®)) is meant to represent how s beliefs about ® would change if i were
informed of j’s type. This obviously depends on the type space chosen to represent beliefs; we do not see
how one could elicit these beliefs.
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and mutual, but not common, belief in rationality. Finally, by construction, Player 2’s beliefs about
1’s strategies, conditional on 1’s @-hierarchy, are as specified by Y, and this is common belief (the
same is trivially true for Player 1’s beliefs about 2’ sole strategy). This shows that mutual belief
in rationality, even with common belief in the maps r;, is not enough to obtain Bayesian Nash
equilibrium.>’

We now show that strengthening the assumptions of Theorem 12.5 as indicated
above yields a characterization of Bayesian Nash equilibrium in two-player games (see
Pomatto, 2011, and Sadzik, 2011). We believe (but have not verified) that a similar
analog to Theorem 12.7 holds for games with more than two players. There exist several
incomplete-information versions of correlated equilibrium (Bergemann and Morris,
2011; Forges, 1993, 2006; Liu, 2014). The epistemic characterizations for these concepts
may be insightful and have not yet been developed.

Fix a nonredundant ®-based type structure T® on ©, and maps v, : Tf)i — A(S-).
For every i, we interpret this map as Player i’s conjecture about the behavioral strategy
of her opponents.®’

Given an epistemic type structure 7, let [s—;] = © x {s_;} x T_; and [tg] =0 x
Soix{tjp_jo(t_) = (pg-(tg-)}. These are the events that “the opponents play s_;”
and “the opponents’ ®-hierarchies are as specified by t?i.” Then, the event that “each
player’s first-order beliefs are consistent with 1" is

[W={@¢0:VLW3€ﬁ%L@@M@M>Q
B sl = vi(2) -], [12.21]

Define “®-hierarchies are consistent with a given Harsanyi type structure 7 ©”:

(791 ={0,5,0 : Vi, gi0(t) € p2(T2).}.

We need one more definition. ©-based structure T is minimal if, for every pair of

¢ ® e 6 ©® : : 1 N
players and types i,j € I, t;” € T,”, S Tj , there is a finite sequence Ly > iy

Table 12.11 An epistemic type structure

0 L.t | Lt 6’ Ltrp | Lt
U, { % % U, 0 0
Dt | 0 0 Dty | 0 1

59 Furthermore, for any finite k > 2, we can modify the above example so that there is kth order mutual
belief in rationality, and still the conjectures do not form a Bayesian Nash equilibrium. Similarly, the
necessity of common belief in ¥ can be demonstrated. See Pomatto (2011).

0 The maps 1; resemble, but are distinct from, the “books of play” n; (see [12.14]) since the former map
from ©-hierarchies, whereas the latter map from S_; hierarchies.



Epistemic game theory

such that (1) =1, til(l) = ti®’ i(N) =], tf.le) = th, and for all n=2,...,N,
ﬁ%_l)(t”_l)([tf(n)]) > (. That is, loosely speaking, it is not possible to partition 7©
into two components such that each component is a type structure in and of itself.

Theorem 12.15. Assume that there are two players. Fix an incomplete-information game G
and a nonredundant, minimal ©-based type structure T® and maps W, ¥ as above. If there
is an epistemic type structure T in which CB([T®]) N CB([¥]) N CB(® x R) # @, then
(W5, Y1) is a Bayesian Nash equilibrium of the Bayesian game (G, T®).

12.6.5 A-Rationalizability

The role of ®-based type structures in the definition of ICR and IIR is to represent
assumptions about players’ interactive beliefs concerning exogenous payoff uncertainty,
©®. An alternative approach is to adapt the notion of A-rationalizability discussed in
Section 12.3.3. Doing so is straightforward: for every player i, let A; C A(® x S_))
represent the restrictions on i’s first-order beliefs that we would like to maintain. Notice
that these restrictions can also be about i’s opponents’ strategies, not just the exogenous
uncertainty. The set of A-rationalizable profiles, which we continue to denote by S,
can then be defined exactly as in Definition 12.11, with the understanding that players
best respond to conjectures 0 _; € A(® x S_;), rather than in A(S_;). The epistemic
characterization of S®* via RCBR and common beliefs in the restrictions A; provided
in Theorem 12.2 also extends, provided RCBR is defined as in Section 12.6.2.

This framework allows us to model, for example, a situation in which players’ ordinal
preferences over strategy profiles are fixed (and commonly believed), but their cardinal
preferences (i.e., their risk attitudes) are unknown. To study this situation, Borgers
(1993) proposes the following notion of rationality: given a complete-information game
(I, (S, ui)ier), si 1s rational if and only if there is a belief 0_; € A(S_;) and a function
vi : S = R that is a strictly increasing transformation of u; such that s; is a best reply
to o _; with utility function v;. He characterizes this notion of rationality in terms of a
novel pure-strategy dominance property and argues that common belief in his notion
of rationality corresponds to the iterated deletion of strategies that are pure-strategy
dominated in his sense. As Borgers notes, it is straightforward to formalize this by suitably
modifying the definition of the events R;, and hence RCBR.

Instead of modifying the notion of rationality for complete-information games, we
can obtain an alternative epistemic characterization of iterated pure-strategy dominance
in Borgers’ sense by considering a related game in which players have incomplete
information about the risk preferences of their opponents, but know their ordinal
rankings. To do so, we retain the usual notion of rationality for incomplete-information
games and consider the implications of RCBR and common belief of the ordinal
rankings. We model common belief of the ordinal rankings by a suitable choice of payoft’
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parameter space ® and commonly believed restrictions on first-order beliefs A. By the
incomplete-information analog of Theorem 12.2, RCBR and common belief of the
ordinal rankings characterize the set S of A-rationalizable profiles. Given the choice
of ® and A, 4™ is precisely the set of iteratively pure-strategy undominated profiles.
To sum up, Borgers relates iterated pure-strategy dominance to RCBR in the original
complete-information game, but redefines what it means for a player to be rational.
The argument described here relates iterated pure-strategy dominance to RCBR and
common belief in the ordinal rankings in an associated incomplete-information game,
where rationality has the usual meaning.

To make this precise, we specify the appropriate ® and A. Given the complete-
information game G = (I, (S, u;)ier), let ©; be the set of all payoff functions 6; :
S — [0,1], and ©} be the set of utilities 6 € ©; that are ordinally equivalent to
u;. Furthermore, let A; be the set of all finite-support probability measures o_; €
A(® x S_;) such that player i (i) is certain of her own cardinal utility, and (ii) is certain of
her opponents’ ordinal preferences: i.e., o _;({0} x O, x S_;) = 1 for some 0} € OF.
Note that (i) says that Player i is certain of her own risk preferences, but these need not
coincide with u;. Finally, we define the incomplete-information game in the obvious
way, that is, (I, ®, (S, vj)ier), where v;(0,s) = 0;(s) for every 8 € ® and s € S. With
these definitions, a strategy s; € S; is a best reply for i in the incomplete-information
game (I, 0, (S;,v))jer) if and only if it is a best reply for i given some (complete-
information) payoff function 6; : S — R that is ordinally equivalent to u;, i.e., if it is

S22 coincides

not pure-strategy dominated in the sense of Borgers. It follows that
with iterated pure-strategy dominance; thus, by the incomplete-information analog of
Theorem 12.2, iterated pure-strategy dominance in the complete-information game
(I, (S;, up)ier) is characterized by RCBR with the restrictions A specified here for the

incomplete-information game (I, @, (S;, V))ier)-

12.6.6 Discussion

The epistemic analysis of games of incomplete information is recent and indeed
incomplete. The results above make three points. First, I[IR is suitable only when there
are no redundant types and no unmodeled correlation. ICR on the other hand is a
robust solution concept that corresponds to RCBR. Finally, we saw that equilibrium
concepts are difficult to characterize with clean and insightful epistemic conditions. The
assumptions required are more demanding than the analogous concepts in complete-

information games.®!

61 This point, from a different perspective, is consistent with the work on learning in games, which argues
for weaker concepts than Nash equilibrium, such as self-confirming equilibrium (see, e.g., Fudenberg
and Levine, 1993; Dekel et al., 1999, 2004, and Fudenberg and Kamada, 2012).
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As we do throughout this chapter, in this section, we continue to interpret type
structures merely as representations of hierarchies of beliefs. As we noted in Section
12.1.1 type structures are also used to model hard information. If one takes this view,
then one would want to replace the independence assumption CI with the statement
that, conditional on fypes, beliefs are independent. Together with the other epistemic
assumptions in Theorem 12.14, this would fully characterize IIR. However, we prefer
to model such hard information explicitly and distinctly from types. The basic space
of uncertainty should include the hard information, and each player’s hierarchy of
beliefs should be consistent with the hard information received. In such a structure,
types associated with different hard information are distinguishable—they have different
beliefs about the information. In particular, the suitable analogs to type structures 7
and TR are not equivalent in terms of hierarchies, and the types in the latter are not
redundant. Consequently, the epistemic assumptions in Theorem 12.14 would yield
different answers for the two structures, consistently with IIR.

We do not discuss almost common belief in the payoff structure within the
context of games with incomplete information. This is an issue which, starting from
Rubinstein’s (1989) e-mail game, has led to many interesting developments. Among
others, these include Monderer and Samet (1989)’s introduction of p-belief in game
theory, and the literature on global games and robustness (see, e.g., Carlsson and
Van Damme, 1993; Kajii and Morris, 1997a; Morris and Shin, 2003; Weinstein and
Yildiz, 2007). Some of these issues (in particular, almost common belief in rationality
for games with incomplete information) may benefit from epistemic analysis.

12.7. EXTENSIVE-FORM GAMES
12.7.1 Introduction

The results in the previous sections apply verbatim to the strategic form of a multistage
game. However, merely invoking those results disregards an essential implication of the
dynamic nature of the interaction: players may be surprised in the course of game play.
As is familiar from the textbook presentation of extensive-form solution concepts such as
sequential equilibrium (Kreps and Wilson, 1982), and refinements such as the Intuitive
Criterion of Cho and Kreps (1987), different assumptions about beliefs at unexpected
histories can lead to very different predictions. Epistemic game theory provides a rich
framework to analyze such assumptions. We now illustrate this using as an example
the debate on the relationship between backward induction and “common belief in
rationality.”

Consider the three-legged centipede game in Figure 12.2. A common, informal—
and, it turns out, controversial—argument suggests that “common belief in rationality”
implies that the backward-induction (BI) outcome should be played: Player 1, if rational,
will choose D at the third node; but then, if Player 2 is rational and believes that 1
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is rational, he should choose d at the second node; finally, if Player 1 is rational and
anticipates all this, she will choose D at the initial node.

The problem with this informal argument is that it is not immediately obvious what
is meant by “belief” and ‘“rationality” in an extensive game such as the Centipede.
Trivially, if one assumes that players commit to their strategies (perhaps by delegating
actual play to agents, or machines) at the beginning of the game, and are rational in the
sense of Section 12.3, then one reduces the situation to a game with simultaneous moves.
It is easy to verify that, in that strategic-form game, RCBR only eliminates strategy AA
for Player 1. Thus, choosing D at the initial node is consistent with RCBR, but so is
choosing A at the first node and then D at the third node. In particular, player 1 will
rationally commit to play strategy AD if she believes that 2 will play a with sufficiently
high probability. In turn, player 2 will commit to play a if he expects 1 to actually choose
D at the first node, because in this case, his choice will not matter. So, the profile (AD, a)
is consistent with RCBR.

A possible objection to this argument begins by noting that, if the game actually
reaches the second node, player 2 may regret his commitment to a. At the second node,
he knows that player 1 did not choose D. Thus, if he continues to believe that 1 has
committed to a strategy consistent with RCBR, he concludes that 1 will play D next. In
this case, player 2’s commitment to a results in a net loss of 1 “util.” Then, since 2’s choice
of a vs. d only matters if play reaches the second node, shouldn’t player 2 anticipate all
this and commit to d instead?

Despite their intuitive appeal, these considerations pertain to player 2’s knowledge,
beliefs, and expected payofls at the second node, and as such are irrelevant from the
ex-ante point of view. What then if one abandons this ex-ante perspective? Suppose
one takes into account the beliefs that players would actually hold at different points in the
game, and correspondingly adopts “sequential rationality” as the appropriate behavioral
principle (Kreps and Wilson, 1982). For player 2, this requires that his choice of a
or d be optimal given the beliefs she would hold at the second node. The preceding
argument now seems to apply: at that node, player 2 knows that 1 did not play D, and
it appears that player 2 should conclude that 1 is rationally playing AD, whatever 2’
initial beliefs might have been. Thus, it appears that the informal argument supporting
the BI solution does in fact apply if one takes the dynamic nature of the game into
consideration.

2,1 1,4 4,3

Figure 12.2 A three-legged centipede game.
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However, in an important contribution, Reny (1992) questions the argument just
given. Reny points out that, while this argument allows for the possibility that player
2’ beliefs about 1’5 play may change as the game progresses, it implicitly assumes that 2’s
beliefs about 1’s rationality will not. If one instead allows 2’s beliefs about 1’s rationality to
change, the BI prediction need not obtain, even though initially there is common belief
in (sequential) rationality. The intuition is as follows. Suppose that, before the game is
played, player 2 expects the BI outcome, with the usual rationalization: that is, 2 expects
1 to choose D at the initial node because 1 expects d, which is in turn justified by 2’
belief that 1 will choose D at the third node. Suppose further that, if the second node
is reached—an event that 2 does not expect to occur—then player 2 changes his mind
about 1’s rationality. This is not unreasonable: after all, if 1 expects 2 to choose d, 1 should
not play A at the first node, so observing A does provide circumstantial evidence to the
effect that 1 is nof rational. In particular, upon reaching the second node, player 2 revises
his beliefs about 1’s play and now expects 1 to choose A at the third node as well; this
makes his own choice of a sequentially rational. To sum up, player 2’s beliefs may initially
be consistent with BI, and—informally—with RCBR, and yet he may (plan to) play a.
Furthermore, suppose player 1 is rational and has correct beliefs about 2’s strategy and
beliefs. Then, 1 will rationally choose A at the first node, and then D at the third. The
point is that, while 2s beliefs about 1’s behavior and beliefs are incorrect, both players’
initial beliefs are consistent with RCBR.. Yet, BI does not obtain.®?

BI can be obtained if we translate into an epistemic model the assumptions that
players make conditionally optimal choices at all information sets and that they believe
the same is true of opponents at all subsequent decision nodes; see Subsection 12.7.5.
‘We find it more surprising that it also follows from a strengthening of the notion of belief
that is motivated by forward-induction ideas, i.e., from requiring that players “believe in
rationality as much as possible”: see Corollary 12.1 in Subsection 12.7.4.

This example illustrates that a careful, explicit modeling of interactive beliefs is
extremely important in extensive games. In particular, Reny’s argument points out a
hidden assumption in the informal argument relating “common belief in rationality”
and BI. These subtle issues suggest that a formal epistemic analysis may be insightful.
Indeed, as with simultaneous-move games, epistemic models provide the language and
tools to study the implications of common belief in rationality in dynamic games and
to study how modifications of the notion of rationality and belief characterize different
solution concepts. Moreover, as before, dynamic epistemic models can and should force
the theorist to make all assumptions explicit (or, at least, they can make it easier to spot
hidden assumptions).

92 One might further conjecture that assuming R CBR at every history may deliver the BI solution. However,
in many games, RCBR cannot possibly hold at every history: this is the case for centipede games, for
instance. See Reny (1993) and Battigalli and Siniscalchi (1999) for details and additional results.
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This chapter emphasizes this role of epistemic models. We begin by characterizing
initial RCBR in multistage games with observed actions, based on the work of
Ben-Porath (1997) and Battigalli and Siniscalchi (1999). We then introduce the notion
of strong belief, and show that, in complete type structures, rationality and common strong
belief thereof (RCSBR) is characterized by extensive-form rationalizability (Battigalli,
1997; Pearce, 1984). RCSBR captures a (strong) principle of forward induction (Kohlberg
and Mertens, 1986), as we indicate by means of examples. At the same time, RCSBR
in complete type structures implies that the backward-induction outcome will obtain
in generic perfect-information games; thus, it provides sufficient conditions for BI (see
Battigalli and Siniscalchi, 2002).

12.7.2 Basicingredients

For notational convenience, we focus on multistage games with observed actions
(Fudenberg and Tirole, 1991a; Osborne and Rubinstein, 1994). These are extensive
games in which play proceeds in stages. Perfect-information games are an example, but
more generally, two or more players may be active in a given stage, in which case they
choose simultaneously. The crucial assumption is that players observe all past choices at
the beginning of each stage. Although we shall not do so, it is trivial to add incomplete
information to such games (see Subsection 12.7.7). Most extensive games of interest in
applications are in fact multistage games with observed actions (henceforth, “multistage
game”) and possibly incomplete information.

We follow the definition of multistage games in Osborne and Rubinstein
(1994, Section 6.3.2), and introduce here only the notation that we need subse-
quently. We identify a multistage game ' with the tuple (I,H, (H;, S;i(+), upicr),
where:

e H is the set of (terminal and non-terminal) histories in I'. In a perfect-information
game, these are (possibly partial) sequences of actions. In the Centipede game of
Figure 12.2, (A, a, D) is a (terminal) history. In a general multistage game, histories
are sequences of action profiles. For simplicity, the profiles only indicate actions of
players who have nontrivial choices. In the game of Figure 12.3 in Example 12.8
below, (In) and (In, (T, L)) are both histories.

* 'H;is the subset of H where Player i has nontrivial choices, and ) denotes the initial
history;

o §;is the set of strategic-form strategies of Player i: these are maps from histories to
actions;

e H;(s;) is the set of histories in H; that are not precluded it i plays strategy s; (whether
or not any h € H;(s;) is actually reached thus only depends upon the play of is
opponents);
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o Si(h) is the set of strategies of player i that allow history & to be reached. The Cartesian
product S(h) = [, Si(h) = Si(h) x S—_;(h) is the set of strategy profiles that reach h.3
Note also that S;(¥) = S;;

e u;: S— Ris i’ strategic-form payoff function.

A history represents a (possibly partial) path of play. In a perfect-information game,

a history is an ordered list of actions
In order to analyze players’ reasoning at each point in the game, it is necessary to adopt

an expanded notion of probabilistic beliefs and correspondingly redefine type structures.

Specifically, we need a model of conditional beliefs. Following Ben-Porath (1997) (see also

Battigalli and Siniscalchi, 1999), we adopt the following notion, originally proposed by

Rényi (1955).

Definition 12.21. Fix a measurable space (2, X) and a countable collection B C X. A
conditional probability system, or CPS, is a map p : ¥ x B — [0, 1] such that:

1. Foreach Be B, u(-|B) € A(2) and w(B|B) = 1.

2. IfAe€ X and B,C € B with BC C, then u(A|C) = u(A|B) - u(B|C).

The set of CPSs on (2, X) with conditioning events B is denoted AP ().

A conditional probability system is a belief over a space of uncertainty €2, together
with conditional beliefs over a collection B of conditioning events B C Q.%* In the
simplest application of this definition we shall consider, we take the point of view of
Player i: the domain €2 of her uncertainty is the set S_; of strategy profiles that may
be played by her opponents, and, roughly speaking, B is the set of i’s information
sets. Formally, if play reaches a (nonterminal) history h € H, Player i can infer that her
opponents are playing a strategy profile in S_;(h). Thus, the relevant set of conditioning
events is B = {S_;(h) : h € H}, and p(-|S—;(h)) denotes the conditional belief held by
i at history h.

Condition 2 is the essential property of CPSs: it requires that the standard rule of
conditioning, or updating, be applied “whenever possible.” Note that player i’ initial
beliefs are given by u(:|S—;(#)) = w(-|S—;). Now suppose that, in a given play of the
game, the history reached next is . If Player i initially considered h possible—that is, if
w(S—_;(h)|S—;) > O—then her beliefs u(-|S—;(h)) must be obtained from p(-|S—;) via the
usual updating formula. If, on the other hand, Player i initially assigned zero probability
to the event that i was reached (more precisely, to opponents’ strategies that allow h
to be reached), then the standard updating rule clearly cannot apply, and w(-|S—;(h))

63 For general extensive games, one can define the sets S(h), Si(h) and S—;(h); perfect recall implies the
equality S(h) = S;(h) x S—;i(h). The class of games we consider do satisfy perfect recall, so this equality
holds.

%% For a decision-theoretic analysis of conditional probability systems, see Myerson (1997), Blume et al.
(1991), and Siniscalchi (2014).
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is unconstrained (except for the natural requirement that £ (S—;(h)|S—;(h)) = 1). How-
ever, suppose that the history reached after h is /', and u(S—;(h')|S—;(h)) > 0: in this
case, Condition 2 requires that Player i derive p(-|S—;(h’)) from p(-|S—;(h)) via standard
updating. That is, following a surprise event, a player is allowed to revise her beliefs in
an essentially unconstrained way; however, once she has done so, she has to conform
to standard updating until a new surprise event is observed. Analogous assumptions
underlie solution concepts such as sequential equilibrium (Kreps and Wilson, 1982) or
perfect Bayesian equilibrium (Fudenbergand Tirole, 1991b); however, these equilibrium
concepts add further restrictions on beliefs following surprise events.

For example, consider the centipede game of Fig. 12.2, and suppose that 2’ initial
beliefs w are w({AD}|S1) = nw({D}|S1) = 0.5. Then, conditional upon reaching the
second node, player 2 must assign probability one to AD. If instead u({D}|S1) =1,
then 2’ conditional beliefs at the second node must assign probability zero to strategies
that choose D at the initial node, but are otherwise unconstrained.

We now define sequential rationality with respect to a CPS over opponents’
strategies. Unlike, e.g., Kreps and Wilson (1982), but as in, e.g., Rubinstein (1991),
Reny (1992), and Dekel et al. (1999), we do not require that a strategy s; of Player i be
optimal at all histories, but only at those that are not ruled out by s; itself.®®

Here and subsequently, we denote by B_; the conditioning events S_;(h), h € H.

Definition 12.22. [(Weak) Sequential Rationality] Fix a player i€ 1, a CPS p €
AB-i(S_}) and a strategy s; € Si. Say that s; is a sequential best response to (v iff. for all
h € Hi(s;) and all s, € Si(h),

Byt [iGsis ] = Epgs_ian [milsi, )1
In this case, we say that the CPS 1 justifies the strategy s;.

That is, the strategy specified by s; at every information set it reaches is optimal given
the conditional beliefs at that information set.

Finally, we define type structures for multistage games. The definition is analogous
to the one for strategic-form games (Definition 12.3); the key difference is that types
are mapped to CPSs (rather than probabilities) over opponents’ strategies and types. An
essential element of the following definition is the assumption that each type holds beliefs
conditional upon reaching every history; thus, the conditioning events are of the form

S_i(h) X T_i.

5 Choices specified by s; at histories precluded by s; itself are payoff-irrelevant. They are important in
equilibrium notions such as Sequential Equilibrium because they represent other players’ beliefs about
i’s play at counterfactual histories; in particular, the requirement that choices at such histories be optimal
reflect the assumption that opponents believe i to be rational. For example, in the game of Figure 12.2,
1’s Bl strategy DD encodes 2s belief that 1 will choose D at the last node. But, in an epistemic approach
such assumptions can and should be modeled explicitly using opponents’ CPSs.



Epistemic game theory

Definition 12.23. A type structure for the multistage game I' = (I, H, (H;, Si(+), up)ier) is
atuple T = (I, (C—;, T;, B))ier), where each T; is a compact metric space,

1. C_,' = {S_l(h) xT_;:he H},

2. B, Ti— ACi(S_; x T_)),

and each B; is continuous.®® We also write Bin(t) = Bi(t)|S—i(h) x T_;).

Note that a type f; for player i specifies conditional beliefs at histories & where i
has nontrivial choices to make, and also histories at which i is essentially not active.
In particular, this is true for h = @, the initial history. This simplifies the discussion of
assumptions such as “common belief in rationality at a history” (e.g., initial CBR). It is
sometimes convenient to refer to a tuple (s, f) = (s;, f;)je as a state.

Battigalli and Siniscalchi (1999) construct a type structure for extensive games that is
canonical (types are collectively coherent hierarchies of conditional beliefs), embeds all
other structures as a belief~closed subset, and is complete. Their construction extends
the one we provided in Section 12.2 for strategic-form games. As in that section, we
denote by H; the set of X_;-based hierarchies of conditional beliefs for player i, and
by ¢, : T; = H; the belief hierarchy map that associates with each type in a type
structure 7 the hierarchy of conditional beliefs that it generates (cf. Definition 12.5).

As in the previous sections, it is convenient to introduce explicit notation for first-
order beliefs. The first-order beliefs of a type f; in an epistemic type structure for
an extensive game is a CPS on S_;. Thus, given a type structure (I, (C_;, T;, B))ier)
for the extensive game (I, H, (H;, Si(:), ui)ier), the first-order belief map f;: T; —
AB-i(S_,) for Player i is defined by letting fi(#;) (:|S—;(h)) = margg_ B;,(t) forall h € H.
It can be shown that f;(#;) is indeed a CPS on S_; with conditioning events S_;(h), h € ‘H.

We now define the key ingredients of our epistemic analysis. The following is
analogous to Definition 12.7 in Section 12.2.

Definition 12.24. [Rationality and Conditional Belief] The event “Player i is sequentially
rational” is

Ry = {(si,t;) € S; x T; : s; is a sequential best reply tof,-(t,»)}.67

For every measurable subset E_; C S—; X T_; and history h € H, the event “Player i would
believe that E_; if h was reached” is

Bip(E=) = {(si,t)) € Si X Ti = B (t)(E-;) = 1}.
66 The set AC~i(S_; x T_;) is endowed with the relative product topology.

7 This is a slight abuse of notation, because we have used R; to denote strategic-form rationality in
Definition 12.7.
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12.7.3 Initial CBR

We begin with the simplest set of epistemic assumptions that take into account the
extensive-form nature of the game, but are still close to strategic-form analysis in spirit.

Following Ben-Porath (1997), we consider the assumption that players are (sequen-
tially) rational and initially commonly believe in (sequential) rationality:

RICBR! = R;,
RICBRY = RICBR*™' N B; 4 (RICBR*?")  for k>0, [12.22]

RICBR; = (| RICBR.
k>0

Except for the fact that rationality is interpreted in the sense of Definition 12.24,
these epistemic assumptions are analogous to RCBR in simultaneous-moves games, as
defined in Eqgs. 12.9 and 12.10. Direct restrictions on beliefs are imposed only at the
beginning of the game—the “I” in RI CBRf-e refers to this feature. In particular, following
a surprise move by an opponent, Player i’s beliefs are not constrained.

We now illustrate the above definitions. Table 12.12 represents a type structure for the
Centipede game in Figure 12.2. Because we need to represent beliefs at different points
in the game, we adopt a more compact notation than in the preceding sections. For each
player, we indicate a numbered (non-exhaustive) list of strategy-type pairs; for each such
pair (s;, t;), we describe the (conditional) beliefs associated with type #; as a probability
vector over the strategy-type pairs of the opponent. By convention, all strategy-type pairs
that are not explicitly listed are assigned zero probability at all histories. Furthermore,
we omit beliefs at histories that are not relevant for the analysis.

To interpret, each row in the two tables corresponds to a pair consisting of a strategy
and a type for a player. Each vector in such a row is that type’s probability distribution
over the rows of the other player’s table, conditional on reaching the history described by
the column label. For example, consider the row numbered “1” in the table on the left,
which corresponds to strategy-type pair (D, t%) of player 1. The vector (1, 0) indicates
that, at the initial history ¢, type t% believes that player 2 would choose d at the second
node, and that 2s type is t;; the vector (0, 1) indicates that at the third node, i.e., after
history (A, a), type t} believes that player 2 actually chose a at the second node. The
interpretation of the other types is similar. Since we do not list strategy-type pair (D, t%)
in the table on the left, player 2 assigns probability O to it at every history.

Table 12.12 A type structure for the centipede game of Figure 12.2.

| Git)  Bielt)  Big() | (2.0 Bog() B (t2)

1| (D) (1,0) 0,1) -
AT SR T
3| 4.8 G D (0,1) $72 ” ”
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State (D, d, t%, t%) supports the BI prediction. Player 1 chooses D at the initial node
¢ because she expects 2 to play d at the second node (A); Player 2 initially expects 1
to play D at ¢, but indeed plans to choose d at (A) because, should he observe A, he
would revise his beliefs and conclude that 1 is actually (rationally) playing AD. Instead,
state (AD, a,13,15) corresponds to Reny’s story, as formalized by Ben-Porath: player
1 initially expects 2 to choose a, and thus best responds with AD; player 2 initially
expects 1 to play D and to hold beliefs consistent with backward induction, but upon
observing A he revises his beliefs and concludes that 1 is actually irrational and will
continue with A at the third node. Both states are consistent with RICBR. We obtain
RICBR% = {(D, t%), (AD, t%)} and RICBR; = {(d, t;), (a, t%)}. (Recall that subscripts
refer to players and superscripts to iterations.) Note that all strategy-type pairs for 2 are in
RI CBR;; hence, every type for 1 in RICBR% trivially assigns probability one to RICBR%
at the initial history, so RICBR% = RICBR%. Moreover, every type of 2 initially assigns
probability one to (D, t%), which is in RICBR!; hence, RICBR% = RICBR;. Repeating
the argument shows that RICBRf-e = RICBR} for all k> 1. Thus, as claimed in the
introduction to this section, the BI prediction is consistent with RICBR, but so is the
profile (AD, a).

As is the case for RCBR in simultaneous-move games, RICBR can be characterized
via an iterative deletion algorithm (Battigalli and Siniscalchi, 1999) as well as a suitable
notion of best reply set. Initial rationalizability (Definition 12.25) is like rationalizability,
in that it iteratively deletes strategies that are not best replies. In each iteration, players’
beliefs are restricted to assign positive probability only to strategies that survived the
previous rounds. The differences are that here “best reply” means “sequential best reply”
to a CPS, and only beliefs at the beginning of the game are restricted. Definition 12.26
is similarly related to best-reply sets, as in Definition 12.9.

Definition 12.25. (Initial Rationalizability) Fix a multistage game (I,H, (H;,
Si(), ui)icr). For every player i € I, let Sgd) = S;. Inductively, for every k > 0, let Sfid) be
the set of strategies s; € S; that are sequential best replies to a CPS ju € AB=i(S_;) such

that /L(Sk:(lpls_i) = 1. Finally, the set of initially rationalizable strategies for i is S35 =
k

M=o Sig:

Definition 12.26. Fix a multistage game (I, H, (H;, S;(:), ui)icr). A set B = l_[iel B, CS

is a sequential best-reply set (or SBRS) if, for every player i € I, every s; € B; is a sequential
best reply to a CPS u_; € AB-i(S_,) such that w(B_;|S-) = 1.

Bis afull SBRS if. for every s; € Bj, there is a CPS u_; € AB~i(S_;) that justifies it and
such that (i) p(B—;|S=;) = 1, and (ii) all sequential best replies to p_; are also in B;.

One can easily see that, in any extensive game, Sgo is the largest SBRS. We have:
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Theorem 12.16.

1. In any type structure T, projqRICBR is a full SBRS;

2. in any complete type structure T , proj¢RICBR = Sgo ;

3. for every full SBRS Q there exists a type structure T such that Q = projqRICBR.

Ben-Porath (1997) shows that, in generic perfect-information games, RICBR
characterizes the S® ¥ procedure discussed in Section 12.5. Since Sgo coincides with
S®W in such games, Theorem 12.16 generalizes Ben-Poraths. Thus, for generic
perfect-information games, Theorem 12.16 or, equivalently, Ben-Porath’s result, provide
an alternative, but related, interpretation of the S procedure: instead of relying
on common p-belief in strategic-form rationality (Definition 12.7), RICBR imposes
common 1-belief in sequential rationality (Definition 12.22) at the beginning of the
game, but no restrictions on beliefs at other points in the game.

12.7.4 Forward induction

While the literature has considered a wide variety of “forward-induction” notions,’® a

common thread emerges: surprise events are regarded as arising out of purposeful choices
of the opponents, rather than mistakes or “trembles.” In turn, this implies that a player
may try to draw inferences about future play from a past surprising choice made by an
opponent. This leads to restrictions on beliefs conditional upon unexpected histories—
precisely the beliefs that RICBR does not constrain.

In this section, we consider a particular way to constrain beliefs at unexpected
histories, namely iterated strong belief in rationality. We first define strong belief (Section
12.7.4.1) and provide examples showing how strong belief in rationality yields forward
and backward induction (Section 12.7.4.2). After providing the characterization results
in Section 12.7.4.3, we discuss important properties of the notion of strong belief in
Section 12.7.4.4.

12.7.4.1 Strong belief

Stalnaker (1998) and, independently, Battigalli and Siniscalchi (2002) introduce the
notion of “strong belief” and argue that it is a key ingredient of forward-induction
reasoning:

% The expression “forward induction” was coined by Kohlberg and Mertens (1986). The Battle of the
Sexes with an outside option is an early example, which Kreps and Wilson (1982) attribute to Kohlberg.
See also Cho and Kreps (1987). A recent axiomatic approach is proposed by Govindan and Wilson (2009)
(though axioms are imposed on solution concepts, not behavior or beliefs).
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Definition 12.27. (Strong Belief) Fix a type structure (I, (C—;, T;, B;)icr) for an extensive
game (I, H, (H;, Si(+), uj)ier). For any player i € I and measurable subset E_; C S_; x T_,
the event “Player i strongly believes that E_;” is

SB,’(E_,') = ﬂ Bi,h (E—i)~

heH:[S—i(h) X T—]NE—#

In words: if E_; could be true in a state of the world where / can be reached,”” then,
upon reaching h, player i must believe that E_; is in fact true. More concisely: player i
believes that E_; is true whenever possible.

12.7.4.2 Examples

In this subsection, we discuss the implications of strong belief in rationality for the
Centipede game (Figure 12.2) and the Battle of the Sexes with an outside option (Figure
12.3; see Kohlberg and Mertens, 1986).

Example 12.7. (The Centipede Game) Consider again the type structure in Table 12.12.
As noted above, type t% of player 2 initially believes that 1 is rational, but becomes convinced that
Player 1 is irrational in case 1 chooses A at ¢. However, note that there is a rational strategy-type
pair for player 1 that chooses A at ¢, namely (AD, t%). Strong belief in 1’s rationality, SB2(R1),
then requires player 2 to believe at the second node, i.e., at history (A), that 1 is rational. Therefore,
type t% of player 2 is not consistent with strong belief in 1’s rationality, because, conditional on
(A), he assigns probability one to 1 playing the irrational strategy AA. On the other hand,
consider now type t% : upon seeing (A) type t% assigns probability one precisely to 1’ strategy-
type pair (AD, t%); therefore, t% is the only type of 2 that is consistent with strong belief in 1’
rationality.

Since SBo(R1) = {t;} and t% expects player 1 to play D at the third node, R» N SB(R1) =
{(d, t%)} That is, the joint assumptions that 2 is rational and that he strongly believes in 1’
rationality yield the conclusion that 2 should plan to play d. Thus, in the type structure of Table
12.12, rationality and strong belief in rationality eliminate the non-BI outcome (AD, a). Observe
that this is achieved not by arguing that, at the second node, player 2 believes that 1’ initial choice
of A was a mistake—an unintended deviation from her planned strategy; rather, player 2 interprets
prior actions as purposeful, insofar as this is possible. If in addition player 1 is rational and strongly
believes Ry N SBy(Ry), one obtains the backward-induction outcome via forward-induction
reasoning. We will return to this point in Subsection 12.7.4.3.

Example 12.8. (Battle of the Sexes with an outside option) Consider the game in
Figure 12.3.

9 That is, if there is a profile (s—;,t—;) € E_; such that s_; € S_;(h).
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An informal forward-induction argument runs as follows: InB is a strictly dominated strategy
for Player 1, because Out yields a strictly higher payoff regardless of 2’s choice. “Therefore,” if the
simultaneous-moves subgame is reached, Player 2 should expect Player 1 to play T, and best-
respond with L. But then, if Player 1 anticipates this, she will best respond with In, followed by
T (i.e., she will choose strategy InT).

The right-hand side of Figure 12.3 displays a type structure, denoted T !, where strong belief
in rationality reflects this reasoning process. Note that InB is irrational regardless of 1’ beliefs,
and furthermore In'l’ is irrational for 1’5 type t}, because this type expects 2 to play R. Thus,
Ry = {(Out, t%), (InT, t%)}; moreover, all strategy-type pairs are rational for Player 2. Neither
types t% nor type t% are in SBa(R1). To see this, first note that, conditional on every history, type
t% assigns probability one to the irrational strategy-type pair (InT, t}). Second, type t% initially
believes that Player 1 rationally chooses Out, but upon observing (In), he switches to the belief
that 1 plays the irrational strategy InB. On the other hand, tg is consistent with SBy(Ry).
Since furthermore L is rational for type tg, we have Ry N SB>(R1) = {(L, ti)}. Consequently,
if one further assumes that 1 strongly believes that Ry N SBx(Ry), type t% of player 1 must be
eliminated (because it assigns probability one to (R, t%) & Ry N SBy(Ry) at every history). Thus,
Ri N By yp(Ry N SBy(Ry)) = {(InT, t%)}. We have obtained the forward-induction outcome of
this game, as claimed. Notice that the assumption that 1 initially believes that Ry N SBy(Ry) is
an assumption on how 1 expects 2 to revise his beliefs in case 2 is surprised: specifically, 1 expects
2 to maintain the belief that 1 is rational as long as possible.

In the preceding examples, iterated strong belief in rationality selects backward- and
forward-induction outcomes. Theorem 12.17 and Corollary 12.1 in Section 12.7.4.3
show that in complete type structures this always holds.” The following example shows
that, in arbitrary, small type structures, these results need not hold. Section 12.7.4.4
discusses the reasons for the different conclusions reached in Examples 12.8 and 12.9.
Theorem 12.17 also provides a characterization of iterated strong belief in rationality for
arbitrary type structures.

Gi,1)  Bre(t)  Bran ()
1 1 | (B, r1) 0,1,0 0,1,0
2 | (T, r) 0,1,0 0,1,0
Out In 3| (Out i)y 01,0 0,1,0
R 4| t) 0,0,1 0,0,1
N R (52, fz) Bao(t2)  Bom(2)
1] L)y 01,00 0,1,0,0
2,2 T| 3.1 (00 ” ’
1 ’ ’ 2 | (R é) 0,0,1,0 1,0,0,0
B| 00|13 30 @) 0001 0,0,0,1

Figure 12.3 Battle of the Sexes with an outside option and the type structure 77,

70 Reecall that in a complete type structure the belief maps are onto.
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Example 12.9. Consider the type structure in Table 12.13, denoted TN, for the game in
Figure 12.3.

Note that, relative to the type structure T given in the table in Figure 12.3, we have
removed type t%for Player 1. As a consequence, now Ry = {(Out, t})} This implies that there
is no rational strategy-type pair of Player 1 who plays In in the type structure TNFL. Therefore,
upon observing In, Player 2’ beliefs are unconstrained by strong belief; thus, type t% is consistent
with SBo(Ry) in TN, Therefore, repeating the analysis in Subsection 12.7.4.2 now leads to a
different conclusion: if Player 1 initially (or strongly) believes Ry N SBa(Ry), and if she is rational,
she will choose the action Out at the initial node, contrary to what the standard FI argument for
this game predicts. A

12.7.4.3 RCSBR and extensive-form rationalizability

Battigalli and Siniscalchi (2002) consider the implications of rationality and common
strong belief in rationality (RCSBR), which is the strong-belief counterpart of [12.8]
and [12.9] for belief and, respectively, [12.18] for p-beliet. For every player i € I, let

RCSBR! = R;,
RCSBR* = RCSBR¥"' N SB,(RCSBR*]")  for k>0, [12.23]

RCSBR; = (| RCSBRY.
k>0

As was the case for iterated p-belief, it does matter whether we define mutual and
common strong belief as above, or by iterating the mutual strong belief operator as
in [12.7]. Once again, the reason is that strong belief does not satisfy the Conjunction
property in [12.5]. We discuss this further in Section 12.7.4.4.

To see why RCSBR selects the forward-induction outcome, as illustrated by
Example 12.8, we study [12.23] in more detail. Consider the two-player case for
simplicity, take the point of view of player 1, and focus on k = 2 to illustrate:

RCSBR? = Ry N SB(Ry) N SBy (R N SBy(Ry)). [12.24]

Note that, since Rp N SBx(R1) C Ry, every history h in an arbitrary game can fall
into one of three categories: (0) histories inconsistent with Ry and hence a fortiori
with Ry N SB>(R1); (1) histories consistent with Ry but not with Ry N SB(R4); and

Table 12.13 Type structure T for the battle of the sexes.
| Git)  Bie()  Biaw(n)
1| (InB, 1) 0,1 0,1
2 | (InT, 1)) 0,1 0,1
3 | (Out, t]) 0,1 0,1

| (2.0)  Bop(2)  Boaw(r2)
1] @ 01,0 0,1,0
2| R, 5) 00,1 1,0,0
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(2) histories consistent with Ry N SB>(R1) and hence a fortiori Ry. Equation [12.24]
requires the following: at histories of type 1, player 1 should assign probability one to Ry;
at histories of type 2, she should assign probability one to Ry N SBy(R).”! Interpreting
Ry N SB>(R1) as a “strategically more sophisticated” assumption about 2’s behavior and
beliefs than Ry, [12.24] requires that, at any point in the game, players draw inferences
from observed play by attributing the highest possible degree of strategic sophistication
to their opponents.”’?

Theorem 12.17 below shows that RCSBR is characterized by extensive-form
rationalizability (Pearce, 1984) in any complete type structure, and by the notion of
“extensive-form best reply set” (Battigalli and Friedenberg, 2012) in arbitrary type
structures. Extensive-form rationalizability is similar to initial rationalizability (Definition
12.25), except that beliefs are restricted to assign positive probability to strategies that
survive the previous rounds at all histories where it is possible to do so: see [12.25].
Extensive-form best-reply sets bear the same relationship to SBRSs (Definition 12.26).

Definition 12.28. [Extensive-Form Rationalizability] Fix a multistage game (I, H, (H;,
Si(+), ui)ier). For every playeri € I, let S? = S;. Inductively, for every k > 0, let Sf be the set
of strategies s; € :Sf_l that are sequential best replies to a CPS € AB~i(S_;) such that

for every h € H,;, S_i(y NS £ G implies pw(S*HS_i(h) = 1. [12.25]
8 = Me=0 Sk is the set of extensive=form rationalizable strategy profiles.

Definition 12.29. Fix a two-player multistage game ({1, 2}, H, (H;, Si(-), ui)i=12).”> A
set B= By X By C S is an extensive-form best-reply set (or EFBRS) if, for every player
i =1,2, every s; € By is a sequential best reply to a CPS ju_; € AB=i(S_}) such that, for every
h € H; with S—_;(h) N B_; # @, w(B—;|S—;i(h)) = 1.

Bis afull EFBRS if, for every i = 1,2 and s; € By, there is a CPS pu_; € AB=i(S_}) that
Jjustifies s;, and such that (i) w(B—;|S—;) = 1 for every h € H; that satisfies S_;(h) N B_; # @,
and (ii) all sequential best replies to (L_; are also in B;.

Theorem 12.17.

1. In any type structure T for a two-player multistage game, projgRCSBR is a_full EFBRS;

2. in any complete type structure T for an arbitrary multistage, projgRCSBR = 50,

3. for every full EFBRS Q of a two-player multistage game, there exists a type structure T such
that Q = projqRCSBR.

7! Because strong belief does not satisfy conjunction, the right-hand side of [12.24] is not equivalent to
Ry N SB1(Ry N SBy(RY)).

72 Battigalli (1996a) calls this the Best Rationalization Principle.

73 We restrict attention to the two-player case to avoid issues of correlation (see Battigalli and Friedenberg,
2012, Section 9c¢ for additional discussion).
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3,0 1,2 2

Figure 12.4 Backward and forward induction.

One consequence of Theorem 12.17 and the notion of strong belief is that, if a
history /h is reached under a strategy profile s € 8%, then there is common belief in
rationality at h. Thus, while there may be histories where common belief in rationality
may fail to hold, it does hold on the path(s) of play predicted by RCSBR. Though he
does not use type structures, Reny (1993) defines iterative procedures motivated by the
assumption that rationality is common belief at a given history.

Extensive-form rationalizability yields the BI outcome in generic perfect-
information games (Battigalli, 1997; Heifetz and Perea, 2013). Combining this with
Theorem 12.17, we obtain the following

Corollary 12.1. In any complete type structure T for a generic perfect-information game T,
any strategy profile s € projgRCSBR induces the backward-induction outcome.

Corollary 12.1 thus states that RCSBR in a complete type structure provides a
sufficient epistemic condition for the BI outcome. Note that Corollary 12.1 does not
state that s € projgRCSBR is the (necessarily unique) BI profile, but only that such an s
induces the BI outcome. Indeed, the BI profile may even be inconsistent with RCSBR.
Both points are illustrated by the game in Figure 12.4, due to Reny (1992).

The unique BI profile in this game is (DD, dd). However, the extensive-form
rationalizable profiles—hence, the profiles supported by RCSBR in complete type
structures—are ({DD, DA}, ad). To see this, note that strategy AD is strictly dominated
by choosing D at the initial node. Hence, if play reaches the second node, player 2
must conclude that player 1 is playing AA, which makes ad strictly better than choosing
d at the second node (note that strategy aa is not sequentially rational). In turn, this
leads player 1 to choose D at the first node; hence, the backward-induction outcome
obtains. However, RCSBR implies that, conditional upon observing A at the first node,
and hence reaching the second node, 2 would expect that 1 will continue with A at the
third node. Therefore, RCSBR implies that 2 would play ad, which is not his backward-
induction strategy.

12.7.4.4 Discussion
The different predictions in Examples 12.8 and 12.9 raise several questions. First, in one
case, the event RCSBR yields the forward-induction outcome, and in the other case
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it does not. While we noted that the forward-induction conclusion relies on the type
structure being sufficiently rich, this merits further discussion. Relatedly, in Example
12.8 type £ in 7' is in RCSBR, while in Example 12.9 type £ in TN, which has
exactly the same hierarchy of beliefs, is not in RCSBR. This raises doubts about whether
RCSBR depends only on belief hierarchies, or on the type structure as well, i.e., whether
it is an elicitable assumption or not. In this section we address these concerns. It is useful
to begin with a discussion of properties of strong belief.

Strong belief is not monotonic, and violates conjunction (cf. [12.5]).”* To see this,
consider again the type structure in Table 12.12 for the Centipede game, and focus on
the events

SBi(R> N SBy(Ry)) and SB;(R2) N SBi(SBx(Ry)).

As shown in Example 12.7, R N SBx(R1) = {(d, t%)}. Now observe that type t%
initially assigns probability one to {d, t;)}. Furthermore, if player 2 plays d, history
(A, a) i1s not reached; hence, strong belief in R, N SBx(R1) = {(d, t%)} imposes no
restriction on beliefs at (A, a). Therefore, type t% strongly believes Ry N SBx(Ry),
so SB1(Ry N SBy(R1)) # @. On the other hand, SB{(SBy(R1)) =@. To see this,
note first that SBo(Ry) = Sy X {t;} This event is consistent with the third node, i.e.
history (A, a), being reached; therefore, strong belief in SB>(R1) requires that player
1 assign probability one to this event conditional on (A, a). However, no type of
player 1 in Table 12.12 assigns positive probability to 2’s type t% at that history. Hence,
SB1(R2) N SB1(SB2(R1)) =¥ # SB1 (R N SB>(R4)).”> This failure of monotonicity
and conjunction plays an important role in the subsequent discussion.

Throughout this chapter, we interpret events such as R;, B;(E_;) or SB;(E_;) defined
in a given type structure 7 as “player i is rational,” “player i believes E_;,” or “player i
strongly believes E_;.” While convenient, this is not quite accurate. Every type structure
defines the set of belief hierarchies that are allowed for each player. For instance, consider
type structure 7N in Example 12.9 and denote by (pf\lF I'its belief hierarchy maps
(Definition 12.5). The event Ry in TN should be interpreted as “player 1 is rational
and her belief hierarchy is goi\‘TF I (t}).” Similarly, the event B; (R1) should be interpreted
as “player 2 initially believes that ‘1 is rational and her belief hierarchy is (pjl\]F t (t})’ and
2% belief hierarchy is either (pé\]F t (t;) or (pé\]F t (t%).” We typically avoid such convoluted
statements, but must recognize that the simpler statements “1 is rational” and “2 initially
believes that 1 is rational” are precise interpretations of Ry and By ¢ (R1) only if we define
these events in a rich type structure—one that generates all hierarchies of (conditional)
beliefs.

74 We noted in Footnote 10 that monotonicity is equivalent to the “C” part of conjunction. Indeed, that
is the only part of conjunction that strong belief does not satisfy.

75 It can also be shown that SBj(R») N SB;(SB2(Ry)) is empty in any complete type structure for the
centipede game in Figure 12.2.
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as consistent with RCSBR, this is not the case for the former. We can say, however, that
strategies in an EFBRS are consistent with “rationality plus additional assumptions on
hierarchies, and common strong belief thereof.”

So, what is the “right” solution concept? If the analyst is interested in the implications
of RCSBR, without any additional assumptions, then the answer is N (Analogously,
for simultaneous-move games, the answer is S°°). If the analyst wants to impose some
particular additional assumption about beliefs, then the answer is a particular EFBRS;
which EFBRS depends on the assumption. (For simultaneous-move games, the answer
is a particular BRS). Finally, if the analyst wants to be “cautious” and consider the
predictions that would arise were she to adopt any possible assumption, then the answer is
the (player-by-player) union of all EFRBS’s. (For simultaneous-move games, the answer
is the union of all BRS’, which in this case is again S°°.) The bottom line is that,
when interpreting assumptions involving strong belief, one should be careful to specify
whether or not additional assumptions are imposed on players’ beliefs.

These considerations apply in particular to the relationship between strong belief
and forward-induction reasoning. As we noted, the basic intuition underlying forward
induction is that players attempt to maintain the assumption that their opponents are
rational as long as possible, in the face of unexpected behavior. This suggests that no a
priori constraint is placed on players’ attempt to rationalize deviations. In other words, a
connection can be established between forward induction and (iterated) strong belief in
complete type structures. Theorem 12.17 confirms this. When strong belief is applied in
small type structures, there is an interaction between the rationalization logic of forward
induction and whatever assumptions are exogenously imposed on beliefs; this yields
EFBRS?s, as stated in Theorem 12.17.77

12.7.5 Backward induction

As we noted above, RCSBR in a complete type structure yields the backward-induction
outcome, but not the backward-induction profile. The game of Figure 12.4 provides an
example. An alternative way to get backward induction is to simply make explicit the
assumption inherent in BI: at all nodes where he is active, i makes conditionally optimal

simultaneous-move subgame. Therefore, Q is an EFBRS, because Q; does not reach the subgame and
so there are no further restrictions on 2% beliefs. Yet, the sets Q and S are disjoint, and induce distinct
outcomes.

79 An equivalent way (in our setting) to incorporate belief restrictions in the analysis is to work in the
canonical type structure and explicitly define events C; that formalize the desired additional assumptions.
Then, studying the behavioral implications of events such as R; N C; N SBi(R—; N C_;) is the same as
studying the implications of the event R; N SB;(R_;) in a type structure that incorporates the desired
restrictions on beliefs. A detailed discussion of these issues can be found in Battigalli and Friedenberg
(2012) and Battigalli and Prestipino (2012).
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Fortunately, this is not an issue when interpreting results that use monotonic belief
operators. For example, consider Theorem 12.1. On the one hand, the event RCBR
is accurately interpreted as “rationality and common belief in rationality,” RCBR, only
in a complete type structure. Indeed, in smaller type structures, as explained earlier,
the event RCBR should be interpreted as RCBR jointly with additional assumptions
about hierarchical beliefs. On the other hand, because of Monotonicity,”® the hierarchies
consistent with the event RCBR in a small type structure are also consistent with RCBR
in a complete type structure. Consequently, every full BRS is a subset of the rationalizable
set S*°. Since the latter strategies are unambiguously interpreted as consistent with
RCBR (because S = projqRCBR in a complete type structure), so are the former.

Now consider strong belief. A cumbersome but precise interpretation of the event
SB>(Ry) in the type structure 7N is as follows: “player 2 believes that ‘player 1 is
rational and her belief hierarchy is (pi\‘YF t (t%)’ at every history that can be reached if this
assertion is true, and 2% belief hierarchy is either goJZVF 1 (t;) or (pé\‘YF I (t%).” If instead we
define event SBy(R1) in the type structure 71 of Figure 12.3, its precise interpretation
is, “player 2 believes that ‘player 1 is rational and her belief hierarchy is either (pf ! (t%)
or (pfl(t%)’ at every history that can be reached if this assertion is true, and 2’ belief
hierarchy is (pgl(t%),(pgl(tg) or (pgl(tg).”

Observe that these statements are expressed in terms of strategies and hierarchies
of conditional beliefs, and hence, they may be elicited in principle. Thus, there is
no conflict between our goal of elicitation and the notion of strong belief. The
apparent conflict arises from an imprecise interpretation of strong belief in small type
structures.

That said, the interpretation of the event RCSBR in small type structures is subtle
because strong belief does not satisfy Monotonicity. As above, the event RCSBR is
accurately interpreted as “rationality and common strong belief in rationality,” RCSBR,
only in a complete type structure. However, in contrast to the case of RCBR, due to
the failure of Monotonicity, the hierarchies consistent with the event RCSBR in a small
type structure need not be consistent with RCSBR in a larger (a fortiori, in a complete)
type structure.”” Hence, a full EFBRS need not be a subset of the extensive-form
rationalizable set $°.7% Thus, while the latter strategies can accurately be interpreted

76 If a hierarchy of player 2 is consistent with belief in 1% rationality under the assumption that 1’ beliefs are
constrained in some specific way, then by monotonicity it is also consistent with belief in 1’s rationality
without additional restrictions on 1’s beliefs (and obviously this argument can be iterated).

77 Recall that, in Examples 12.8 and 12.9, the hierarchy gz)é\ypl(tg) :vgogl(tg) of player 2 is consistent with
strong belief in the statement “1 is rational and 1’ hierarchy is (p{\‘F ! (t}),” but not with strong belief in
the statement “1 is rational and 1’s hierarchy is either gz)fl(t}) = (pzl\rFI(t}) or (pfl(t%).”

78 Consider for instance the game in Figure 12.3. As we noted above, S%® = {InT} x {L}. However, consider
the set Q = {Out} x {R}. The strategy Out for player 1 is the unique (sequential) best reply to any CPS
that initially assigns probability 1 to R. Furthermore, R is the unique sequential best reply to the CPS
that assigns probability one to Out at the beginning of the game, and to InB conditional on reaching the
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choices, i believes that his opponent j does so at subsequent histories where she is active,
i believes that j believes that k will also choose optimally at subsequent nodes where k is
active, etc.; see Perea (2011D).%"

Aumann (1995) (see also Balkenborg and Winter, 1997) derives the backward
induction profile from “common knowledge of rationality” in a very different epistemic

1‘81

model.®" As it does not explicitly incorporate belief revision, Aumann’s model lies

outside our framework.

12.7.6 Equilibrium

The epistemic analysis of equilibrium concepts for extensive games is largely yet to be de-
veloped. In this subsection, we briefly describe results on subgame-perfect equilibrium,
self-confirming equilibrium in signaling games, and the relationship between EFBRS’s
and (subgame-perfect) equilibrium.

A basic question is whether sufficient conditions for subgame-perfect equilibrium
(Selten, 1975) can be provided by adapting the results of Aumann and Brandenburger
(1995). Theorem 12.5, on two-player games, can be easily adapted. As this is not in the
literature, we sketch the steps here.

To avoid introducing new notation, we describe i’s play in an extensive-form game
using a CPS o; on S;, instead of using behavioral strategies.®® Thus, a subgame-perfect
equilibrium (SPE) of a multistage game (I, H, (H;, Si(+), u;)ier) 1s a profile (0;);es, where
o; € ABi(S)) is a CPS on S; with conditioning events B; = {S;(h) : h € H} for each
player i, such that, at every history h € H, (Gi('|5i(h)))iel is a Nash equilibrium of
the strategic-form game (I , (Sl-(h), u,')l, - I). To clarify how this definition is related to the
usual ones, consider the profile (OutB, R) in the game of Figure 12.3. Player 1’s strategy is
represented by any CPS o1 such that o1 ({OutT, OutB}|S1) = 1 and o1 ({InB}|S1(h)) =
1, where h denotes the simultaneous-move subgame. Player 2 strategy is represented
by the CPS o, defined by 02({R}|S2) = 02({R}|S2(h)) = 1. It is easy to verify that the
profile of CPSs (01, 02) satisfies the definition of SPE we have just given.

Turning to the epistemic analysis, we adapt the notation from Section 12.4: given a
CPS u,; € AB*"(S_l-) and a type structure (I, (C—;, T}, B,)ic1), let [14;] be the event that i’s
first-order belief is p;; given a profile (1;);es, the event [ ] is defined as the intersection

80 Stalnaker (1998) discusses belief revision in dynamic games. In particular, he characterizes backward
induction in a similar way to that discussed earlier, but interprets belief in subsequent optimality as a
consequence of a suitable independence assumption on beliefs about future and past play. See also Perea
(2008).

81 See also Aumann (1998) and Samet (1996). Samet (2013) extends Aumann (1995)% analysis from
knowledge to belief.

82 We use o to denote the CPS on S; that describes i’s play, as opposed to i’s beliefs, denoted w; below,
which are defined on S_;.
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ofall [w,] for i € I. Finally, define the event “Player i makes a rational choice at history
he™H” as

Rip =1 (siti) : i € arg max ui(sffiu()) .5
sleSi(h)
To see how this is different from event R; (Definition 12.24), consider strategy InB in
the game of Figure 12.3. This is strictly dominated, hence (sequentially) irrational in the
entire game; however, it does specify a choice in the simultaneous-move subgame that
is a best reply to, e.g., the belief that assigns probability one to 2 playing R.

We can now state the counterpart to Theorem 12.5. Fix a CPS u; € AB-i(S_)) for
i=1,2.If [u] N (Nyer Bi(Ry N [1]) # O, then (01,02) = (1o, ) is a SPEH

As is the case for simultaneous-move games, the situation is more delicate if there
are more than two players. One approach is to adapt the definitions of agreement and
independence of first-order beliefs in Section 12.4.4, thereby obtaining a counterpart to
Theorem 12.6. Alternatively (cf. Barelli, 2010), one can adapt the notion of common
prior (Definition 12.14) and obtain a counterpart to Theorem 12.7.% In order to
adapt the arguments used to prove Theorem 12.7, the common “prior” for a type
structure (I, (C_;, T;, B,)ier) must be defined as a CPS p € AB(S x T), where B =
{S(h) : h € H} such that B, ,(t;) = margg 7 M(-[S(h) X {t;} x T_;) for all histories
heH.B°

Asheim and Perea (2005) provide an epistemic characterization of sequential equi-
librium (Kreps and Wilson, 1982) in two-player games. In their analysis, beliefs are
represented using a generalization of lexicographic probability systems.

A different approach is explored by Battigalli and Siniscalchi (2002) in the con-
text of signaling games. We do not formalize it, because doing so would require
introducing notation that we do not use anywhere else in this chapter. Roughly
speaking, they show that, in any epistemic model, if there is a state in which players’
first-order beliefs are consistent with an outcome of the game (that is, a probability

83 Recall that Sfi(ty) is t’s first-order belief, and f; ;,(;) is the conditional of the CPS f;(#;) given history h.

84 Alternatively, one could get sufficient epistemic conditions for SPE by assuming that conjectures are
given by w and, at every history, there is mutual belief in R N [u], where R is the event that all players
are sequentially rational in the sense of Definition 12.24. This is the approach taken by Barelli (2009).
However, these conditions rule out the SPE (OutB, R) in the game of Figure 12.3. More generally, they
may preclude certain SPE in games in which some histories can only be reached if a player plays a strictly
dominated strategy.

85 In this approach, since we continue to assume that players only hold beliefs about their opponents, the
independence condition in Definition 12.15 would also have to be adapted. Note that Barelli (2009)
allows players to hold beliefs about their own strategies, and hence does not require any additional
condition.

86 Barelli (2009) notes that this notion is very demanding, because it requires no betting even conditional
upon histories that players do not expect to be reached.
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distribution over terminal histories), and there is initial mutual belief in rationality
and in the event that first-order beliefs are consistent with the outcome, then there
exists a self-confirming equilibrium that induces that outcome. They also provide
necessary and sufficient epistemic conditions for the outcome to be supported in
a self-confirming equilibrium that satisfies the Intuitive Criterion of Cho and Kreps
(1987).

Finally, Battigalli and Friedenberg (2012) relate EFBRSs, and hence iterated strong
belief in rationality, with Nash and subgame-perfect equilibrium in two-person mul-
tistage games with observable actions. Every pure-strategy SPE is contained in some
EFBRS. Moreover, under a no-relevant-ties condition (Battigalli, 1997), a pure-strategy
SPE profile is an EFBRS. In perfect-information games that satisfy the “transfer of
decision-maker indifference” of Marx and Swinkels (1997), if a state (s,f) in a type
structure is consistent with the event RCSBR, then s is outcome equivalent to a Nash
equilibrium. Conversely, in games with no relevant ties, for any Nash equilibrium profile
(51, s2) such that each strategy s; is also a sequential best reply to some CPS on S_;, there
is a type structure and a profile ¢ of types such that (s, f) is consistent with the event
RCSBR.*’

As should be clear from the above, this area is fertile ground for research. For instance,
it would be interesting to investigate the implications of strong belief in rationality, and of
the best-rationalization principle, in an equilibrium setting. Care is needed; for instance,
one cannot assume that—as may appear natural—there is mutual or common belief in
the conjectures at every information set, because that may be inconsistent with the logic

of best rationalization.5%:%”

12.7.7 Discussion

Strategies: The choice-theoretic interpretation of strategies deserves some comment.
In a simultaneous-move game, whether or not a player plays a given strategy is easily
observed ex-post. In an extensive game, however, a strategy specifies choices at several
histories as play unfolds. Some histories may be mutually exclusive, so that it is simply

87 Proposition 7.1 in Brandenburger and Friedenberg (2010) implies that a similar relationship exists between
Nash equilibria of perfect-information games and the epistemic conditions of lexicographic rationality
and common assumption thereof, which we analyze in Section 12.8.

88 For example, consider the game in Figure 12.2. RCSBR suggests that, on the one hand, player 1 believes
that player 2 will choose d at his final decision node. On the other hand, if player 2 observes that player
1 has unexpectedly chosen A at her first move, then RCSBR within a complete type structure requires
that player 2 explain this event by believing that player 1 believes that player 2 will choose a at his final
decision node. In other words, RCSBR in a rich type structure implies that the equilibrium continuation
strategies are not commonly believed at the third node.

89 Reny (1992) introduces a notion of explicable equilibrium that is similarly motivated, though his analysis
does not employ type structures and is thus closer to Pearce (1984)%s definition of extensive-form
rationalizability.
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not possible to observe whether a player actually follows a given strategy. Furthermore,
it may be the case that epistemic assumptions of interest imply that a given history h
will not be reached, and at the same time have predictions about what the player on
the move at i would do if, counterfactually, & was reached. Consider for instance the
Centipede game of Figure 12.2: as we noted above, RCSBR (in the type structure of
Table 12.12) implies that player 1 will choose D at the initial node, and that player
2 would choose d if the second node was reached. Verifying predictions about such
unobserved objects seems problematic. This is troublesome both in terms of testing
the theory, and because it is not obvious how to elicit players’ beliefs about such
objects.

One obvious way to avoid this difficulty is to assume that players commit to
observable contingent plans at the beginning of the game. While this immediately
addresses the issue of verifiability, it seems to do so at the cost of turning the extensive
game into a strategic-form game. However, one can impose the requirement that
players prefer their plans to be conditionally, not just ex-ante optimal, even at histories
they do not expect to be reached.”” In this case, while players commit to specific
plans, the extensive-form structure retains its role. Siniscalchi (2014) develops this
approach.

An alternative approach, explored in Battigalli et al. (2011D), is to take as primitives
the paths of play, rather than strategy profiles. In this case, at any history, player i chooses
an action, given her beliefs about possible continuation paths. Notice that these paths
include actions by i’s opponents as well as actions that i herself takes. In this respect,
such a model requires introspective beliefs about one’s future play, in conflict with one
of our key desiderata (Section 12.2.6.3). However, this approach does resolve the issue
of verifiability of predictions, because these are now observable paths of play and not
strategy profiles.”!

It also enables decomposing the assumption of sequential rationality into the
assumptions that (i) the player expects her (future) actions to be optimal given her (future)
beliefs, and (ii) her actual choices at a state coincide with her planned actions.””> This
more expressive language can be used to elegantly characterize backwards induction and
should also be useful to study environments where players do not correctly forecast their
own play (including cases where utility depends on beliefs and are hence not necessarily
dynamically consistent).””

90 This is related to, but weaker than lexicographic expected-utility maximization (Definition 12.32); for
details, see Siniscalchi (2014).

91 A related model of conditional beliefs in dynamic games is considered by Di Tillio et al. (2012).

92 See also Bach and Heilmann (2011).

93 The characterization is elegant in that it obtains backward induction by weakening the assumption of
correct forecasting (which is a way to model “trembles”).
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Incomplete information: The definition of multistage games can be easily extended to
incorporate payoff uncertainty. As for simultaneous-move games, we specify a set ® of
payofT states or parameters, and stipulate that each player’s payoft function takes the form
u;: ® x S — R. If one assumes that payoff states are not observed, the analysis in the
preceding subsections requires only minimal changes.”* First-order beliefs are modeled
as CPSs on ® x S, with is conditioning events being B_; = {® x S_;(h) : h € H}.
In an epistemic type structure, the conditioning events are C_; = {® x S_;(h) x T_; :
h € 'H}, and the belief maps are defined as functions §; : T; — AC(O x S_; x T_)).
Chen (2011) and Penta (2012) extend the notion of ICR to dynamic games. It is
also straightforward to adapt the notion of A-rationalizability to allow for incomplete
information; one obtains versions of initial or strong rationalizability that incorporate
commonly-believed restrictions on first-order beliefs. Epistemic characterizations adapt-
ing Theorems 12.16 and 12.17 may be found in Battigalli and Siniscalchi (2007) and
Battigalli and Prestipino (2012).

12.8. ADMISSIBILITY

We now return to strategic-form analysis to analyze epistemic conditions and solution
concepts related to admissibility, i.e., ruling out weakly dominated strategies. In particular,
we will discuss epistemic conditions for iferated admissibility. This continues the analysis
in Section 12.5: as noted therein, there is a conceptual inconsistency between the
“everything is possible” logic behind admissibility and common-belief conditions. In
Section 12.5, we introduced the notion of p-belief to resolve this inconsistency and
weakened the notion of common belief accordingly. This section explores an alternative
approach: we replace probabilistic beliefs with the richer concept of a lexicographic
probability system (LPS). These are related to the CPSs introduced in Section 12.7 to
study extensive-form solution concepts; we elaborate on the connection in Section
12.8.4. We saw that common p-belief in rationality yields S® . We shall now see
that suitable epistemic conditions characterize iterated admissibility (and its best-reply
set analog, “self-admissible sets”). The main idea (Brandenburger et al., 2008) is to
introduce an analog to the notion of strong belief (Definition 12.27) for LPSs, called
assumption.

A lexicographic probability system is a finite array i, . . ., (g of probabilistic beliefs
over, say, opponents’ strategy profiles; (i, is the kth level of the LPS (distinct from a kth
order belief in a belief hierarchy). The lowest-level beliefs are the most salient, in the sense
that, if a strategy s; yields a strictly higher expected utility than another strategy s; with
respect to fig, then s; is preferred to s.. If, however, s; and s have the same fy-expected
utility, then Player i computes pq-expected utilities, and so on. Thus, higher-level

94 Even if there is private information, the changes required to adapt the analysis are only notational.
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(less salient) probabilities are used to break ties.”” In order to formalize the notion of
“common assumption in lexicographic rationality,” we need to modify our notion of
type structure: types will now be mapped to LPSs over opponents’ strategies and types.

12.8.1 Basics
We begin by defining LPSs and lexicographic type spaces.

Definition 12.30. (Blume et al., 1991; Brandenburger et al., 2008) A lexico-
graphic probability system (or LPS) 0 = (W, - .., b,—1) on a compact metric space §2 is a
sequence of length n < 0o in A(2).

An LPS 0 = (W, - .., f,_1) has full support if | J, supp p, = Q. The set of LPSs on
Q is denoted L(2). The set of full-support LPSs on 2 is denoted L1 (S2).

Definition 12.31. A lexicographic type structure for the strategic-form game G =
(I, (Si, ui)ier) is T = (N, (T;, B))icr) where each T; is a compact metric space and each
Bi: T; = L(S—; x T_;) is continuous.

In order to define best replies, we first recall the lexicographic (i.e., “dictionary”)
order on vectors.

n—1

Definition 12.32. Fix vectors x = (x¢)y_q, Y = (yg)z;(l) e R", write x > y iff
yj > xj implies xj, > yj. for some k <% [12.26]
Given a strategic-form game G = (I, (S, u;)ier), a strategy s; of player i is a (lexicographic)
best reply to an LPS 0 _; = (o, ..., 1) on S—i if (7(si, 'U“())Z;(l) > (i), 'U“())Z;(l)
Joralls; € S;.

It is easy to see that a strategy is admissible if and only if it is a lexicographic best reply
to a full-support LPS.

Given a type structure, we define “rationality” as usual; we also define “full-support
beliefs” analogously to Definition 12.16.

Definition 12.33. Fix a lexicographic type structure T = (I, (T}, B,)icr) for the game G.
The event that player i is rational is

n—1
R; = {(Si, t;) = s is a lexicographic best reply to <margsﬂ_,ue>e 0’ where

97
Bi(t) = (s 1)} - [12.27]
9 A behavioral characterization of lexicographic expected-utility maximization is provided by Blume et al.
(1991).
96 That is: either x = y or there exists k € {0,. .., n — 1} such thatx; = y;forj =0,..., k—1,and xp > ye.

97 As in Definition 12.24, the repeated use of R; is a slight abuse of notation.
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The event that player i has tull-support beliefs is

FS = {(sit) : Bilt) € LH(S_i x T} . [12.28]

12.8.2 Assumption and mutual assumption of rationality

We can now introduce the notion of assumption.

Definition 12.34. Fix a lexicographic type structure T = (I, (T}, B,)icr) and an event E_; C
S_; x T_;. Then (s, t,*) assumes E_;, written (s;, t,*) (S A,’(E_,'), lﬁ[ﬂi(t,*) = (,bLO, e, /’Ln—l)
has full support and there is £* € {0, ..., n — 1} such that:

(i) we(E=j)) =1 for £ < £%;

(i) E—i © Ug<gs supp tg;””

(iii) for every € > £* there exist numbers o1, . .., ogx € R such that, for every event F_; C
E_; such that pug(F—;) > 0, e(F-j) = Y cpr it (F-p).

Assumption captures the notion that E_; and all its subsets are infinitely more likely
than the complement of E_;. The level-zero measure must assign probability one to
E_,;, although its support may be a strict subset of E_;. If it is a strict subset, then the
remainder of E_; must receive probability one in the next level, and so on, until all of
E_; has been “covered.” For those measures that assign positive probability outside E_;,
i.e., those after level £*, their restriction to E_; is behaviorally irrelevant. To elaborate,
in any LPS on a set €2, a measure that is a linear combination of lower-level measures can
be removed without changing lexicographic expected-utility rankings. Therefore, part
(iii) of Definition 12.34 states that, at levels £ > €*, either u,(E—;) = 0 or w,(-|E—;)
is a linear combination of lower-level conditionals, and hence is irrelevant on E_;. For

example, if €2 consists of three points, the LPS given by (%, %, 0), (%, %, %) will assume

the event consisting of the first two points; the LPS given by (%, %, 0), (%, %, %) will not.

Strong belief in an event also captures the notion that it is infinitely more likely than
its complement; we discuss the connection between assumption and strong belief in
Section 12.8.4. In view of this connection, it should come as no surprise that assumption
also violates both Monotonicity and Conjunction (cf. [12.5]). As for strong belief, this

implies that care must be taken when iterating the assumption operator. Furthermore,

98 Note that, in Definition 12.16, the event FS; required full support of the beliefs over opponents’ strategies
only; here we follow Brandenburger et al. (2008) and require that the beliefs on strategies and types have
full support. Catonini and De Vito (2014) show that full support of first-order beliefs is enough to obtain
the results in this section.

9 Since the support of a measure is the smallest closed set with measure 1, this condition implies that the
notion of “assumption” depends upon the topology; see also Section 12.7.7.
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as for RCSBR, the behavioral implications of rationality and common assumption of
rationality will not be monotonic with respect to the type structure. The discussion of
these and related issues in Section 12.7.4.4 apply here verbatim.

We can now define the events “admissibility and mutual or common assumption
thereof.”

ACAAY = R; N FS;; [12.29]
ACAA! = ACAAN' N A(ACAAY)  fork > 0.

The event that admissibility and common assumption of admissibility hold is ACAA =
N0 ACAA*,

12.8.3 Characterization

Just like we need sufficiently rich type structures for RCSBR to yield forward induction
(more precisely, extensive-form rationalizability: see Section 12.7.4.4), now we need
sufficiently rich structures to obtain iterated admissibility from mutual or common
assumption of admissibility. Adapting arguments from Brandenburger et al. (2008), one
can readily show that there exists a complete lexicographic type structure.'"

We recall the definitions of admissibility with respect to a Cartesian product of
strategy sets and iterated admissibility. We then introduce a suitable analog of best-reply
sets. As in Brandenburger et al. (2008), we restrict attention to two-player games.

Definition 12.35. Fix By X By C S1 X So. An action s; € B; is weakly dominated with
respect to By X By if there is p; € A(By) such that ui(f;, s—i) = u;i(si, s—;) forall s—_j € B_;,
and ui(|L;, sfi) > (s, sfi)for some Si,» € B_;. The action s; € B; is admissible with vespect
to By X By if it is not weakly dominated with respect to By X B;.

Definition 12.36. (Iterated Admissibility) Fix a two-player strategic-form game
(I, (Si, ui)ier). For every player i € 1, let I/Vl-O =S§;. Fork > 0, let s; € I/Vl-le iff si € I/Vik_1
and s; is admissible w.r.to Wlk’_1 X Wzk_l. The set of iteratively admissible strategies is TV°°.

We need an additional definition. Say that a strategy s: € S; of player i supports s; € S
if there exists a mixed strategy o; € S; for i that duplicates s; and has < in its support:
that is, u;j(0;,s—;) = u;(s;,s—;) forall s_; € S_;, and Gl-(s;) > 0.

100 Specifically, one can adapt the proof of Proposition 7.2 in Brandenburger et al. (2008) (p. 341). Their
argument goes further because they restrict attention to a subset of LPSs (see Section 12.8.4). We suspect,
but have not proved, that a canonical construction a la Mertens and Zamir (1985) or Brandenburger
and Dekel (1993) is also possible for LPSs. Ganguli and Heifetz (2012) show how to construct a non-
topological “universal” type structure for LPSs, such that every other such LPS-based type structure can
be uniquely embedded in it.
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Definition 12.37. Fix a two-player strategic-form game (I, (S, uj)ier). Aset B=[],c; Bi C
S is a self-admissible set (or SAS) if, for every player i € I, every s; € B; is admissible with
respect to both S; x S_; and S; x B_i;'"V it is a full SAS if in addition, for every playeri € I
and strategy s; € Bj, if i supports s; then s € B;.

In the definition of full SAS, including in the set B; a strategy s, that supports some
other strategy s; € B; plays the same role as including all best replies to a belief that
justifies some element of a full BRS. For additional discussion, see Brandenburger et al.
(2008).

As is the case for extensive-form rationalizability and EFBRSs, the set 17 is a full
SAS; however, it is not the largest (full) SAS, and indeed there may be games in which
a full SAS is disjoint from the IA set. For example, in the strategic form of the game
in Figure 12.3, the unique IA profile is (InT, L); however, B = {OutT, OutB} x {R} is
also a full SAS.

The characterization result is as follows.

Theorem 12.18. Fix a two-person game G = (I, (S;, uj)icr)-

1. In any lexicographic type structure (I, (S;, Tj, B,)ic1) for G, projgACAA is a full SAS.

2. In any complete lexicographic type structure (I, (S;, T;, B))ier) for G, and for every k > 0,
proj¢ACAA* = k!,

3. For every full SAS B, there exists a finite lexicographic type structure (1, (S, Ty, B))ier) for
G such that projgACAA = B.

12.8.4 Discussion

We start by discussing three issues in the characterization of TA. These are the relationship
to the characterization in Brandenburger et al. (2008), the full-support assumption,
and common vs. mutual assumption of admissibility. We then discuss the relationship
between the current section and the extensive-form analysis of Section 12.7. In
particular, we relate LPSs to CPSs, assumption to strong belief, and admissibility to
sequential rationality.

101 T see why we need admissibility with respect to both S; X B_; and S; X S_;, consider the following
two-person games (only Player 1% payoffs are indicated).

L R L R
T|0 O T|0 1
B|0 1 B|1 O

In the game on the left, T is admissible with respect to S1 x {L}, but not with respect to S1 x Ss.
On the other hand, in the game on the right, T is admissible with respect to S; X Sy, but not with
respect to S1 x {L}.
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Before turning to these issues, we note that, as is the case for strong belief, since
assumption violates Monotonicity and Conjunction, its interpretation in small type
structures is somewhat delicate. We do not repeat the discussion of these issues here,
as the treatment in Section 12.7.4.4 regarding RCSBR applies verbatim here.

12.8.4.1 Issues in the characterization of IA

Relationship with Brandenbuyger et al. (2008): Our presentation differs from Brandenburger
et al. (2008) in that their main results are stated for LPSs with disjoint supports; following
Blume et al. (1991), we call these “lexicographic conditional probability systems,” or
LCPSs. We choose to work with LPSs to avoid certain technical complications that arise
with LCPSs (for example, the definition and construction of a complete type structure).
The proof of Theorem 12.18 can be found in Dekel et al. (2014).

Full-support beliefs: The characterization of IA focuses on types that commonly
assume rationality and full-support beliefs. This raises the question whether one
could incorporate the full-support assumption in the definition of lexicographic type
structures. That is, could we assume that all types have full-support beliefs, or at least
full-support first-order beliefs? Recall that, in the characterization of S® W in Section
12.5, we also focus on types that commonly p-believe in both rationality and full-support
beliefs. There, we could restrict attention to type structures where each type’s belief over
the opponents’ strategies have full support. The following example demonstrates that we
cannot do this in the current environment.

Example 12.10. (Figure 2.11 in Battigalli, 1993; see also Figure 2.6 in
Brandenburger et al., 2008)

Consider the strategic-form game in Table 12.14. The IA set is {U, M, D} x {C, R}.

Fix an arbitrary lexicographic type structure. Note first that, since L is strictly dominated for
player 2, (L, t2) & Ry for any type ty of 2; a fortiori, (L, t2) & Ry N FSy. Moreover, C and R
always yield a payoff of 1, and hence both (C, t2) € Ro N FSy and (R, t) € Ry N ESy hold if
and only if type ty has full-support beliefs.

Now consider a type t1 of player 1 such that (D, t1) € Ry N FS1 N A1 (Ry N ESy), and
let B1(t1) = (g - -+ s Upy—y). Since the definition of assumption (Definition 12.34) requires
full-support beliefs, as t1 assumes Ry N FSy, this type must have full-support beliefs; in particular,
there must be an order k with p,({L} x T2) > 0. Furthermore, since t1 assumes Ry N FSy, and
L is irrational for 2, it must be the case that k > 0.

Table 12.14 Iterated
admissibility and ACAA
L C R
U | 40| 411 0,1
M| 00]01] 41
D |30]21]21
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Next, by lexicographic utility maximization, for all £ =0,...,k—1, we must have
we({C} x T2) = up({R} x Tp) = %for 0 <€ <k—1: otherwise, D could not be a best
reply. But then, U and M are also best replies to margg, py, £ = 0,..., k — 1. In other words,
D ties with U and M against the beliefs margg, (o, . . ., margg, fp_1. Then, the optimality of
D requires that D also be a best response to the kth level belief margg, ..

Finally, for this to be the case, we must have (,({R} X Tp) > 0. Moreover, as p,({L} X
12) > 0 and L is not rational for 2, n,(Ro) < 1, hence p,(Ro N FSy) < 1. However, t
assumes Ry N FSy. Therefore, by the definition of assumption, u,(Ry N FSy) must equal either 1
or 0. Hence, it must be the case that j1,(Ro N FS») = 0. On the other hand, ,({R} x T) >
0, so there must be types t> of 2 for whom (R, t2) & Ro N FSy. That is, because 1’s kth-level belief
assigns zero probability to 2 being rational and having full-support beliefs, and positive probability
to 2 playing R, it must be that 1 expects those types of 2 who are playing R to hold beliefs that
either do not justify R, or do not have full support. But, since R is a best reply against any beliefs,
the only way this can hold is if 1 expects 2’s type to not have full-support beliefs. This means that
the type structure under consideration must contain types for player 2 that do not have full-support

beliefs.

Common vs. mutual assumption of admissibility: Finally, there is an additional subtlety.
Note that Theorem 12.18 does not characterize common assumption of admissibility
for complete type structures—merely finite-order assumption of admissibility. Indeed,
Brandenburger et al. (2008) show that, under completeness and restricting attention to
LCPSs, (=0 ACAAf-e is empty. Admissibility and common assumption of admissibility
thus cannot hold in a complete, LCPS-based type structure. We believe (but have not
proved) that the same is true when beliefs are represented by LPSs.

This is a puzzling result. In a recent paper, Lee and Keisler (2011) demonstrate
that the problem arises out of the requirement in Definition 12.31 that the belief
maps B; be continuous. If one drops this requirement, and merely asks that they
be measurable, it is possible to construct a complete, LCPS-based type structure in
which projgACAA equals IA, so that ACAA is possible (and characterizes iterated

admissibility).'"?

12.8.4.2 Extensive-form analysis and strategic-form refinements

LPSs and CPSs: LPSs and CPSs are clearly similar. CPSs are also collections of
probabilities, that also may differ in terms of saliency (lower-saliency beliefs come into
play as unexpected events are encountered). However, there are also differences, due to
the fact that the former are strategic-form objects, whereas the latter are defined for

192 Other papers that provide epistemic conditions related to IA include Asheim and Dufwenberg (2003),
Barelli and Galanis (2011), Yang (2011), Perea (2012), Lee (2013), and Catonini and De Vito (2014).
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extensive-form games.'”? Probabilities in an LPS are completely ordered, whereas in a
CPS the order is partial. For example, consider a game in which Player 1 can choose
T, M or B, and Player 2 (who moves immediately after 1) is initially certain of T". Then,
Player 2’s conditional beliefs following M and B are not ranked in terms of their salience,
although they are less salient than Player 2% initial belief. Second, the supports of any
two probabilities in a CPS are either disjoint, or one is included in the other; in an LPS,
the supports can overlap arbitrarily. In addition, a technical distinction in the context of
type structures is that, for a finite extensive game, the number of probabilities in a CPS is
fixed and equal to the number of nonterminal histories in the game; on the other hand,
in general there is no upper bound on the number of levels in an LPS.

Strong belief and assumption: As we noted above, both strong belief and assumption
capture the notion that an event and its subsets are infinitely more likely than its
complement. Recall that player i assumes E_; if she assigns probability one to it or
some subset of it in each of the first £* levels of her LPS, until all of E_; has been given
probability 1 at some level; furthermore, higher-level measures either assign probability
zero to E_;, or are behaviorally irrelevant conditional on E_;. Analogously, if player i
strongly believes E_; in an extensive game, then her initial beliefs assign probability one
to E_; or some subset thereof. Moreover, so long as E_; has not been contradicted by

observed play, when player i revises her beliefs,'’*

she continues to assign probability
one to some subset of E_;. Once E_; has been contradicted, it must receive probability
zero. Thus, with strong belief, the “level” at which E_; is no longer believed is objective,
while in the case of assumption, the level at which i no longer believes E_; is subjective.
Nevertheless, assumption and strong belief are quite similar. Specifically, for finite spaces
2, there is a one-to-one mapping between LCPSs (but not arbitrary LPSs) and CPSs in
which the set of conditioning events consists of all nonempty subsets of €2. Furthermore,
an LCPS A “assumes” an event E_; (analogously to Definition 12.34) if and only if the
corresponding CPS i “strongly believes” E_;.'"?

Admissibility and sequential rationality: Brandenburger (2007) shows that, in single-
person, dynamic choice problems, admissibility is equivalent to sequential rationality
in all decision trees that have the same strategic form, up to the addition or deletion
of strategies that are convex combinations of other strategies (i.e., trees that have
the same fully reduced normal form in the sense of Kohlberg and Mertens, 1986).
Nevertheless, Brandeburger’s result is about single-person problems; adding or deleting
convex combinations of existing strategies in an extensive game may affect the players’
strategic reasoning (see e.g., Hillas, 1994, and Govindan and Wilson, 2009).

103 I fact, CPSs are no different from regular probabilities for extensive forms of simultaneous-move games.

104 YWhen we say that she “revises” her beliefs, we allow for both standard belief updating, following
positive-probability observations, as well as formulating entirely new beliefs, following zero-probability
observations.

105 For the case of infinite sets €2, see Brandenburger et al. (2007).
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