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We show that in a class of I-agent mechanism design problems with evidence, com-
mitment is unnecessary, randomization has no value, and robust incentive compatibility
has no cost. In particular, for each agent i, we construct a simple disclosure game be-
tween the principal and agent i where the equilibrium strategies of the agents in these
disclosure games give their equilibrium strategies in the game corresponding to the
mechanism but where the principal is not committed to his response. In this equilib-
rium, the principal obtains the same payoff as in the optimal mechanism with commit-
ment. As an application, we show that certain costly verification models can be charac-
terized using equilibrium analysis of an associated model of evidence.
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1. INTRODUCTION

WE SHOW THAT in a class of I-agent mechanism design problems with evidence, ran-
domization has no value for the principal and robust incentive compatibility—a form of
incentive compatibility analogous to but stronger than ex post incentive compatibility and
dominant strategy incentive compatibility—has no cost. Also, commitment is unnecessary
in the sense that there is an equilibrium of the game when the principal is not committed
to the mechanism with the same outcome as in the optimal mechanism with commitment.
This equilibrium can be derived from a collection of I auxiliary games, where the ith
game is a simple disclosure game between agent i and the principal. As an application, we
show that certain mechanism design problems with costly verification can be solved via an
associated evidence model.1

To understand these results, consider the following example, the simple allocation prob-
lem. The principal has one unit of an indivisible good which he can allocate to one of I
agents. Each agent i has private information in the form of her type ti which determines
vi(ti), the value to the principal of allocating the good to agent i. Each agent prefers get-
ting the good to not getting it, regardless of her type. Types are independent across agents
and monetary transfers are not possible. Each agent may have evidence which proves
some facts about her type. For example, the principal may be a dean with one job slot to
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allocate to a department in the College. Each department wants the slot and has private
information about the person the department would likely hire with the slot, information
that is relevant to the value to the dean of assigning the slot to the department. Alterna-
tively, the principal may be a state government which needs to choose a city in which to lo-
cate a public hospital. The state wants to place the hospital where it will be most efficiently
utilized, but each city wants the hospital and has private information on local needs.

In a mechanism design formulation, the principal commits to how he will allocate the
good as a function of cheap-talk reports and evidence presentation by the agents. A ver-
sion of the Revelation Principle implies we can restrict attention to mechanisms where
each agent reports her type truthfully and, in a sense to be defined later, presents all her
evidence.

Alternatively, we could consider a game in which agents send evidence to the principal
without any commitment by the principal, which we call the game without commitment.
In this game, the principal forms beliefs about the types of the agents and allocates the
good optimally given these beliefs. That is, the principal responds to the evidence and
claims presented by forming a belief about vi(ti) for each agent i and allocates the good
to that agent for whom his expectation of vi(ti) is largest. Since all agents want the good,
in an equilibrium of this game, each agent i tries to persuade the principal that vi(ti) is
large.

This last observation implies that we could find certain equilibria of the game without
commitment by means of what we call auxiliary games. For each agent i, consider the two-
player game between i and the principal where type ti has available the same cheap-talk
messages and evidence she has in the game without commitment. The principal chooses
an action x ∈ R. The principal’s payoff is −(vi(ti) − x)2 and the agent’s payoff is x. In
other words, x is the principal’s “estimate” of vi(ti) and the agent’s utility is increasing
in the principal’s estimate. Intuitively, the auxiliary game identifies the best strategy for
agent i to use to try to convince the principal that vi(ti) is large, just as she wants to do in
the game without commitment. For each agent i, find an equilibrium of the auxiliary game
for i. Then we can find an equilibrium for the game without commitment by having each
agent play her strategy from the auxiliary game with the principal choosing a best response
to the information this reveals to him. This equilibrium will be robust in the sense that no
agent’s beliefs about other agents plays any role in the equilibrium. We will show that
the outcome in the best equilibrium so constructed is the same as the outcome in the
optimal mechanism.2 This implies that the optimal mechanism is robust in a similar sense.
Consequently, many other games generate the same results—for example, if agents speak
sequentially observing previous speakers, each will still wish to persuade the principal that
her vi is large and so her equilibrium strategy will not change.

One way to understand why the equilibrium has the same outcome as the optimal mech-
anism is to ask how the principal might use commitment to improve on the equilibrium.
Conditional on any type of agent i whose type is perfectly revealed to the principal in
equilibrium, it is clear that the principal cannot improve his payoff in a mechanism since
he optimizes in equilibrium given exact knowledge of the type.

So consider a set of types of agent i that pool in equilibrium. Since they pool, the prin-
cipal treats these types as if the value of giving the good to them were the average of vi(ti)
across the pool. Given a type in this pool whose value is above the average, the princi-
pal would like to be able to separate this type from the pool and give her the good more

2There could be several equilibria in the auxiliary game for agent i, in which case this construction gives
multiple equilibria for the game without commitment.
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often. This type would also like this response, so if she did not separate in the equilib-
rium, it must be because she does not have evidence that would enable her to do so. This
lack of evidence also makes it impossible for the principal to separate her in an incentive
compatible manner in a mechanism, so, again, the principal cannot improve.

Finally, consider a type in the pool whose value is below the average. The principal
would like to separate this type from the pool to give her the good less often. It is possible
that this type has evidence that would separate her from the pool but that she withholds
this evidence in equilibrium to avoid revealing her low value. In a mechanism, the prin-
cipal can promise to reward the agent for this revelation and so can use commitment to
induce her to separate from the pool. However, he does not want to: rewarding this type
means giving her the good more often, but he wants the information so that he can give
it to her less often. Hence, again, the principal cannot use commitment to improve the
outcome.

Our results apply to a broader class of allocation problems. For example, consider our
example of a dean, but suppose the dean has several job slots to allocate where each
department can have at most one and there are fewer slots than departments. A related
problem is the allocation of a budget across divisions by the head of a firm. Suppose the
organization has a fixed amount of money to allocate and that the value produced by a
division is a function of its budget and its privately known productivity. Here each division
wants to persuade top management that its productivity is high. Alternatively, consider a
task allocation problem where the principal is a manager who must choose an employee
to carry out a particular job. Suppose none of the employees wants to do the task and
each has private information about how well she would do it. Here each employee wishes
to convince the manager that her productivity is low.

A more complex example is a task that some employees would and some would not want
to do, where both the employee’s ability and desire to do the job are private information.
In this case, certain types of employees wish to persuade the manager that they would
perform poorly, while others have the opposite incentive and these incentives could be
correlated with the value to the manager of assigning them the task. Our results cover
this case as well.

A different class of examples is public goods problems. The principal chooses whether
or not to provide a public good. If the principal provides the good, the cost is evenly
divided among the agents. Each agent has a type which determines her willingness to pay
for the good. If the willingness to pay exceeds her share of the cost, she wants the good to
be provided and otherwise prefers that it not be provided. Types are independent across
agents and monetary transfers other than the cost sharing are not possible. Each agent
may have evidence which enables her to prove some facts about the value of the public
good to her. For example, the principal may be a government agency deciding whether or
not to build a hospital in a particular city and the agents may be residents of that city who
will be taxed to pay for the hospital if it is built. Then an agent might show documentation
of a health condition or past emergency room visits to prove to the principal that she has
a high value for a nearby hospital. The principal maximizes a weighted sum of the agents’
utilities, possibly including a benefit or cost of his own for providing the public good. Here
some types wish to persuade the principal that they highly value the public good, while
others wish to persuade him of the opposite.

The conclusion that the principal does not require commitment is important for several
reasons. First, it is not always obvious whether commitment is an appropriate assumption
for a given setting. Our result says that we obtain the same outcome either way. Second,
in some settings, whether the principal is committed is endogenous. In the settings we
consider, we predict that the principal would not invest to achieve commitment power.
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Another useful implication of our results is that we can compute optimal mechanisms
by considering equilibria of the game without commitment. In particular, as discussed
above, we can characterize the relevant equilibrium by means of a collection of I auxil-
iary games, one for each agent, where the game for agent i is a simple disclosure game
between agent i and the principal. The auxiliary game does not depend on the princi-
pal’s preferences in the original mechanism design problem or the structure of the set
of allocations. In some cases, the use of auxiliary games makes determining the opti-
mal mechanism straightforward. In particular, if each auxiliary game has either a unique
equilibrium or a unique “most informative” equilibrium, we can use these equilibria to
directly compute the information the principal uses in the optimal mechanism. Given this
information, it is straightforward to compute the outcome under the optimal mechanism.

To illustrate, we consider optimal mechanisms with the evidence technology proposed
by Dye (1985). In Dye’s model, each agent has some probability of having evidence that
would enable her to exactly prove her type and otherwise has no evidence. When we apply
this approach to the simple allocation problem or to the public goods problem, we find
optimal mechanisms reminiscent of optimal mechanisms in a different context, namely,
under costly verification. We discuss this connection to Ben-Porath, Dekel, and Lipman
(2014) (henceforth BDL) and to Erlanson and Kleiner (2017) in Section 3.2 where we
show that a class of costly verification models can be solved using our results for evidence
models. This connection does not imply that all of our results for mechanisms with ev-
idence carry over to costly verification models, only that optimal mechanisms for costly
verification can be computed via Dye-evidence models.

The paper is organized as follows. Section 2 presents the formal model. In Section 2.5,
we state the main results sketched above. The proof of this theorem is sketched and the
roles of the assumptions explained in Section 4. In Section 3, we specialize to Dye (1985)
evidence and provide a characterization of optimal mechanisms in this setting. We then
use this characterization to give optimal mechanisms for a variety of more specific settings
including the simple allocation problem and the public goods problem. We also show that
under some conditions, optimal mechanisms for costly verification can be solved using
the optimal mechanisms for Dye evidence. We discuss the related literature in Section 5.
Proofs not contained in the text are in the Appendix or the Supplemental Material (Ben-
Porath, Dekel, and Lipman (2019)).

2. MODEL AND RESULTS

The set of agents is I = {1� � � � � I} where I ≥ 1. The principal has a finite set of feasible
actions A and can randomize over these. For example, in the simple allocation problem,
we have A = I where a = i means that the good is allocated to i.3 More generally, a ∈ A
can be interpreted as an allocation of money (where money is finitely divisible) as well as
other goods, public or private. It is notationally complex but not difficult to extend our
results to the case where A is infinite. Each agent i has private information in the form of
a type ti where types are distributed independently across agents. The finite set of types
of i is denoted Ti and ρi is the (full support) prior.4

3This formulation assumes the principal must allocate the good to some agent. Alternatively, we can set
A = {0�1� � � � � I} where a = 0 is interpreted as the principal keeping the good. Our results hold for either
specification.

4Finiteness of Ti is primarily for tractability. As we will point out, there is one step in our proofs which does
not obviously generalize to infinite type spaces.
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2.1. Preferences

We first state our assumptions on preferences and then explain the interpretation.
Given action a by the principal and type profile t = (t1� � � � � tI), agent i’s utility is ui(a� ti)
and the principal’s utility is v(a� t) where

ui(a� ti)=
{
ui(a) if ti ∈ T+

i �

−ui(a) if ti ∈ T−
i ≡ Ti \ T+

i �

and

v(a� t)= u0(a)+
I∑

i=1

ui(a� ti)v̄i(ti)= u0(a)+
I∑

i=1

ui(a)vi(ti)�

where

vi(ti)=
{
v̄i(ti) if ti ∈ T+

i �

−v̄i(ti) if ti ∈ T−
i �

For brevity, let v0(t0)= 1 and write this as
∑

i ui(a)vi(ti) with the convention that the sum
runs from i = 0 to I.

The principal’s utility function has two natural interpretations. First, we can interpret
v as a social welfare function where v̄i(ti) reflects how much the principal “cares” about
agent i’s utility. Second, we can think of v̄i(ti) as measuring the extent to which the princi-
pal’s interests are aligned with agent i’s. That is, a high value of v̄i(ti) does not mean that
the principal likes agent i but that the principal likes what agent i likes.

We do not restrict the sign of v̄i(ti) or vi(ti). Thus, the principal’s interests can be in
conflict with those of some or all agents in a way which depends on the agents’ types.

Turning to the agents, our formulation relaxes the restriction to type-independent pref-
erences commonly used in the literature (see Section 5 for a survey), but requires that the
type dependence takes a particularly simple form. Hence, we call our assumption on the
agents’ utility functions simple type dependence. It says that all types of agent i have the
same indifference sets over A since if ui(a) = ui(a

′), then every type of i is indifferent
between a and a′. Thus, the only difference between types is the direction in which utility
is increasing. Specifically, the types in T+

i have utility increasing in ui(a), while those in
T−
i have utility decreasing in this direction. We call the types in T+

i the positive types and
those in T+

i the negative types. While restrictive, this formulation allows a broad range of
interesting forms of type dependence.

For one thing, simple type dependence accommodates all the examples discussed in
the Introduction. We illustrate with two examples. First, consider the simple allocation
problem. Let A= {1� � � � � I} where a= i means the principal allocates the good to agent i.
Since every type desires the good, assume Ti = T+

i , so T−
i = ∅ and let

ui(a)=
{

1 if a= i�

0� otherwise�

Let u0(a) ≡ 0. Then our assumption on v implies vi(ti) is the value to the principal of
allocating the good to agent i when his type is ti.

As another example, consider the public goods problem. Let A= {0�1}, where 1 is pro-
viding the good and 0 is not providing it. Let the utility function for agent i be avi(ti) and
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the utility function for the principal be the sum of the agent’s utilities or
∑

i avi(ti). For
simplicity, assume vi(ti) �= 0 for every ti and every i. Then we can renormalize the utility
function for ti by dividing through by |vi(ti)|. After renormalizing, the utility function of
agent i is {

a if vi(ti) > 0�
−a if vi(ti) < 0�

Letting ui(a) = a and defining T+
i = {ti ∈ Ti | vi(ti) > 0}, we obtain a case of simple type

dependence. The principal’s utility function equals
∑

i ui(a)vi(ti), as assumed.
An example not discussed in the Introduction but commonly used in the literature has

ui(a)= a for every i and

v(a� t) = −
I∑

i=1

αi

(
a−βi(ti)

)2
�

Here the principal wants to guess the agents’ types (βi(ti)’s) and all agents want to be
thought of as having a high βi. This does not look like the principal’s utility function we
assumed, but we can rewrite this as

v(a� t) = −a2
∑
i

αi +
∑
i

a2βi(ti)−
∑
i

αi

(
βi(ti)

)2
�

The last term is not relevant to the principal’s choice of mechanism, so we can renormalize
by dropping it. Letting u0(a)= −a2

∑
i αi and vi(ti) = 2βi(ti) yields our model.

As noted above, a special case of simple type dependence is type-independent pref-
erences, the case studied in much of the literature including all previous work on com-
mitment in mechanisms with evidence. Simple type dependence also holds trivially when
the agent has only two type-independent indifference curves over A. For example, if the
principal has only two actions, as in Glazer and Rubinstein (2004, 2006), then there can
only be two indifference curves (at most). Similarly, consider a type-dependent version
of the simple allocation problem where each agent cares only about whether she receives
the good or not, but some types prefer to get the good and others prefer not to.5 Here the
principal has as many actions as there are agents, but each agent has only two indifference
curves over A. Again, there are only two (nontrivial) preferences over Δ(A), so simple
type dependence is without loss of generality.

2.2. Evidence

Each agent may have evidence which would prove some claims about herself. Formally,
for every i, there is a function Ei : Ti → 22Ti . In other words, Ei(ti) is a collection of subsets
of Ti, interpreted as the set of events that ti can prove. The idea is that if ei ∈ Ei(ti), then
type ti has some set of documents or other tangible evidence which she can present to the
principal which demonstrates conclusively that her type is in the set ei ⊂ Ti. For example,
if agent i presents a house deed with her name on it, she proves that she is one of the types
who owns a house. We require the following properties. First, proof is true. Formally,
ei ∈ Ei(ti) implies ti ∈ ei. Second, proof is consistent in the sense that si ∈ ei ∈ E(ti) implies

5This formulation is natural if the “good” is a task assignment as discussed in the Introduction.
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ei ∈ Ei(si). In other words, if there is a piece of evidence that some type can present which
does not rule out si, then it must be true that si could present that evidence. Otherwise,
the evidence does rule out si. In short, for any ei ∈ ⋃

si∈Ti Ei(si), we have ti ∈ ei if and only
if ei ∈ Ei(ti).

We also assume normality (Bull and Watson (2007), Lipman and Seppi (1995)). This
convenient simplification, used in much of the literature, says that ti can prove an event
which summarizes all the evidence she has. Intuitively, there are no time or other re-
strictions on the evidence an agent can present, so she can present everything she has.
Formally, for every ti, we have ⋂

ei∈Ei(ti)
ei ∈ Ei(ti)�

That is, if ti can prove that her type is in ei, e′
i, etc., then she can prove that her type is in

all of these sets and hence in their intersection. More precisely, this intersection is itself
an event that ti can prove. Henceforth, we denote this maximally informative event by

Mi(ti)=
⋂

ei∈Ei(ti)
ei

and sometimes refer to ti presenting Mi(ti) as presenting maximal evidence.
As usual, we assume that all of an agent’s private information is summarized by her

type. Thus, it is common knowledge what evidence each agent has as a function of her
type. On the other hand, our robustness result implies that no agent needs to know any-
thing about other agents—in particular, no agent needs to understand what evidence oth-
ers might have.

2.3. Mechanisms

Given our assumptions, it is without loss of generality to focus on mechanisms where
the agents simultaneously make cheap-talk reports of types and present evidence and
where each agent truthfully reveals her type and presents maximal evidence. This version
of the Revelation Principle has been shown by, among others, Bull and Watson (2007)
and Deneckere and Severinov (2008). As in the usual model, we might not need agents
to reveal this much information, but it is without loss of generality to induce them to do
so as the principal can commit to ignoring some of it. Formally, let Ei = ⋃

ti∈Ti Ei(ti) and
E = ∏

i Ei. A mechanism is then a function P : T × E → Δ(A).
Given a mechanism P , ti ∈ Ti, (si� ei) ∈ Ti × Ei(ti), and (t−i� e−i) ∈ T−i × E−i, let

Ui(si� ei� t−i� e−i | ti� P)=
∑
a

P(a | si� ei� t−i� e−i)ui(a� ti)�

In words, this is agent i’s expected utility under mechanism P when her type is ti but she
reports type si, presents evidence ei, and expects all other agents to claim types t−i and
report evidence e−i.

A mechanism P is incentive compatible if for every agent i,

Et−i
Ui

(
ti�Mi(ti)� t−i�M−i(t−i) | ti� P

) ≥ Et−i
Ui

(
si� ei� t−i�M−i(t−i) | ti� P

)
�

for all si� ti ∈ Ti and all ei ∈ Ei(ti). In words, the agent prefers reporting her type truthfully
and presenting maximal evidence to any other report and any other evidence she has
available given that all other agents report truthfully and present maximal evidence.
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For mechanisms with evidence, it is useful to define a mapping giving the outcome of
the mechanism as a function of the type profile. In the literature on mechanism design
without evidence, there is no need to do so since, given truth-telling, a direct mechanism
is such a function. To be specific, given an incentive compatible mechanism P , we say
that the mechanism outcome is the function OP : T → Δ(A) defined by OP(t)(a) = P(a |
t�M(t)). In other words, the mechanism outcome gives the probability distribution over
A as a function of t which results when all agents report truthfully and provide maximal
evidence. The principal’s expected payoff from an incentive compatible mechanism P is

Et

∑
a

P
(
a | t�M(t)

)
v(a� t)= Et

∑
a

OP(t)(a)v(a� t)�

Before defining robust incentive compatibility, we recall more standard notions.
A mechanism is ex post incentive compatible if for every agent i,

Ui

(
ti�Mi(ti)� t−i�M−i(t−i) | ti� P

) ≥ Ui

(
si� ei� t−i�M−i(t−i) | ti� P

)
�

for all si� ti ∈ Ti, all t−i ∈ T−i, and all ei ∈ Ei(ti). That is, a mechanism is ex post incentive
compatible if each agent i has an incentive to report honestly and present maximal evi-
dence even if she knows the other agents’ types and that they are reporting truthfully and
presenting maximal evidence.

Say that a reporting strategy σi : Ti → Ti × Ei is feasible if whenever σi(ti) = (si� ei), we
have ei ∈ Ei(ti). A mechanism is dominant strategy incentive compatible if for every agent i,

Et−i
Ui

(
ti�Mi(ti)�σ−i(t−i) | ti� P

) ≥ Et−i
Ui

(
si� ei�σ−i(t−i) | ti� P

)
�

for all si� ti ∈ Ti, all feasible σ−i : T−i → T−i × E−i, and all ei ∈ Ei(ti). That is, a mechanism
is dominant strategy incentive compatible if every type of every agent has a dominant
strategy to report honestly and present maximal evidence.

Neither of these notions of incentive compatibility implies the other. In an ex post in-
centive compatible mechanism, an agent might want to deviate if she knew another agent
were going to report (si� ei) where ei �= Mi(si). In a dominant strategy incentive compati-
ble mechanism, an agent could prefer to deviate if she knew the types of her opponents.
Our robustness notion combines the ex post and dominant strategy properties above.

We say that a mechanism is robustly incentive compatible if for every agent i,

Ui

(
ti�Mi(ti)� t−i� e−i | ti� P

) ≥ Ui(si� ei� t−i� e−i | ti� P)�
for all si� ti ∈ Ti, all t−i ∈ T−i, all e−i ∈ E−i, and all ei ∈ Ei(ti). In other words, even if i
knew the type and evidence reports of other agents, it would be optimal to report truth-
fully and provide maximal evidence regardless of what those reports are. Robust incen-
tive compatibility implies ex post incentive compatibility and dominant strategy incentive
compatibility, but is not implied by either. See Part SA of the Supplemental Material for
details.

A robustly incentive compatible mechanism has the desirable property that it does not
rely on the principal knowing the beliefs of the agents about each other’s types or strate-
gies. Furthermore, the outcome of the mechanism need not change if the agents report
publicly and sequentially, rather than simultaneously, regardless of the order in which
they report.
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Since robust incentive compatibility implies incentive compatibility, the best robustly
incentive compatible mechanism for the principal yields a weakly lower expected pay-
off than the best incentive compatible mechanism. Under our assumptions, there is no
difference—there is an optimal incentive compatible mechanism for the principal which
is robustly incentive compatible.

A mechanism P is deterministic if for every (t� e) ∈ T × E , P(t� e) is a degenerate dis-
tribution. In other words, for every report and presentation of evidence, the principal
chooses an a ∈ A without randomizing. Of course, randomization is an important fea-
ture of optimal mechanisms in some settings. Under our assumptions, there is an optimal
mechanism which is deterministic.

2.4. Games

Our result that commitment is not needed says that an equilibrium of a particular game
between the principal and the agents has the same outcome as an optimal mechanism.
The interest in this result depends on the game. The game we consider seems natural
as it is just like the mechanism “game” in that the agents all make reports of types and
send evidence to the principal, after which he chooses an outcome. The difference from
the mechanism is that the principal is not committed to his response to these reports. We
refer to this as the game without commitment. Our robustness property implies that the
same result holds for a wide range of other games, such as games with sequential reports
instead of simultaneous.

Our result is not that the agents and principal use the same strategies in the game as in
the optimal mechanism. Fix the optimal (direct) mechanism and a profile of types t. In the
mechanism, given this profile, the agents will report t truthfully and will present maximal
evidence. The mechanism specifies a response to this, say a∗(t). In the game, given this
same profile of types t, the agents will send some reports, typically not truthful, and some
evidence, typically not maximal. Furthermore, the principal’s response to a given profile of
reports and evidence will not generally be what he would commit to in the mechanism. For
example, in the mechanism, he may commit to disregarding certain evidence, something
he cannot do in the equilibrium of the game.6

In the game, the principal reacts to the reports and evidence by forming a belief based
on the agents’ equilibrium strategies and choosing a best action for himself conditional
on these beliefs, say â(t). The surprising result is that the equilibrium and optimal mech-
anism we construct have the property that a∗(t)= â(t) for every profile t.

Formally, the game without commitment is as follows. The strategy set for agent i, Σi,
is the set of functions σi : Ti → Δ(Ti × Ei) such that σi(si� ei | ti) > 0 implies ei ∈ Ei(ti).
That is, if agent i is type ti and puts positive probability on providing evidence ei, then this
evidence must be feasible for ti.7 The principal’s strategy set, ΣP , is the set of functions
σP : T × E → Δ(A). A belief by the principal is a function μ : T × E → Δ(T) giving the
principal’s beliefs about t as a function of the profile of reports and evidence presentation.

6While the agents’ strategies in the equilibrium differ from their strategies in the direct mechanism, there
is an indirect mechanism with the same outcome and the same strategies. Specifically, take the indirect mech-
anism defined by having the principal commit to his equilibrium strategy of the game without commitment.
Clearly, it is an equilibrium of this mechanism for the agents to play the same strategies as in the game without
commitment, giving an indirect mechanism with the same outcome and the same strategies by the agents.

7We do not require ti to report truthfully and do not require his claim of a type to be consistent with the
evidence he presents. That is, we could have σi(si� ei | ti) > 0 even though si �= ti and ei /∈ Ei(si).
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We study perfect Bayesian equilibria of the game without commitment. Our defini-
tion is the natural adaptation of Fudenberg and Tirole’s (1991) definition of perfect
Bayesian equilibrium for games with observed actions and independent types to allow
type-dependent sets of feasible actions. See Part SB of the Supplemental Material for
details.

The equilibria of interest also satisfy a robustness property. We call a perfect Bayesian
equilibrium (σ�μ) robust if, for every i and every ti ∈ Ti, σi(si� ei | ti) > 0 implies

(si� ei) ∈ arg max
s′i∈Ti�e′

i∈Ei(ti)

∑
a∈A

σP

(
a | s′

i� e
′
i� s−i� e−i

)
ui(a� ti)� ∀(s−i� e−i) ∈ T−i × E−i�

That is, σi(ti) is optimal for ti given any actions by the other agents and the equilibrium
strategy of the principal. A robust equilibrium generates an equilibrium in any of a wide
range of other games—for example, where agents report sequentially with each agent
observing the earlier reports. Similarly, there is no need for any agent to know the pref-
erences or evidence of other agents, even as a function of their types.

Given a perfect Bayesian equilibrium (σ�μ), the equilibrium outcome is the function
O(σ�μ) : T → Δ(A) given by

O(σ�μ)(t)(a)=
∑

(s�e)∈T×E

∏
i

σi(si� ei | ti)σP(a | s� e)�

In other words, analogously to the mechanism outcome, the equilibrium outcome gives
the probability distribution over A as a function of t generated by the equilibrium strate-
gies. Given (σ�μ), the principal’s expected utility is

Et

∑
a

O(σ�μ)(t)(a)v(a� t)�

We show that there is a robust perfect Bayesian equilibrium of this game (σ�μ) and an
optimal mechanism P with the same outcome—that is, such that OP(·)=O(σ�μ)(·). In this
sense, the principal does not need commitment.

The proof constructs an equilibrium from a set of I one-agent games which do not
depend on A or preferences over A. Specifically, we define the auxiliary game for agent i
as follows. There are two players, the principal and agent i. Agent i has type set Ti. Type
ti has action set Ti × Ei(ti). The principal has action set X ⊆ R where X is the compact
interval [minj mintj∈Tj vj(tj)�maxj maxtj∈Tj vj(tj)]. The principal’s utility given ti and x is
−(x− vi(ti))

2, while agent i’s payoff is{
x if ti ∈ T+

i �

−x� otherwise�

In other words, the principal’s action, x, is his “estimate” of vi(ti). Positive types of the
agent prefer larger estimates of vi(ti) and negative types have the opposite preference.
As in the game without commitment, a strategy for agent i is a function σi : Ti → Δ(Ti ×
Ei) with the property that σi(si� ei | ti) > 0 implies ei ∈ Ei(ti). We denote a strategy for
the principal as Xi : Ti × Ei → X . By strict concavity of the principal’s utility function in
x, he has a unique optimal pure strategy given any belief. Hence he will never mix in
equilibrium, so we only consider pure strategies for him.
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To see the link between the auxiliary games and the game without commitment, recall
that the principal’s utility function is

∑
i ui(a)vi(ti). Hence, given some belief about each

ti, the principal maximizes the sum of the ui(a)’s weighted by his expectation of vi(ti). If
the principal’s belief about ti goes up in the sense of generating a higher expected value
of vi(ti), then his action choice changes in the direction of increasing ui(a). A positive
type is made better off by this, while a negative type is hurt. Hence positive types want to
persuade the principal that vi is large and negative types want him to believe it is small,
incentives captured by the auxiliary game.

2.5. Results: Commitment, Determinism, and Robust Incentive Compatibility

Our main results are stated in the following theorem.

THEOREM 1: If every ui exhibits simple type dependence, then there is an optimal incen-
tive compatible mechanism for the principal which is deterministic and robustly incentive
compatible. In addition, there is a robust perfect Bayesian equilibrium of the game without
commitment with the same outcome as in this optimal mechanism. In this equilibrium, agent
i’s strategy is also a perfect Bayesian equilibrium strategy in the auxiliary game for agent i.

Theorem 1 is proved in the Appendix. See Section 4 for a proof sketch.
These results tell us that we can use equilibrium analysis to characterize the optimal

mechanism. By Theorem 1, the outcome of the best perfect Bayesian equilibrium for
the principal in the game without commitment is the same as the outcome of the best
mechanism for the principal. This identifies how the mechanism must respond to any
profile of type reports t when the evidence presented is the maximal evidence for t. To
finish identifying the optimal mechanism, we only need to specify its response to profiles
of type reports t some of which are accompanied by the “wrong” evidence.

Also, we can use the auxiliary games to identify the information revealed by the agents
in the game without commitment. From this, we can compute the best reply of the princi-
pal, completing the specification of the equilibrium of the game without commitment, an
approach we illustrate in the next section.

3. OPTIMAL MECHANISMS WITH DYE EVIDENCE

3.1. Characterizing the Optimal Mechanism

In this section, we show how one can use equilibria in the auxiliary games to charac-
terize optimal mechanisms with Dye’s (1985) evidence structure, a structure extensively
studied in the economics and accounting literatures. We also show that this characteriza-
tion can be used to characterize optimal mechanisms in a different setting. Specifically,
we show that in certain models without evidence but where the principal can verify the
type of an agent at a cost, the optimal mechanism can be computed from the optimal
mechanism for an associated Dye-evidence model.

We say the model has Dye evidence if for every i, for all ti ∈ Ti, either Ei(ti) = {Ti} or
Ei(ti) = {{ti}�Ti}. In other words, any given type either has no evidence in the sense that
she can only prove the trivial event Ti or has access to perfect evidence and can choose
between proving nothing (proving Ti) and proving her type. Let T 0

i denote the set of ti ∈ Ti

with Ei(ti) = {Ti}. We sometimes refer to these types as having no evidence and types with
Ei(ti)= {Ti� {ti}} as having evidence.
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A complication is that the auxiliary games have multiple, essentially equivalent equi-
libria. Since type reports are cheap talk, any permutation of agent i’s type reports and
the principal’s interpretation of them yields another equilibrium. Note, though, that this
permutation does not affect the information the principal acquires about i’s type or his
choices given his information.

Given a perfect Bayesian equilibrium (σ∗
i �X

∗
i ) of the auxiliary game for agent i, define

the equilibrium outcome to be the function Oi
(σ∗

i �X
∗
i )

: Ti → Δ(R) given by8

Oi
(σ∗

i �X
∗
i )
(ti)(x) =

∑
(si�ei)∈Ti×Ei |X∗

i (si�ei)=x

σ∗
i (si� ei | ti)�

Two equilibria of the auxiliary game are essentially equivalent if they generate the same
equilibrium outcome. If there is an equilibrium such that every other equilibrium is es-
sentially equivalent to it, the equilibrium is essentially unique.

First consider type-independent utility where ui(a� ti) is independent of ti for all i. That
is, T−

i = ∅, so ui(a� ti)= ui(a) for all ti.
The following builds on well-known characterizations of equilibria with Dye evidence.

THEOREM 2: Given Dye evidence, for every i, there exists a unique v∗
i such that

v∗
i = Eti

[
vi(ti) | ti ∈ T 0

i or vi(ti)≤ v∗
i

]
�

If T−
i = ∅, there is an essentially unique equilibrium in the auxiliary game for i where every type

makes the same cheap-talk claim, say s∗
i , and only types with evidence who have vi(ti) > v∗

i

present (nontrivial) evidence. That is, type ti sends (s∗
i � e

∗
i (ti)) with probability 1 where

e∗
i (ti)=

{
Ti if ti ∈ T 0

i or vi(ti)≤ v∗
i �

{ti}� otherwise.

To see this, note first that cheap talk is not credible since every type wants the principal
to believe that vi is large. Also, if i can prove her type is ti, she wants to do so only if
vi(ti) is at least as large as what the principal would believe if she showed no evidence.
Thus, types with evidence but lower values of vi(ti) pool with the types without evidence,
leading to an expectation of vi(ti) equal to v∗

i .
In equilibrium, the principal’s expectation of vi(ti) is v∗

i given a type who presents no
evidence and equals the true value otherwise. Let

v̂i(ti)=
{
v∗
i if ti ∈ T 0

i or vi(ti)≤ v∗
i �

vi(ti)� otherwise�

For every v̂ = (v̂1� � � � � v̂I) ∈ RI , let p̂(· | v̂) be any p ∈ Δ(A) maximizing

∑
a∈A

p(a)

[
u0(a)+

∑
i

ui(a)v̂i

]
�

That is, p̂(· | v̂) is an optimal distribution over A for the principal when v̂ is his profile of
expectations of the vi’s. Then an equilibrium outcome of the game without commitment
is the function O(t)(a)= p̂(a | v̂(t)).

8Since each Ti is finite, the set of type reports and the set of events that can be proven are also finite.
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COROLLARY 1: With type-independent utility and Dye evidence, there is an optimal mech-
anism P with mechanism outcome OP(t) = p̂(· | v̂(t)). Thus p̂(· | v̂(t)) is both an optimal
mechanism outcome and an equilibrium outcome.

Corollary 1 yields characterizations of optimal mechanisms in many interesting cases.

EXAMPLE 1—The simple allocation problem with Dye evidence: Here p̂(i | t) > 0 iff
v̂i(ti) = maxj v̂j(tj), so the good is given to an agent with the highest v̂j(tj).

One way to turn this outcome function into a specification of a mechanism yields a
favored-agent mechanism. P is a favored-agent mechanism if there is a threshold v∗ ∈ R
and an agent i, the favored agent, such that the following holds. First, if no agent j �= i
proves that vj(tj) > v∗, then i receives the good. Second, if some agent j �= i does prove
that vj(tj) > v∗, then the good is given to the agent who proves the highest vj(tj) (where
this may be agent i).

A favored-agent mechanism where the favored agent is any i satisfying v∗
i = maxj v∗

j and
the threshold v∗ is given by v∗

i is an optimal mechanism. To see this, fix any t. By definition,
v̂j(tj) ≥ v∗

j for all j. Hence, if v∗
i ≥ v∗

j for all j, then v̂i(ti) ≥ v∗
j for all j. Hence, for any j

such that Ej(tj) = {Tj} or vj(tj) ≤ v∗
j , we have v̂i(ti) ≥ v∗

i ≥ v∗
j = v̂j(tj). So if every j �= i

satisfies this, it is optimal for the principal to give the good to i. Otherwise, it is optimal
for him to give it to any agent who proves the highest value.

As we discuss below, this mechanism is reminiscent of the favored-agent mechanism
discussed by Ben-Porath, Dekel, and Lipman (2014) (BDL) for the allocation problem
with costly verification.

EXAMPLE 2—The multi-unit allocation problem with Dye evidence: Suppose the prin-
cipal has K < I identical units to allocate and that he must allocate all of them. Sup-
pose each agent can have either 0 or 1 unit. Then the principal’s action is selecting a set
Î ⊂ {1� � � � � I} of cardinality K specifying which agents get a unit. The principal’s utility
is

∑
i∈Î vi(ti). Again, agent i’s utility is 0 if she does not get a unit and 1 if she does. So

the principal allocates units to the K agents with the highest values of v̂i(ti) as computed
above. One can interpret this as a recursive favored-agent mechanism.9

EXAMPLE 3—Allocating a “bad”: Suppose the principal has to choose one agent to
carry out an unpleasant task (e.g., serve as department chair). This problem is equivalent
to having I − 1 goods to allocate since not receiving the assignment is receiving a good.
One can apply the analysis of the previous example for K = I − 1 to characterize the
optimal mechanism.

Turning to simple type dependence, consider the auxiliary game for i where some types
wish to persuade the principal that vi(ti) is large and others that vi(ti) is small. Suppose
that when the agent does not prove her type, she makes a cheap-talk claim either that
her type is positive (i.e., she wants the principal to think vi(ti) is large) or negative (i.e.,
the reverse). Let v+

i denote the principal’s belief about vi if i does not prove her type

9Specifically, we allocate the first unit to the agent with the highest value of v∗
i if no other agent proves a

higher value and to the agent with the highest proven value otherwise. After removing this agent and unit, we
follow the same procedure for the second unit, and so on. The agent with the highest value of v∗

i is the most
favored agent in the sense that at least K agents must prove a value above her v∗

i for her to not get a unit, the
agent with the second-highest v∗

i is the second-most favored, etc.
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but says it is positive and let v−
i be the analog for a negative declaration. If v+

i > v−
i , then

positive types prefer to truthfully report they are positive and similarly negative types
prefer truthful reporting. If i is a positive type with evidence, she will prove her type only
if vi(ti) > v+

i , while a negative type with evidence will prove her type only if vi(ti) < v−
i .

For this to be an equilibrium, we must have

v+
i = Eti

[
vi(ti) | (ti ∈ T+

i ∩ T 0
i

)
or

(
ti ∈ T+

i \ T 0
i and vi(ti)≤ v+

i

)]
and

v−
i = Eti

[
vi(ti) | (ti ∈ T−

i ∩ T 0
i

)
or

(
ti ∈ T−

i \ T 0
i and vi(ti)≥ v−

i

)]
�

Suppose this gives a unique v+
i and v−

i . If these values satisfy v+
i < v−

i , we cannot have
such an equilibrium as the positive types without evidence will imitate the negative and
vice versa. Hence all types who do not present evidence must pool. (The pooling strategies
are described further in Lemma 1 and Theorem 3.) If v+

i ≥ v−
i , then these strategies form

an equilibrium. When v+
i = v−

i , the cheap talk does not convey any extra information, so
this is effectively the same as pooling. When v+

i > v−
i , cheap talk is useful, but there is

another equilibrium as well where cheap talk is treated as “babbling,” as in all models
with cheap talk.

The following lemma provides the background for the equilibrium characterization.

LEMMA 1: With Dye evidence, for every i, there exist a unique v+
i , v−

i , and v∗
i such that

v+
i = Eti

[
vi(ti) | (ti ∈ T+

i ∩ T 0
i

)
or

(
ti ∈ T+

i \ T 0
i and vi(ti)≤ v+

i

)]
�

v−
i = Eti

[
vi(ti) | (ti ∈ T−

i ∩ T 0
i

)
or

(
ti ∈ T−

i \ T 0
i and vi(ti)≥ v−

i

)]
�

and

v∗
i = Eti

[
vi(ti) | (ti ∈ T 0

i

)
or

(
ti ∈ T−

i \ T 0
i and vi(ti)≥ v∗

i

)
or

(
ti ∈ T+

i \ T 0
i and vi(ti)≤ v∗

i

)]
�

THEOREM 3: If v+
i ≤ v−

i , then there is an essentially unique equilibrium in the auxil-
iary game for i. In this pure strategy equilibrium, there is a fixed type ŝi such that ti reports
(ŝi� e

∗
i (ti)) where

e∗
i (ti)=

{
Ti if ti ∈ T 0

i or
(
ti ∈ T+

i and vi(ti)≤ v∗
i

)
or

(
ti ∈ T−

i and vi(ti)≥ v∗
i

)
�

{ti}� otherwise.

If v+
i > v−

i , there are two equilibria that are not essentially equivalent to one another and
every other equilibrium is essentially equivalent to one of the two. The first is the same strategy
profile as above. In the second equilibrium, there are types ŝ+

i and ŝ−
i with ŝ+

i �= ŝ−
i such that

ti ∈ Tk
i sends (ŝki � e

k
i (ti)), k ∈ {−�+}, where

e+
i (ti)=

{
Ti if ti ∈ T 0

i or vi(ti)≤ v+
i �

{ti}� otherwise�

and

e−
i (ti)=

{
Ti if ti ∈ T 0

i or vi(ti)≥ v−
i �

{ti}� otherwise�
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When v+
i > v−

i , we can always compare the two equilibria for the principal and we show
that he prefers the one which separates the positive and negative types. Hence this equi-
librium corresponds to the optimal mechanism. We characterize the principal’s beliefs
about vi as a function of the true type ti along the equilibrium path, v̂i(ti), as follows. If
v+
i > v−

i , we let

v̂i(ti)=

⎧⎪⎨
⎪⎩
v+
i if ti ∈ T 0

i ∩ T+
i or ti ∈ T+

i \ T 0
i and vi(ti)≤ v+

i �

v−
i if ti ∈ T 0

i ∩ T−
i or ti ∈ T−

i \ T 0
i and vi(ti)≥ v−

i �

vi(ti)� otherwise�

If v+
i ≤ v−

i , let

v̂i(ti)=
{
vi(ti) if

(
ti ∈ T+

i \ T 0
i and vi(ti)≥ v∗

i

)
or

(
ti ∈ T−

i \ T 0
i and vi(ti)≤ v∗

i

)
�

v∗
i � otherwise�

(1)

For any ṽ = (ṽ1� � � � � ṽI) ∈ RI , let p̂(· | ṽ) denote any p ∈ Δ(A) maximizing

∑
a∈A

p(a)

[
u0(a)+

∑
i

ui(a)ṽi

]
�

Then an equilibrium outcome of the game without commitment is the function O(t)(a)=
p̂(a | v̂(t)).

COROLLARY 2: In any model with simple type dependence and Dye evidence, there is an
optimal mechanism P with mechanism outcome OP(t) = p̂(· | v̂(t)). In other words, the
outcome selected by the principal when the profile of types is t is p̂(· | v̂(t)).

The only part of this result that does not follow from Theorems 1 and 3 is the claim
that when v+

i > v−
i , the better equilibrium for the principal is the one that separates the

positive and negative types. This is shown in Part SC of the Supplemental Material.

EXAMPLE 4—The public-goods problem: Consider the public goods model from Sec-
tion 1. In equilibrium, given a profile of types t, the principal’s expectation of vi is v̂i(ti)
defined in equation (1). The principal provides the public good iff

∑
i v̂i(ti) > 0. Again,

this describes the optimal outcome function; the rest of the optimal mechanism is straight-
forward.

While Example 1 above is reminiscent of Ben-Porath, Dekel, and Lipman’s (2014)
(BDL) analysis of allocation with costly verification, the optimal mechanism in Example 4
is reminiscent of the optimal mechanism under costly verification identified by Erlanson
and Kleiner (2017) which leads us to discuss this connection more generally.

3.2. Costly Verification

BDL (2014) and Erlanson and Kleiner (2017) modeled costly verification by assuming
the principal can pay a cost ci to “check” or learn the realization of agent i’s type, ti. The
agent cannot affect this process. By contrast, in the evidence model we consider here, the
principal cannot acquire information about an agent without inducing the agent to reveal
it.
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Yet the optimal mechanisms in these papers look very similar to optimal mechanisms
with Dye evidence. Compare BDL’s optimal mechanism in the costly-verification version
of the simple allocation problem to the mechanism in Example 1. In both cases, there is
a favored agent and a threshold. If no non-favored agent “reports” above the threshold,
the favored agent receives the object. Here, “reporting above the threshold” means to
prove a value of vi(ti) above the threshold. In BDL, it means to make a cheap-talk report
of a type such that the type minus the checking cost is above the threshold. In both, if
some non-favored agent “reports” above the threshold, the good goes to the agent with
the highest such report. In the costly verification model, this is after checking this type.

Similarly, Erlanson and Kleiner considered the public goods model under costly veri-
fication. In their mechanism and in the optimal mechanism here when v+

i > v−
i for all i,

we compute “adjusted reports” for each agent i given ti. In both cases, the adjusted re-
port for a positive type is max{v+

i � vi(ti)}, while the adjusted report for a negative type is
min{v−

i � vi(ti)} for certain cutoffs v+
i and v−

i . Again, the difference between these scenar-
ios is that the report is proven in the evidence model and is a cheap-talk claim adjusted by
the verification cost in the costly-verification model. In both problems, these reports are
summed to determine the principal’s optimal action. Again, this includes some checking
in the costly-verification model.

We generalize to show that certain costly-verification models can be rewritten as a Dye-
evidence model, so that the optimal mechanism can be computed from our results about
mechanisms with evidence. In the text, we explain this for the simple allocation problem.
We give the general result and explain the connection to Erlanson and Kleiner in Ap-
pendix C. This connection does not imply that all properties of evidence models, such
as the fact that the principal does not need commitment, carry over to costly-verification
models.

So consider the simple allocation problem. For simplicity, assume vi(ti) > 0 for all ti and
all i and that no two types have the same value of vi(ti). Now agents do not have evidence,
but the principal can pay a cost ci > 0 to learn the type of agent i, called checking i.
BDL showed that an optimal mechanism specifies functions p : T → Δ({1� � � � � I}) and
qi : T → [0�1] where p(t) is the probability distribution over which agent the principal
gives the good to and qi(t) gives the probability that the principal checks i given type
reports t. The principal’s objective function is

Et

[∑
i

pi(t)vi(ti)− qi(t)ci

]
�

where p(t)= (p1(t)� � � � �pI(t)). The incentive compatibility constraints are

p̂i(ti)≥ p̂i

(
t ′i
) − q̂i

(
t ′i
)
� ∀ti� t ′i ∈ Ti�∀i�

where p̂i(ti)= Et−i
pi(t) and q̂i(ti)= Et−i

qi(t). To see this, note that if type ti reports truth-
fully, he receives the good with expected probability p̂i(ti). If he misreports and claims to
be type t ′i , he is checked with expected probability q̂i(t

′
i). In this case, the principal learns

he has lied and does not give him the good. Thus, his probability of receiving the good is
the same as t ′i ’s probability minus the probability of being checked.

For each i, let t0
i be the type with the smallest value of vi(ti). It is not hard to show

that the solution satisfies p̂i(ti) ≥ p̂i(t
′
i) if vi(ti) ≥ vi(t

′
i). Hence, if incentive compatibility

holds for type t0
i , then it holds for every other type of agent i. So we can rewrite incentive

compatibility as

q̂i

(
t ′i
) ≥ p̂i

(
t ′i
) − p̂i

(
t0
i

)
� ∀t ′i ∈ Ti�∀i�
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The optimal solution sets q̂i as small as possible since checking is costly, so q̂i(ti)= p̂i(ti)−
p̂i(t

0
i ) for all ti. Hence the objective function is∑

i

Eti

[
p̂i(ti)vi(ti)− q̂i(ti)ci

] =
∑
i

Eti

[
p̂i(ti)

(
vi(ti)− ci

) + p̂i

(
t0
i

)
ci

]
�

Thus, we can solve the principal’s problem by choosing p to maximize the above subject
to p̂i(ti)≥ p̂i(t

0
i ) for all ti ∈ Ti and all i. We can write the objective function as

∑
i

Eti

[
p̂i(ti)ṽi(ti)

] = Et

[∑
i

pi(t)ṽi(ti)

]
�

where

ṽi(ti)=
⎧⎨
⎩
vi(ti)− ci if ti �= t0

i �

vi
(
t0
i

) − ci + ci

ρi

(
t0
i

) if ti = t0
i �

(Recall that ρi is the principal’s prior over Ti.)
This is the same objective function as for the simple allocation problem with Dye evi-

dence where the value to the principal of allocating the good to agent i is ṽi(ti). Construct
the evidence functions by assuming Ei(t

0
i ) = {Ti} and Ei(ti) = {{ti}�Ti} for all ti �= t0

i . In
this case, the incentive compatibility constraint is p̂i(ti) ≥ p̂i(t

0
i ), just as in the costly-

verification model. We can apply our characterization of optimal mechanisms with Dye
evidence to obtain the solution to this problem. One can then “invert” the ṽi’s, writing the
solution as a function of the vi’s, to give the solution for the costly-verification model.

Specifically, for each i, define the cutoffs ṽ∗
i from the ṽi functions as before—that is, ṽ∗

i

is the expectation of ṽi conditional on ti not having evidence (type t0
i ) or having ṽi(ti) ≤

ṽ∗
i . As shown above, the optimal mechanism for this problem with evidence is to select

a favored agent who has ṽ∗
i ≥ ṽ∗

j for all j �= i, set threshold ṽ∗
i , giving the good to i if

ṽj(tj) ≤ ṽ∗
i for all j �= i and to that agent j who maximizes ṽj(tj) otherwise. It is easy to

show that this is equivalent to the optimal mechanism in BDL.
This approach yields optimal mechanisms with costly verification for Examples 2 and 3

and the model of Erlanson and Kleiner, as discussed in Appendix C.

4. UNDERSTANDING THE RESULTS

We provide intuition for our results in two ways. In Section 4.1, we sketch the proof of
Theorem 1 in the context of the simple allocation problem. In Section 4.2, we discuss the
roles our assumptions play in the results.

4.1. Proof Sketch for Simple Allocation Problem

One simplification in type-independent settings like the simple allocation problem is
that we can write a mechanism as a function only of type reports, where it is understood
that if i claims type ti, she also reports maximal evidence for ti, Mi(ti). If i claims type ti
but does not show evidence Mi(ti), type independence implies that the principal knows
the worst possible outcome for i—here, not giving her the good—and can use this to
punish. This deters any “obvious” deviations, leaving only more subtle deviations of the
form of reporting some si �= ti and providing evidence Mi(si). So for this proof sketch, a
mechanism is a function P : T → Δ(A).
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Fix an optimal mechanism P . The probability that type ti receives the good under P is

p̂i(ti)= Et−i
P(i | ti� t−i)�

where action a= i is the action of the principal to give the good to agent i. Partition each
Ti according to equality under p̂i. That is, for each α ∈ [0�1], let

Tα
i = {

ti ∈ Ti | p̂i(ti)= α
}
�

Since Ti is finite, there are only finitely many values of α such that Tα
i �= ∅. Unless stated

otherwise, any reference below to a Tα
i set assumes this set is nonempty. Let Ti denote

the partition of Ti so defined and T the induced (product) partition of T . We call T the
mechanism partition.

Incentive compatibility is equivalent to the statement that Mi(si) ∈ Ei(ti) implies
p̂i(ti) ≥ p̂i(si). That is, if ti can imitate si in the sense that ti has available the maximal
evidence of si, then the mechanism must give the good to ti at least as often as si. Hence,
if Mi(si) ∈ Ei(ti), ti ∈ Tα

i , and si ∈ Tβ
i , we must have α≥ β.

A key observation is that without loss of generality, we can take the mechanism to
be measurable with respect to the mechanism partition T . While this property may seem
technical, it is the key to our results and is not generally true for models with more general
type dependence than we allow.

To see why this property holds, suppose it is violated. In other words, suppose we have
a pair of types si� s′

i ∈ Ti such that p̂i(si) = p̂i(s
′
i) but P is not measurable with respect to

{si� s′
i}. That is, there is t−i ∈ T−i with P(· | si� t−i) �= P(· | s′

i� t−i). Consider the alternative
mechanism P∗ which is identical to P unless i’s report is either si or s′

i. For either of these
actions by i, P∗ specifies the expected allocation generated by P . More precisely, if q is the
probability of type si conditional on {si� s′

i}, then for every a ∈ A and t−i ∈ T−i, we set

P∗(a | si� t−i)= P∗(a | s′
i� t−i

) = qP(a | si� t−i)+ (1 − q)P
(
a | s′

i� t−i

)
�

By assumption, the payoffs to agents j �= i do not depend on i’s type directly—they are
only affected by i’s type through its effect on the outcome chosen by the principal. Since
this change in the mechanism preserves the probability distribution over outcomes from
the point of view of these agents, their incentives are unaffected by this change.

So consider agent i. Her payoff from reporting anything other than si or s′
i is unchanged.

The expected payoff from reporting si was p̂i(si) in the original mechanism, while the
expected payoff from reporting s′

i was p̂i(s
′
i). The new mechanism “averages” these two

types together, so the probability i receives the good if she reports si is now qp̂i(si)+ (1 −
q)p̂i(s

′
i). But since p̂i(si)= p̂i(s

′
i), the probability i receives the good if she reports si does

not change and similarly for s′
i. Hence the expected payoff to i from every action is the

same under P and P∗, so P∗ must be incentive compatible.10

Finally, consider the principal. Recall that his utility function is

v(a� t) =
∑
j

uj(a)vj(tj)�

10More generally, suppose all types have the same indifference curves. Then if si is indifferent between
reporting si or claiming to be type s′

i , s
′
i would also be indifferent between these reports. Hence neither type’s

payoff changes if we replace the response to either report with the averaged response. This is a key implication
of simple type dependence.
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Under the original mechanism, the principal’s expected payoff is

Et

∑
a

P(a | t)
∑
j

uj(a)vj(tj)=
∑
j

Etj

[
Et−j

∑
a

P(a | t)uj(a)

]
vj(tj)�

But since uj(a) is 1 if a= j and 0 otherwise,

Et−j

∑
a

P(a | t)uj(a)= p̂j(tj)�

so the principal’s expected payoff in the original mechanism is just
∑

j Etj p̂j(tj)vj(tj).
Since the probability tj receives the good is unchanged in the new mechanism for ev-
ery j and every type tj ∈ Tj , the expected payoff of the principal is unchanged. Hence P∗

is also an optimal mechanism. Repeating as needed, we construct an optimal mechanism
which is measurable with respect to T .

This property is critical because we can construct an equilibrium of the game without
commitment where the principal obtains at least the information embodied in the mecha-
nism partition. Since the optimal mechanism is measurable with respect to this partition,
this means the principal receives enough information to carry out the optimal mechanism.
We construct such an equilibrium and use it to complete the proof.

Specifically, we use the auxiliary games to construct the equilibrium strategies. This
construction has four steps. First, we consider equilibria in the restricted auxiliary game
for i. In this game, type ti is restricted to sending evidence which is maximal for some si
in the same event of the mechanism partition as ti. That is, if si� ti ∈ Tα

i for some α, then
in the restricted auxiliary game for i, ti can send evidence Mi(si) if Mi(si) ∈ Ei(ti). For
s′
i /∈ Tα

i , ti cannot send evidence Mi(s
′
i) even if Mi(s

′
i) ∈ Ei(ti). The principal’s action in this

game is the choice of a number x where his payoff is −(x−vi(ti))
2 and the agent i’s utility

is x, as in the unrestricted case described above. In the restricted game, the principal must
learn at least that ti ∈ Tα

i since, by construction, the only messages available to ti reveal
that ti ∈ Tα

i .
Second, we show that, given this information, the principal cannot do better than to im-

plement the outcome of the mechanism. More specifically, for each i, fix an equilibrium
of the restricted auxiliary game. For any ti ∈ Ti, ti’s equilibrium strategy in the restricted
game for i determines the principal’s equilibrium expected value of vi which we denote
v̂i(ti).11 For a profile of types t, let v̂(t) = (v̂1(t1)� � � � � v̂I(tI)). Typically, the evidence pre-
sented will not reveal the type profile t, but must reveal at least the event of the mecha-
nism partition containing t and hence what the optimal mechanism specifies given t. The
second step is to show that for every type profile t, following the allocation prescribed by
the optimal mechanism for this type profile is optimal for the principal when his expecta-
tion of v is v̂(t). In this sense, the equilibrium does not give him information he can use
to improve on the mechanism.

To see this, suppose to the contrary that there is a strategy p∗ : RI → Δ(A) for the
principal as a function of the expected values v̂ which gives him a strictly higher expected
payoff than the optimal mechanism. Consider the following alternative mechanism. Given
reports (t�M(t)), the principal chooses the allocation p∗(v̂(t)) with probability ε and the

11If agent i’s equilibrium strategy in the restricted game is mixed, optimality for i requires that the principal
has the same belief in response to every pure strategy in the support. Hence the principal’s belief in response
to the equilibrium strategy of any type is unambiguously defined.
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original mechanism P(· | t�M(t)) otherwise. If following the alternative strategy yields
the principal a strictly higher expected payoff than following the mechanism, then this
mechanism, if incentive compatible, yields a higher payoff than the optimal mechanism.
Since this is a contradiction, the new mechanism must not be incentive compatible.

But the new mechanism is incentive compatible. To see this, fix any si� ti ∈ Ti with
Mi(si) ∈ Ei(ti). By incentive compatibility of P , we must have p̂i(ti) ≥ p̂i(si). If this in-
equality is strict, then for ε sufficiently small, ti prefers not to imitate si in the new mech-
anism. So suppose p̂i(ti)= p̂i(s), so that ti and si are in the same event of the mechanism
partition. It is easy to show that Mi(si) ∈ Ei(ti) implies Ei(si) ⊆ Ei(ti). Hence in the re-
stricted auxiliary game, ti must get a weakly larger payoff than si. That is, we must have
v̂i(ti)≥ v̂i(si). But then p∗ must give the good to ti at least as often as si. Therefore, ti gets
the good weakly more often than si in the new mechanism, so it is incentive compatible, a
contradiction.

This result also has implications for the optimal mechanism. Since the alternative strat-
egy p∗ must give the good to one of the agents with the highest expected vi, the optimal
mechanism must be doing the same. Otherwise, it would give the principal a lower ex-
pected payoff. One implication of this is that if ti ∈ Tα

i and si ∈ Tβ
i for α > β, then we

must have v̂i(ti) ≥ v̂i(si). (Recall that Tα
i is the set of ti who receive the good with proba-

bility α in the optimal mechanism.). If v̂i(ti) < v̂i(si), then given the information revealed
by the restricted auxiliary game equilibria, the principal would want to give the good to si
at least as often as to ti. But the optimal mechanism gives ti the good strictly more often
and gets the same payoff as p∗, so this cannot hold.

The third step is to show that by appropriately specifying beliefs in response to evidence
which has zero probability in the restricted auxiliary game, we obtain an equilibrium of the
unrestricted auxiliary game for i, where the payoffs are the same as in the restricted game
but where ti can send any evidence she possesses. Specifically, in the unrestricted auxiliary
game for i, if i presents evidence ei which is off path in the sense that it is not presented
by any type in equilibrium, then the principal responds by setting x = minti|ei∈Ei(ti) vi(ti).

To see that this gives an equilibrium of the unrestricted auxiliary game, consider a de-
viation by type ti to a message that was not available to her in the restricted game. First,
consider a deviation to evidence which is not chosen in the equilibrium of the restricted
auxiliary game by any type. Since ti could present Mi(ti) in the restricted game, her equi-
librium payoff must be at least minsi|Mi(ti)∈Ei(si) vi(si). Since Mi(ti) rules out the largest
number of types ti can rule out,

min
si |Mi(ti)∈Ei(si)

vi(si)≥ min
si|ei∈Ei(si)

vi(si)�

for any ei ∈ Ei(ti). Hence sending Mi(ti) yields a weakly higher payoff than any off path
evidence ti can send, so ti would not deviate to such evidence.

So consider a deviation to evidence ti could not have used in the restricted game but
which is used in equilibrium by some other type, si. That is, if ti is in partition event Tα

i ,
then the deviation is to Mi(si) which is sent in equilibrium by type t ′i where si need not
equal t ′i . Since this is evidence ti could not have used in the restricted game, we must have
si and t ′i in partition event Tβ

i for β �= α. Since ti can send si’s maximal evidence, incentive
compatibility implies α> β. As noted above, this implies v̂i(ti) ≥ v̂i(si), so ti does not gain
from the deviation.

The final step in constructing an equilibrium of the game without commitment is to put
the pieces together. Set the agents’ strategies and the principal’s beliefs to be those in
the equilibria of the unrestricted auxiliary games. Similarly to the construction above, for
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each v̂ = (v̂1� v̂2� � � � � v̂I), let a∗(v̂) select one of the agents with the highest v̂i to give the
good to. Given any reports that lead in equilibrium to expected values v̂, the principal’s
strategy is a∗(v̂). Clearly, this strategy is sequentially rational for the principal. To see
that this gives a robust equilibrium, fix any reports by the agents other than i. Obviously,
the report for i which maximizes the principal’s expected value of vi will maximize her
probability of getting the good. But this means that i will follow her equilibrium strategy,
regardless of the reports of the other agents, giving us a robust equilibrium.

Note that the outcome of this equilibrium is not necessarily the same as the outcome of
the optimal mechanism that was our starting point. However, the fact that the principal
receives at least the information he needs to follow the optimal mechanism implies that
his payoff in this equilibrium must be at least that in the optimal mechanism. Since it
cannot be strictly larger, we see that the principal’s payoff in this equilibrium is the same
as in the optimal mechanism.

Hence if the principal commits to the strategy he uses in this equilibrium, we obtain an
indirect mechanism with the same payoff as the equilibrium. As in the standard mecha-
nism design model, it is not difficult to turn this into a direct mechanism with the same
outcome. Note that the principal’s strategy is deterministic in the equilibrium (both on
and off the equilibrium path) and hence the implied mechanism is deterministic. It is
also not hard to see that the robustness of the equilibrium implies that the mechanism is
robustly incentive compatible.

4.2. Role of Assumptions

In this subsection, we explain the roles of our assumptions in generating the results.
Part SD of the Supplemental Material illustrates these points with examples showing
which results fail when we drop various assumptions.

First, consider the robustness properties. These properties say that each agent’s opti-
mal strategy does not depend on the other agents’ types or behavior. Clearly, the inde-
pendence of types across agents and the private-values assumption that agent i’s utility
depends only on ti and a play important roles. If types are correlated, it will be optimal
for the principal to use reports by one agent to help enforce incentive compatibility for
others, so each agent’s optimal strategy will depend on her beliefs about the others. Sim-
ilarly, if an agent’s utility depends on the types of other agents, her optimal strategy will
depend on her beliefs about their types.

The functional form of the principal’s utility function is also important for robustness.
Given any belief about the types of the agents, the principal will choose a to maximize
a weighted sum of the ui(a)’s with weights given by the expectations of the vi(ti)’s. This
implies that if the principal’s expectation of vi(ti) increases, his optimal action changes in
the direction of increasing ui(a). Thus, agent i’s incentives to signal about her type depend
only on her preferences regarding the principal’s expectation of vi(ti), independently of
his beliefs about the types of the other agents. Without this, robustness is unlikely: if what
agent i wants the principal to believe about ti depends on the principal’s beliefs about t−i,
then i’s optimal strategy depends on her beliefs about the other agents.

To clarify, the change in i’s utility from changing the principal’s beliefs about ti depends
on the principal’s beliefs about t−i. For example, in the simple allocation problem, whether
an increase in the principal’s expectation of vi(ti) changes i’s utility depends on the beliefs
about the other agents. However, while the magnitude of the change in utility depends on
the principal’s beliefs about t−i, the sign does not. Thus, for a positive type of i, increasing
the principal’s expectation of vi has a positive effect for all t−i.
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Except for the private-values assumption, our assumptions on the form of the agent’s
utility are not essential for robustness. For example, suppose the principal’s set of feasible
actions A is a product space A1 ×· · ·×AI . Write a typical action a ∈ A as a= (a1� � � � � aI)
where agent i’s utility depends only on her type and ai and the principal’s utility function
is

∑
i vi(ai� ti). In this case, we effectively have I different principal–agent problems and

robust incentive compatibility will not cost the principal anything, regardless of what else
we assume about the agents’ utility functions.

Simple type dependence and our assumptions on the principal’s utility function are
both important for our result that commitment is not necessary. Conceptually, we can
separate this result into two pieces. First, along the equilibrium path of the game with-
out commitment, the principal finds it optimal to implement the outcome of the optimal
mechanism. Second, there are beliefs for the principal off the equilibrium path which
make it sequentially rational for him to choose outcomes which deter such deviations by
the agents. Simple type dependence plays an important role in both parts.

For the first part, consider the one-agent case and contrast our analysis with the classical
indifference curve analysis of a mechanism design problem as in Mas-Colell, Whinston,
and Green’s (1995) treatment of principal–agent models with adverse selection. In the
classical analysis, one uses differences in the indifference curves for high and low types
to identify incentive compatible allocations and then the principal optimizes over these.
With simple type dependence, all types have the same indifference curves, so this ap-
proach does not work. If incentive compatibility were driven by differences in indifference
curves, we would not obtain our result in general. To see why, consider the two-type case.
Suppose, as in the classical adverse selection problem, the optimal mechanism gives the
two types different allocations and that the incentive compatibility constraint is binding
only for one type. That is, type t (omitting subscripts as we have one agent) is indifferent
between the allocation for t and for t ′ and the constraint binds in the sense that the alloca-
tion for t ′ is not first-best. Then commitment is necessary. Without commitment, there is
no game where the principal learns which type he is facing (necessary to choose different
allocations for the two types) and does not choose the first-best allocation for type t ′.

When indifference curves are the same and incentive compatibility is achieved by ev-
idence, this situation cannot arise. If two types are given different allocations in the op-
timal mechanism, it cannot be true that one is indifferent between these allocations and
the other type is not. If both types are indifferent between the two allocations, as our
proof shows, our assumptions on the principal’s utility function imply that he obtains the
same payoff from giving the “expected allocation” to both types and so does not need to
separate them. If both types are not indifferent, there are two possibilities. First, suppose
they have the same preferences—either both are positive or both are negative. In this
case, the type with the better allocation must have evidence the other type lacks. This use
of evidence to separate the types is equally available in a mechanism or a game. Second,
suppose one type is positive and the other negative. Then they have the opposite prefer-
ences regarding these allocations. If each strictly prefers the allocation she gets, it is easy
to separate them, either in a mechanism or in equilibrium. If each type strictly prefers the
other’s allocation, it must be that each has evidence unavailable to the other which can
be used to separate them, evidence which again is equally available in a mechanism or a
game.

Simple type dependence also allows us to address off path behavior. For intuition, first,
consider the simpler case of type independence. When the utility functions of the agents
do not depend on their types, the principal knows how to punish deviations. To prevent de-
viations while maintaining sequential rationality, choose the principal’s beliefs off path to
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be those beliefs consistent with the evidence presented for which his best reply is the worst
possible for the agent who deviated. Since the principal’s actions on path are optimal for
him given some beliefs, this generates off path behavior which punishes deviations.

Simple type dependence is more complicated, since the inferences which hurt positive
types help negative types, making it harder to select off path beliefs to deter deviations.
But this restricts both mechanisms and games. To see the intuition, suppose there is only
one agent with two types, t ′ and t ′′, where t ′ is positive and t ′′ is negative. Fix any report and
evidence, say (t̄� ē), which is a deviation from equilibrium and is feasible for both types,
so that we need to select a belief for the principal. Let a(t) denote the action played by
the principal in the proposed equilibrium (and, because we are assuming the only issue
at stake is off path behavior, in the mechanism) as a function of the agent’s type t. Since
the types separate in the mechanism, we have a(t ′) �= a(t ′′). Let a∗ be the response to
(t̄� ē) in the mechanism. Since the mechanism is incentive compatible, it must be true
that ui(a(t

′)) ≥ ui(a
∗) ≥ ui(a(t

′′)). But this means we can construct the equilibrium to
have the principal infer from (t̄� ē) that the agent is type t ′ and choose action a(t ′). This
ensures sequential rationality and deters the deviation by either type.

5. CONNECTION TO THE LITERATURE

In this section, we give details on how our results relate to the literature. Green and
Laffont (1986) began the literature on mechanism design with evidence. We make use of
results in Bull and Watson (2007) and Deneckere and Severinov (2008). Below, we discuss
in more detail a particularly relevant part of this literature which identifies conditions
under which the principal does not need commitment to obtain the same outcome as
under the optimal mechanism, a result first shown by Glazer and Rubinstein (2004, 2006)
and extended by Sher (2011) and Hart, Kremer, and Perry (2017).

The first papers on games with evidence are Grossman (1981) and Milgrom (1981).
We make particular use of Dye (1985) and Jung and Kwon (1988).12 More recent pa-
pers of interest on this topic include Hagenbach, Koessler, and Perez-Richet (2014) and
Guttman, Kremer, and Skrzypacz (2014). The papers most closely related to our applica-
tion to costly verification models are BDL (2014) and Erlanson and Kleiner (2017).

Our results on robust incentive compatibility are related to earlier results on domi-
nant strategy incentive compatible mechanisms without evidence. Manelli and Vincent
(2010) and Gershkov, Goeree, Kushnir, Moldovanu, and Shi (2013) showed that in cer-
tain settings with transfers and quasi-linear utility, every incentive compatible allocation
is equivalent (yields the same interim utilities for all types of all agents) to a dominant
strategy incentive compatible allocation. In Part SE of the Supplemental Material, we
show how their approach can be adapted to our setting to provide an alternative, though
more complex, proof of our result that robust incentive compatibility is costless for the
principal.

We extend the earlier results that commitment is not necessary in the one-agent setting
in several ways. First, we consider multiple agents. Second, because we have multiple
agents, we can consider robustness with respect to agents’ beliefs about other agents,
an issue absent in the one-agent setting. Third, our characterization of the equilibrium
strategies is novel.

Even when we restrict our analysis to the one-agent case, our results are not nested by
the previous literature. Most significantly, all previous results assume the agent’s prefer-
ences are independent of her type, while we allow simple type dependence. To clarify, for

12See also Farrell (1986) which appears to have developed essentially the same model independently.
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the remainder of this discussion, we consider the one-agent case, so t is the type of the
single agent, T her set of types, and u her utility function.

Glazer and Rubinstein (2004, 2006), the first to show a result of this form, used weaker
assumptions on evidence as they did not assume normality. However, they assumed
that the principal only had two actions available and the agent’s preference was type-
independent. By contrast, in the one-agent, two-action case, our assumption of simple
type dependence is without loss of generality.

Sher (2011) generalized Glazer–Rubinstein by assuming type-independent utility for
the agent and that the principal’s utility can be written as a concave function of the agent’s
utility. In the one-agent version of our model, the principal’s utility function is v(a� t) =
u0(a) + v(t)u(a). Since this depends on a directly, not just through u(a), even the type-
independent version of our model is not nested by (nor does it nest) Sher’s assumptions.
In particular, if the agent is indifferent between a and â, Sher’s assumptions require the
principal to be indifferent given any t, a restriction we do not impose.

Hart, Kremer, and Perry (2017), like us, assumed normality. Unlike us, they assumed
type-independent utility for the agent and assumed that the principal cannot randomize.
In addition, they weakened Sher’s concavity assumption to the property that for each
t ∈ T , the principal’s utility function over A can be written as v(a� t) = ϕt(u(a)) where∑

t μ(t)ϕt is single-peaked (equivalently, strictly quasi-concave) for any μ ∈ Δ(T). Be-
cause we allow the principal’s utility to depend on a directly, our model violates this as-
sumption for the same reasons our model violates Sher’s assumption. Also, we prove that
the principal does not need to randomize.

In the Appendix of an earlier version of their paper, Hart, Kremer, and Perry (2016)
allowed the principal to randomize. Their main assumption states that if we fix any in-
difference curve for the agent, then there is a point on that indifference curve which is
best for the principal independently of t. In the one-agent version of our model, we have
v(a� t) = u0(a) + u(a)v(t). Hence, holding fixed the agent’s utility, for any t, the best
lottery over a is any p on the indifference curve which maximizes

∑
a p(a)u0(a). Thus,

except for the type dependence we allow, in the one-agent case, our assumptions are
nested in their model.

Hart, Kremer, and Perry also gave a refinement of equilibrium in the disclosure game
that identifies the principal’s best equilibrium. Our result that the principal’s best equilib-
rium in the game without commitment can be found using I one-agent disclosure games
is analogous in that it also provides a means to understand this equilibrium.

APPENDIX A: PROOF OF THEOREM 1

For each i, let Ri ≡ Ti × Ei. Given a mechanism P and ri ∈Ri, let

Ûi(ri;P) = Et−i

∑
a

P
(
a | ri� t−i�M−i(t−i)

)
ui(a)�

The Revelation Principle for this class of problems says we can restrict attention to equi-
libria where each ti sends ri = (ti�Mi(ti)). Hence Ûi(ri;P) is the expected utility of ti from
report ri if ti is a positive type and minus the expected utility if ti is a negative type.

Throughout, we fix an optimal mechanism P . For each α ∈ R, let

Rα
i = {

ri ∈ Ri | Ûi(ri;P) = α
}
�

Finiteness of Ti implies that Ei is finite and hence Ri is finite. References to Rα
i below as-

sume this set is nonempty unless stated otherwise. The nonempty Rα
i ’s form a partition of
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Ri, called the mechanism partition for i, denoted {Rα
i }. The product partition of R formed

by the cells
∏

i R
αi
i is the mechanism partition, denoted {∏i R

αi
i }. Let

Tα
i = {

ti ∈ Ti | Ûi

(
ti�Mi(ti);P

) = α
} = {

ti ∈ Ti |
(
ti�Mi(ti)

) ∈ Rα
i

}
�

LEMMA 2: P is incentive compatible iff the following hold for every (si� ei) ∈ Rα
i and

(ti�Mi(ti)) ∈ Rβ
i . (i) If ti ∈ T+

i and α > β, then ei /∈ Ei(ti). (ii) If ti ∈ T−
i and β > α, then

ei /∈ Ei(ti).

PROOF: Immediate. Q.E.D.

LEMMA 3: Without loss of generality, P has the property that for all i, if (si� ei) ∈ Rα
i , then

there exists ti ∈ Tα
i with ei ∈ Ei(ti). Hence if Rα

i �= ∅, then Tα
i �= ∅.

PROOF: Suppose (si� ei) ∈ Rα
i . By Lemma 2, for any ti ∈ Tβ

i with ei ∈ Ei(ti), we have β ≥
α if ti ∈ T+

i and β ≤ α if ti ∈ T−
i . Thus, if there is no ti ∈ Tα

i with ei ∈ Ei(ti), we can move
(si� ei) to the smallest β > α with ti ∈ T+

i and ei ∈ Ei(ti) or to the largest β < α with ti ∈
T−
i and ei ∈ Ei(ti) and will preserve incentive compatibility and the principal’s expected

payoff. We carry out this move by changing the mechanism so that P(· | si� ei� t−i� e−i) =
P(· | ti�Mi(ti)� t−i� e−i) for all (t−i� e−i) ∈ R−i for the chosen ti. Q.E.D.

LEMMA 4: Without loss of generality, P is measurable with respect to the mechanism parti-
tion for each i, {Rα

i }, in the sense that if (si� ei)� (s′
i� e

′
i) ∈ Rα

i , then P(· | si� ei� t−i� e−i)= P(· |
s′
i� e

′
i� t−i� e−i) for all (t−i� e−i) ∈ R−i. Hence P is measurable with respect to the mechanism

partition {∏i R
αi
i } in the sense that P(· | s� e)= P(· | s′� e′) if (s� e)� (s′� e′) ∈ ∏

i R
αi
i .

PROOF: Suppose P is not measurable with respect to the mechanism partition for
some i. We construct an incentive compatible mechanism which is measurable and has
the same payoff for the principal as P . Fix i and α such that Rα

i �= ∅. By Lemma 3, Tα
i �= ∅.

Define a mechanism P∗ by

P∗(· | si� ei� t−i� e−i)=
{
P(a | si� ei� t−i� e−i) if (si� ei) /∈ Rα

i �

Eti

(
P

(
a | ti�Mi(ti)� t−i� e−i

) | (ti�Mi(ti)
) ∈Rα

i

)
� otherwise.

The expected payoff to any type tj of agent j �= i from any report is the same in P and P∗.
So incentive compatibility of P implies incentive compatibility of P∗ for j �= i.

For agent i for (si� ei) ∈Rα
i , we have

Ûi

(
si� ei;P∗) = Et−i

[∑
a

P∗(a | si� ei� t−i�M−i(t−i)
)
ui(a)

]

= Et−i

[∑
a

Eti

[
P

(
a | ti�Mi(ti)� t−i�M−i(t−i)

) | (ti�Mi(ti)
) ∈Rα

i

]
ui(a)

]

= Eti

[
Et−i

(∑
a

P
(
a | ti�Mi(ti)� t−i�M−i(t−i)

)
ui(a)

)
| (ti�Mi(ti)

) ∈ Rα
i

]

= Eti

[
α | (ti�Mi(ti)

) ∈Rα
i

]
= α= Ûi(si� ei;P)�
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So every ti receives the same expected payoff from every report in P and P∗, so incentive
compatibility of P implies incentive compatibility of P∗. Also, P∗ gives the principal the
same expected payoff as P . Hence P∗ is an optimal mechanism. Iterating gives an optimal
mechanism measurable with respect to the mechanism partition for i; iterating over i
gives an optimal mechanism measurable with respect to the mechanism partition. Q.E.D.

Note that the principal’s expected payoff is linear in the expected values of the vi’s. The
following lemma gives a standard but useful implication regarding optimal actions.

LEMMA 5: Let

U =
{
(ū0� ū1� � � � � ūI) ∈ RI+1

∣∣∣ ∃p ∈ Δ(A) with
∑
a

p(a)ui(a)= ūi�∀i
}
�

Given any belief of the principal over each Ti, let v̂i denote the expectation of vi(ti) and let
v̂ = (1� v̂1� � � � � v̂I). Let U ∗(v̂) denote the set of u ∈ U maximizing the principal’s expected
utility, v̂ ·u. Suppose v and v′ satisfy vi > v′

i and v′
j = vj for j �= i. Then for any u ∈ U ∗(v) and

u′ ∈ U ∗(v′), we have ui ≥ u′
i.

PROOF: Standard. Q.E.D.

We now construct an equilibrium for the game without commitment which yields the
same payoff for the principal as P . The strategy for agent i in this equilibrium is the
same as i’s strategy in an equilibrium of the auxiliary game for i. The auxiliary game
for i is a two-player game between i and the principal. i has a set of types Ti where the
prior over Ti is the same as in the mechanism design problem. If i is type ti, then her
set of feasible actions is Zi(ti) ≡ Ti × Ei(ti). The principal’s set of feasible actions is X =
[minj mintj∈Tj vj(tj)�maxj maxtj∈Tj vj(tj)]. The game is sequential. First, agent i learns her
type ti ∈ Ti. Then she chooses an action zi ∈Zi(ti). The principal observes this action and
chooses x ∈ X . If i’s type is ti and the principal chooses action x, then the principal’s
payoff is −(x− vi(ti))

2, while i’s payoff is{
x if ti ∈ T+

i �

−x� otherwise�

Denote a (behavioral) strategy for i in this game by σi(· | ti), a function from Ti to
Δ(Zi(ti)). Let the principal’s belief be denoted qi : Ti × Ei → Δ(Ti). The principal’s strat-
egy for the game is denoted Xi :Ri → X .

We construct an equilibrium of the auxiliary game for i via the restricted auxiliary game.
In the restricted game, type ti can only choose actions in Rα

i where α is the unique α such
that ti ∈ Tα

i . That is, ti’s strategy set is Zi(ti)∩Rα
i . Note that every (si� ei) ∈Ri is contained

in at least one Zi(ti)∩Rα
i by Lemma 3.

Fix i and a perfect Bayesian equilibrium (σ∗
i �X

∗
i � q

∗
i ) of the restricted auxiliary game

for i.13 Sequential rationality for the principal implies that X∗
i (si� ei) = ∑

ti∈Ti vi(ti)q
∗
i (ti |

si� ei), the expectation of vi(ti) given the belief q∗
i .

13To see that such an equilibrium must exist, consider the game where i is restricted to putting probability
ε > 0 on each of her pure strategies. By standard results, this game has a Nash equilibrium. As ε ↓ 0 (taking
subsequences as needed), these strategies converge to a Nash equilibrium of the restricted auxiliary game by
upper hemicontinuity of the Nash equilibrium correspondence. These strategies and the limiting beliefs for the
principal must also be a perfect Bayesian equilibrium since the principal’s limiting strategy must be optimal
given his limiting belief.
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Let X̂∗
i (ti) denote the action chosen by the principal in equilibrium when i is type ti.

That is, X̂∗
i : Ti → X and is given by

X̂∗
i (ti)=X∗

i (si� ei)� for some (si� ei) ∈ supp
(
σ∗

i (· | ti)
)
�

Because the principal’s payoff function is strictly concave in his action, he always uses
a pure strategy. Since ti’s payoff is either strictly increasing or strictly decreasing in the
principal’s actions, ti is never indifferent between two distinct actions by the principal.
Hence every message in the support of ti’s mixed strategy must lead to the same response
by the principal. Thus, the definition above is unambiguous. For this to be an equilibrium,
we require

X̂∗
i (ti)= max

(si�ei)∈Zi(ti)∩Rα
i

X∗
i (si� ei)� ∀ti ∈ T+

i �

X̂∗
i (ti)= min

(si�ei)∈Zi(ti)∩Rα
i

X∗
i (si� ei)� ∀ti ∈ T−

i �

By construction, if ti ∈ Tα
i , then ti can only send (si� ei) ∈ Rα

i in the restricted auxiliary
game. Hence, in any equilibrium of this game, the principal at least learns the event of the
mechanism partition for i that ti lies in. Since the optimal mechanism is measurable with
respect to the mechanism partition, this means that the principal has enough information
to carry out the optimal mechanism. On the other hand, the principal may learn more than
just that ti ∈ Tα

i in the equilibrium. The following lemma shows that this extra information,
if any, cannot be useful for the principal.

LEMMA 6: For each i, fix any equilibrium of the restricted auxiliary game for i. Then for
every t ∈ T ,

P
(· | t�M(t)

) ∈ arg max
p∈Δ(A)

∑
a

p(a)

I∑
i=0

ui(a)X̂
∗
i (ti)�

In other words, given the belief formed by the principal in the equilibria at profile t, it is optimal
for him to follow the optimal mechanism.

PROOF: For each (α1� � � � �αI) such that each T
αi
i �= ∅, P(· | t�M(t)) is constant over

t ∈ ∏
i T

αi
i . Given any t ∈ ∏

i T
αi
i , the equilibria from the auxiliary games give the principal

at least as much information as the fact that t ∈ ∏
i T

αi
i , so we must have

max
p∈Δ(A)

∑
a

p(a)
∑
i

ui(a)X̂
∗
i (ti)≥

∑
a

P
(
a | t�M(t)

)∑
i

ui(a)X̂
∗
i (ti)� ∀t ∈ T�

The claim is that this holds with equality for all t. Suppose, to the contrary, that the in-
equality is strict for some t.

For each v̂ = (1� v̂1� � � � � v̂I) ∈ RI+1, let p̃(· | v̂) denote any p(·) ∈ Δ(A) which maximizes∑
a p(a)

∑I

i=0 ui(a)v̂i. In other words, p̃(· | v̂) is an optimal p for the principal given any
beliefs over T such that v̂i is the expected value of vi(ti). So we have∑

a

p̃
(
a | X̂∗

i (ti)
)∑

i

ui(a)X̂
∗
i (ti)≥

∑
a

P
(
a | t�M(t)

)∑
i

ui(a)X̂
∗
i (ti)
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for all t ∈ T , strictly so for some t. We complete the proof by using this to construct a
mechanism superior to the optimal mechanism, a contradiction.

Given any (si� ei) ∈ R
αi
i , let

v̂i(si� ei)=
{
X̂∗

i (si) if ei =Mi(si)�

X∗
i (si� ei)� otherwise�

That is, v̂i(si� ei) is the equilibrium belief type si induces in the restricted auxiliary game
if ei is maximal evidence for si; otherwise, it is the equilibrium belief the principal has in
the restricted auxiliary game in response to report and evidence (si� ei). This construction
is needed so that each type will be induced to report truthfully and provide maximal evi-
dence in the mechanism in order to mimic the equilibrium. We need this to, in effect, turn
an indirect mechanism into a direct mechanism.

Given (s� e) ∈ ∏
i Ri, let v̂(s� e)= (v̂1(s1� e1)� � � � � v̂I(sI� eI)). Fix a small ε > 0 and define

a new mechanism P∗ by

P∗(· | s� e)= εp̃
(· | v̂(s� e)) + (1 − ε)P(· | s� e)�

To show that P∗ is incentive compatible, fix ti ∈ Ti and (si� ei) such that ei ∈ Ei(ti). If ti
strictly prefers reporting (ti�Mi(ti)) to reporting (si� ei) under P , then for ε sufficiently
small, ti still has this strict preference.14

So suppose that ti is indifferent between reporting (ti�Mi(ti)) and reporting (si� ei) un-
der P , so (ti�Mi(ti)) and (si� ei) are in the same event of the mechanism partition for i.
Since ti is indifferent between these two reports under P , she prefers reporting (ti�Mi(ti))
under P∗ iff she prefers reporting (ti�Mi(ti)) under p̃(· | v̂(s� e)). That is, if ti ∈ T+

i , ti
prefers reporting (ti�Mi(ti)) to reporting (si� ei) under P∗ iff

Et−i

[∑
a

p̃
(
a | X̂∗

i (ti)� X̂
∗
−i(t−i)

)
ui(a)

]
≥ Et−i

[∑
a

p̃
(
a |X∗

i (si� ei)� X̂
∗
−i(t−i)

)
ui(a)

]
� (2)

If X∗
i (si� ei)= X̂∗

i (ti), this holds with equality. So suppose X∗
i (si� ei) �= X̂∗

i (ti). Since (si� ei)
and (ti�Mi(ti)) are in the same event of the mechanism partition, (si� ei) is a feasible
report for ti in the restricted auxiliary game. Hence the fact that ti ∈ T+

i implies X̂∗
i (ti) >

X∗
i (si� ei). By Lemma 5, this implies∑

a

p̃
(
a | X̂∗

i (ti)� v̂−i

)
ui(a) ≥

∑
a

p̃
(
a |X∗

i (si� ei)� v̂−i

)
ui(a)�

for all v̂−i, implying that (2) holds.
A similar argument for ti ∈ T−

i completes the proof that P∗ is incentive compatible. But
then P∗ is an incentive compatible mechanism giving the principal a strictly higher payoff
than P , a contradiction. Q.E.D.

LEMMA 7: Fix α > β such that Tα
i �= ∅ and Tβ

i �= ∅ and any equilibrium of the restricted
auxiliary game for i. Then for every ti ∈ Tα

i and t ′i ∈ Tβ
i , we have X̂∗

i (ti)≥ X̂∗
i (t

′
i).

14This argument requires finiteness of each Ti . We conjecture that a more complex argument could substi-
tute in the case where some Ti are infinite.
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PROOF: Since α> β, there exists t̂−i ∈ T−i such that

uα
i ≡

∑
a

P
(
a | ti�Mi(ti)� t̂−i�M−i(t̂−i)

)
ui(a) >

∑
a

P
(
a | t ′i�Mi

(
t ′i
)
� t̂−i�M−i(t̂−i)

)
ui(a)≡ uβ

i �

By Lemma 6, pα ≡ P(· | ti�Mi(ti)� t̂−i�M−i(t̂−i)) maximizes over p(·) ∈ Δ(A),

∑
a

p(a)

[
ui(a)X̂

∗
i (ti)+

∑
j �=i

uj(a)X̂
∗
j (t̂j)

]
�

and pβ defined analogously maximizes the analog for t ′i . Hence by Lemma 5, uα
i > uβ

i

implies X̂∗
i (ti)≥ X̂∗

i (t
′
i). Q.E.D.

We complete the proof in two steps. First, we show how to modify an equilibrium of
the restricted auxiliary game for i to construct an equilibrium of the unrestricted auxiliary
game for i with the same equilibrium path. Second, we use these equilibria to construct
a robust equilibrium of the game without commitment and an optimal mechanism which
is deterministic, robustly incentive compatible, and has the same outcome as the equilib-
rium.

LEMMA 8: For any i and any equilibrium of the restricted auxiliary game for i, there is an
equilibrium of the unrestricted auxiliary game where i follows the same strategy.

PROOF: Let (σ∗
i �X

∗
i � q

∗
i ) be an equilibrium of the restricted auxiliary game for i. Fix

any (s̄i� ēi) ∈ Rβ
i . Let F denote the set of types for whom (s̄i� ēi) is feasible—that is,

F = {ti | ēi ∈ Ei(ti)}. We show that for any t̄i ∈ Tα
i ∩ F with σ∗(s̄i� ēi | t̄i) = 0, t̄i weakly

prefers her equilibrium strategy to (s̄i� ēi). That is, X̂∗
i (t̄i) ≥ X∗

i (s̄i� ēi) if ti ∈ T+
i and the

reverse inequality for ti ∈ T−
i . Clearly, if α = β, the fact that t̄i did not have a profitable

deviation in the restricted game implies that she does not wish to deviate to (s̄i� ēi) in the
unrestricted game, so we only consider α �= β.

First, suppose (s̄i� ēi) has positive probability in equilibrium. That is, there is another t ′i
with σ∗

i (s̄i� ēi | t ′i) > 0, so X∗
i (s̄i� ēi) = X̂∗

i (t
′
i). For any t̄i ∈ T+

i ∩ F , incentive compatibility
implies β< α. By Lemma 7, this implies X̂i(t̄i)≥ X̂∗

i (t
′
i)=X∗

i (s̄i� ēi), so t̄i has no incentive
to deviate. A similar argument applies to all t̄i ∈ T−

i .
So suppose (s̄i� ēi) has zero probability in equilibrium. Let t̂i minimize X̂∗

i (t̂i) over ti ∈
T+
i ∩ F . Clearly, if X̂∗

i (t̂i) ≥ X∗
i (s̄i� ēi), then we do not need to consider positive types

further. Suppose, then, that X̂∗
i (s̄i� ēi) > X̂∗

i (t̂i).
We claim that there must be some t ′i ∈ F with X̂∗

i (t̂i) ≥ vi(t
′
i). If not, then t̂i could send

Mi(t̂i) in the restricted auxiliary game, an option which must be feasible, and prove at least
as much as ēi. This would generate a belief over t ′i ∈ F which would have an expected value
strictly larger than X̂∗

i (t̂i), a contradiction.
So change the principal’s beliefs in response to (s̄i� ēi) to λq∗

i (s̄i� ēi)+ (1 − λ)δt′i where
δt′i is the degenerate distribution putting probability 1 on t ′i . Choose λ so that the expected
value of vi(ti) under this belief is X̂∗

i (t̂i). Change the principal’s strategy to reply to (s̄i� ēi)

with x = X̂∗
i (t̂i). With this change, clearly, no ti ∈ T+

i ∩ F gains by deviating to (s̄i� ēi).
To see that no ti ∈ T−

i ∩ F has an incentive to deviate, let t̂ ′i ∈ Tγ
i denote such a type and

suppose t̂i ∈ Tα
i . Recall that (s̄i� ēi) ∈ Rβ

i . Since t̂i ∈ T+
i ∩ F and t̂ ′i ∈ T−

i ∩ F , incentive
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compatibility implies α ≥ β ≥ γ. By Lemma 7, X̂∗
i (t̂i) ≥ X̂∗

i (t̂
′
i), so t̂ ′i has no incentive to

deviate to (s̄i� ēi) after this change.
Negative types can be handled by a symmetric argument. Q.E.D.

We complete the proof by constructing a robust equilibrium of the game without com-
mitment which gives the principal the same payoff as in the optimal mechanism. We then
use this equilibrium to construct an optimal mechanism which is deterministic and ro-
bustly incentive compatible with the same outcome as the equilibrium.

To construct the equilibrium for the game without commitment, let the strategy for
agent i be the same as her strategy in the equilibrium of the auxiliary game for i. Similarly,
the principal’s belief about ti when he observes (si� ei) is given by his belief in the auxiliary
game for i.

Similarly to the proof of Lemma 6, for each v̂ = (1� v̂1� � � � � v̂I) ∈ RI+1, let p̂(· | v̂) denote
any p(·) ∈ Δ(A) which (a) is a degenerate distribution and (b) maximizes

∑
a

p(a)

I∑
i=0

ui(a)v̂i� (3)

Let the principal’s strategy given (s� e) be to choose p̂(· | v̂(s� e)) where v̂i(s� e) =
X∗

i (si� ei) for i = 1� � � � � I and v̂0(s� e) = 1. Clearly, this satisfies sequential rationality for
the principal.

To see that this specification gives a robust equilibrium, consider any ti and suppose
the other agents report (t−i� e−i). If ti deviates from her proposed equilibrium strategy
to a different strategy inducing the same expected value of vi, this does not change the
principal’s action by construction. Hence such a deviation is not profitable. If ti deviates
to a strategy which induces a different expected value, then, by the fact that we started
from an equilibrium of the auxiliary game, this change must be against ti. That is, the
change must lower the expected value if ti is a positive type and raise it if ti is negative. By
Lemma 5, such a deviation cannot be profitable. Hence we have a robust equilibrium.

Because the principal receives at least as much information from the equilibrium strate-
gies as the mechanism partition, his expected payoff must be at least as large as in the
optimal mechanism. Clearly, it cannot be strictly larger than the payoff to the optimal
mechanism, so it must be equal.

Hence committing to this strategy is an optimal indirect mechanism. It is straightfor-
ward to rewrite this as an optimal direct mechanism. It is deterministic by construction. It
is straightforward to show that the robustness of the equilibrium implies that this mecha-
nism is robustly incentive compatible. qed

APPENDIX B: PROOF OF LEMMA 1 AND THEOREM 3

For Lemma 1, the existence and uniqueness of v+
i follows from Theorem 2 taking the

set of types to be T+
i . For v−

i , note that Theorem 2 applied to the function −vi(ti) and
types T−

i implies that there is a unique v−
i satisfying

−v−
i = Eti

[−vi(ti) | ti ∈ T 0
i ∩ T−

i or
(
ti ∈ T−

i \ T 0
i and − vi(ti)≤ −v−

i

)]
�

which can be rewritten as the definition of v−
i .
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Next, we show that there exists v∗
i solving

v∗
i = Eti

[
vi(ti) | (ti ∈ T 0

i

)
or

(
ti ∈ T−

i \ T 0
i and vi(ti)≥ v∗

i

)
or

(
ti ∈ T+

i \ T 0
i and vi(ti)≤ v∗

i

)]
� (4)

Let gi(v
∗
i ) be the function on the right–hand side. We show there is v∗

i solving v∗
i = gi(v

∗
i ).

Suppose not. Let v1
i < v2

i < · · · < vNi denote the values of vi(ti) for ti /∈ T 0
i . First, note

that for v∗
i ≤ v1

i , we have gi(v
∗
i ) = Eti [vi(ti) | ti ∈ T 0

i ∪ T−
i ]. If Eti [vi(ti) | ti ∈ T 0

i ∪ T−
i ] ≤ v1

i ,
then v∗

i = Eti [vi(ti) | ti ∈ T 0
i ∪T−

i ] is a solution to equation (4). So our hypothesis that there
is no solution implies Eti [vi(ti) | ti ∈ T 0

i ∪ T−
i ] > v1

i .
The function gi(v

∗
i ) is constant in v∗

i for v∗
i ∈ (vki � v

k+1
i ) but may be discontinuous at

each vki . The important point is that if gi(v
k
i − ε) > vki for all sufficiently small ε > 0,

then gi(v
k
i + ε) > vki as well. That is, the function can never jump from above the 45◦ line

to below. To see this, first suppose vki ∈ vi(T
−
i ).

15 In this case, as v∗
i increases from just

below to just above vki , we remove vki from the conditioning set. If gi(v
k
i ) > vki , removing

this point from the conditioning set implies that gi(v
k
i + ε) > gi(v

k
i ). If vi ∈ vi(T

+
i ), then

as v∗
i increases from just below to just above vki , we add vki to the conditioning set. If

gi(v
k
i −ε) > vki , adding this point to the conditioning set implies that gi(v

k
i −ε) > gi(v

k
i ) >

vki . So, again, the function remains above the 45◦ line.
By hypothesis, we have no solution, so gi(v

1
i ) > v1

i . Since gi cannot jump below the 45◦

line, the lack of a solution implies gi(v
∗
i ) > v∗

i for all v∗
i ≥ v1

i . In particular, gi(v
N
i ) > vNi .

But gi(v
∗
i ) = Eti [vi(ti) | ti ∈ T 0

i ∪ T+
i ] for all v∗

i ≥ vNi . So there exists v∗
i > vNi solving (4), a

contradiction.
To show uniqueness, suppose v1

i and v2
i are solutions to (4) where v1

i > v2
i . Let

Tk+
i = {

ti ∈ T+
i \ T 0

i | vi(ti)≤ vki
}
� k= 1�2�

and

Tk−
i = {

ti ∈ T−
i \ T 0

i | vi(ti)≥ vki
}
� k= 1�2�

Clearly, since v1
i > v2

i , we have T 2+
i ⊆ T 1+

i and T 1−
i ⊆ T 2−

i . Note that

vki = Eti

[
vi(ti) | ti ∈ T 0

i ∪ Tk+
i ∪ Tk−

i

]
�

Let

ṽi = Eti

[
vi(ti) | ti ∈ T 0

i ∪ T 2+
i ∪ T 1−

i

]
�

Then v1
i is a convex combination of ṽi and Eti [vi(ti) | ti ∈ T 1+

i \ T 2+
i ], while v2

i is a convex
combination of ṽi and Eti [vi(ti) | ti ∈ T 2−

i \ T 1−
i ]. It is easy to see that

v2
i ≤ Eti

[
vi(ti) | ti ∈ T 1+

i \ T 2+
i

] ≤ v1
i

since v2
i ≤ vi(ti)≤ v1

i for all ti ∈ T 1+
i \ T 2+

i . Similarly,

v2
i ≤ Eti

[
vi(ti) | ti ∈ T 2−

i \ T 1−
i

] ≤ v1
i �

15vi(T
−
i ) is the set of vi such that vi = vi(ti) for some ti ∈ T−

i and vi(T
+
i ) (see below) is defined analogously.
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Since v1
i is a convex combination of ṽi and a term smaller than v1

i , we have ṽi ≥ v1
i . Since

v2
i is a convex combination of ṽi and a term larger than v2

i , we have v2
i ≥ ṽi. Hence v1

i ≤
ṽi ≤ v2

i , contradicting v1
i > v2

i .
Turning to Theorem 3, we construct equilibrium strategies. If X∗

i (si� Ti) > X∗
i (s

′
i� Ti),

no positive type sends report (s′
i� Ti) and no negative type sends (si�Ti). Hence there

are, at most, two distinct values of x∗
i (si� Ti) observed on the equilibrium path. Let ṽ+

i =
maxsi∈Ti x

∗
i (si� Ti) and ṽ−

i = minsi∈Ti x
∗
i (si� Ti). First, assume ṽ+

i > ṽ−
i . Then every positive

type ti ∈ T 0
i sends a report generating ṽ+

i as does every positive type ti /∈ T 0
i with vi(ti)≤ ṽ+

i .
Similarly, every negative type ti ∈ T 0

i or not in T 0
i but with vi(ti) ≥ ṽ−

i sends some report
generating ṽ−

i . All other types ti send a report of the form (si� {ti}). Hence ṽ+
i must equal

v+
i and ṽ−

i must equal v−
i . This is an equilibrium iff v+

i ≥ v−
i . Note that if v+

i = v−
i , then the

expectation of vi given the set of types sending either report must also be the same value.
Thus, in this case, we have v−

i = v+
i = v∗

i .
There is also an equilibrium where the principal ignores the type report. Letting ṽi

denote the principal’s expected value of vi given evidence report ei = Ti, positive types
with vi(ti) > ṽi will prove their types as will negative types with vi(ti) < ṽi. Hence ṽi must
satisfy equation (4), so ṽi = v∗

i . Q.E.D.

APPENDIX C: COSTLY VERIFICATION

We show that for a class of costly-verification models with simple type dependence, the
optimal mechanism can be computed using our results for optimal mechanisms with Dye
evidence. Continue to let A denote the finite set of actions available to the principal, Ti

the finite set of types of agent i with the same distributional assumptions as in the text,
and continue to assume that agent i’s utility function can be written as

ui(a� ti)=
{
ui(a) if ti ∈ T+

i �

−ui(a) if ti ∈ T−
i �

and that the principal’s utility function can be written as v(a� t) = ∑I

i=0 ui(a)vi(ti).
We add three assumptions on preferences. First, each agent has exactly two indifference

curves in A.16 That is, for each agent i, we can partition A into nonempty17 sets A0
i and

A1
i where

ui(a)=
{

0 if a ∈A0
i �

1 if a ∈A1
i �

(Because ui does not depend on ti, the sets A0
i and A1

i are common knowledge.) For
example, this assumption holds in the allocation example and most of the related prob-
lems discussed in Example 1 of Section 1 as well as the public goods problem discussed in
Example 4. It also holds in the public goods problem discussed in Erlanson and Kleiner
(2017) (after renormalizing).

Second, assume that for all i, either T−
i = ∅ or vi(ti) > vi(t

′
i) for all ti ∈ T+

i and t ′i ∈ T−
i .

That is, either i’s preferences are type-independent or every positive type has a higher vi
than every negative type. Erlanson and Kleiner made the latter assumption.

16This also includes “agent 0”—that is, this also applies to the utility function u0(a).
17If either set is empty for i �= 0, then the agent is indifferent over all choices by the principal and incentive

compatibility is trivially satisfied. Hence we can disregard any such agent.
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For the costly-verification model, agents do not have evidence to present. Instead, the
principal can check agent i at a cost ci > 0. “Checking” agent i means that the principal
learns agent i’s type ti. We show that the optimal mechanism can be computed by an ap-
propriate “translation” of a related mechanism design problem with Dye evidence instead
of costly verification.

Note that our assumptions imply that if vi(ti) = vi(t
′
i), then either both are positive

types or both are negative. Since agents do not have evidence, this means that ti and t ′i
are identical and there is no need to distinguish them. Hence we write the type set for i

as Ti = {t0
i � � � � � t

Ki
i } where vi(t

k
i ) < vi(t

k+1
i ) for k = 0� � � � �Ki − 1.

One can show that it is without loss of generality to focus on mechanisms with the
following structure. First, all agents simultaneously make cheap-talk reports of types to
the principal. The mechanism specifies a probability distribution over which agents to
check and what a ∈ A to choose as a function of the reports. Each agent will have an
incentive to report his type honestly, so when the principal checks an agent, he finds that
the report was truthful. Off the equilibrium path, if the principal finds that an agent has
lied, the principal chooses any action which is worst for that agent. (Since the agents all
expect the other agents to report honestly, the specification of the mechanism for histories
where multiple agents are found to have lied is irrelevant.)

Hence we can write a mechanism as a function P : T → Δ(2I ×A) where P(Q�a | t) is
the probability that the principal checks the agents in the set Q ⊆ I and chooses action
a ∈ A when the type reports are t and the checking verifies the reports were honest. The
expected payoff of the principal from such a mechanism is

Et

[ ∑
(Q�a)∈2I×A

P(Q�a | t)
(
v(a� t)−

∑
i∈Q

ci

)]
�

Let

p(a | t)=
∑
Q⊆I

P(Q�a | t)�

qi(t)=
∑
a∈A

∑
Q⊆I|i∈Q

P(Q�a | t)�

Then we can rewrite the principal’s expected payoff as

Et

[∑
a∈A

p(a | t)v(a� t)−
∑
i

qi(t)ci

]
�

Using the fact that v(a� t)= ∑
i ui(a)vi(ti), we can rewrite this as

Et

[∑
i

vi(ti)
∑
a∈A

p(a | t)ui(a)−
∑
i

qi(t)ci

]
�

Let pi(t) = ∑
a∈A1

i
p(a | t). That is, pi(t) is the probability that the principal selects an

action a such that ui(a) = 1 given type profile t. Then the principal’s expected pay-
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off is

Et

[∑
i

(
pi(t)vi(ti)− qi(t)ci

)] =
∑
i

Eti

[
p̂i(ti)vi(ti)− q̂i(ti)ci

]
�

where p̂i(ti)= Et−i
pi(t) and q̂i(ti)= Et−i

qi(ti� t−i).
If agent i of type ti reports truthfully, his expected utility in mechanism P is

Et−i

∑
(Q�a)∈2I×A

P(Q�a | t)ui(a)

if ti ∈ T+
i and this times −1 otherwise. So the expected payoff to a positive type from

reporting truthfully is p̂i(ti), while the expected payoff to a negative type is −p̂i(ti).
If agent i is type ti but reports t ′i �= ti, he may be caught lying. If so, as noted above, the

principal chooses an action which minimizes his payoff. So if ti ∈ T+
i , his payoff will be 0

if he is caught lying, while if ti ∈ T−
i , it will be −1. Hence, for a positive type, the expected

payoff to the deviation is

Et−i

[ ∑
(Q�a)∈2I×A|i/∈Q

P
(
Q�a | t ′i� t−i

)
ui(a)

]

= Et−i

[ ∑
(Q�a)∈2I×A

P
(
Q�a | t ′i� t−i

)
ui(a)−

∑
(Q�a)∈2I×A|i∈Q

P
(
Q�a | t ′i� t−i

)
ui(a)

]

= p̂i

(
t ′i
) − Et−i

[ ∑
(Q�a)∈2I×A|i∈Q�a∈A1

i

P
(
Q�a | t ′i� t−i

)]
�

We will simplify this expression further below.
If a negative type is caught reporting falsely, the principal chooses an action setting

ui(a) = 1 so that the agent’s payoff is −1. Hence the expected payoff to a negative type ti
from claiming to be t ′i �= ti is

Et−i

[ ∑
(Q�a)∈2I×A|i/∈Q

P
(
Q�a | t ′i� t−i

)(−ui(a)
) −

∑
(Q�a)∈2I×A|i∈Q

P
(
Q�a | t ′i� t−i

)]

= Et−i

[
−

∑
(Q�a)∈2I×A

P
(
Q�a | t ′i� t−i

)
ui(a)−

∑
(Q�a)∈2I×A|i∈Q

P
(
Q�a | t ′i� t−i

)(
1 − ui(a)

)]

= −p̂i

(
t ′i
) − Et−i

[ ∑
(Q�a)∈2I×A|i∈Q�a∈A0

i

P
(
Q�a | t ′i� t−i

)]
�

Summarizing, the incentive compatibility constraint for agent i is that for all positive
types ti ∈ T+

i , we have

p̂i(ti)≥ p̂i

(
t ′i
) − Et−i

[ ∑
(Q�a)∈2I×A|i∈Q�a∈A1

i

P
(
Q�a | t ′i� t−i

)]
� ∀t ′i �= ti� (5)
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and for all negative types ti ∈ T−
i , we have

p̂i(ti)≤ p̂i

(
t ′i
) + Et−i

[ ∑
(Q�a)∈2I×A|i∈Q�a∈A0

i

P
(
Q�a | t ′i� t−i

)]
� ∀t ′i �= ti� (6)

Note that the right-hand side of each incentive compatibility constraint is independent
of ti. Hence (5) holds for all positive types ti iff it holds for the positive type with the
smallest p̂i(ti) and (6) holds for all negative types ti iff it holds for that negative type with
the largest p̂i(ti).

The optimal mechanism is monotonic in the sense that p̂i(t
k
i ) ≤ p̂i(t

k+1
i ) for k =

0� � � � �Ki − 1. To see this, recall that vi(tki ) < vi(t
k+1
i ), so the principal is better off with

higher values of pi associated with higher values of ti. Suppose we have an incentive
compatible mechanism with p̂i(t

k
i ) > p̂i(t

k+1
i ) for some k and i. Consider the mechanism

which reverses the roles of these types—that is, assigns the outcome (Q�a) to (tki � t−i)
that it would have assigned to (tk+1

i � t−i) and vice versa.18 This altered mechanism is also
incentive compatible and yields the principal a higher expected payoff.19

By assumption, for every i, either T−
i = ∅ or vi(ti) > vi(t

′
i) for all ti ∈ T+

i , t ′i ∈ T−
i . Hence,

if there are Ji negative types (where Ji can be zero), the negative types are t0
i � � � � � t

Ji−1
i and

the positive types are t
Ji
i � � � � � t

Ki
i . Thus, the positive type with the lowest p̂i(ti) is tJii , while

the negative type with the highest p̂i(ti) is tJi−1
i and we have p̂i(t

J1−1
i ) ≤ p̂i(t

Ji
i ). So we can

write the incentive compatibility constraints (5) and (6) as

p̂i

(
t
Ji
i

) ≥ p̂i

(
t ′i
) − Et−i

[ ∑
(Q�a)∈2I×A|i∈Q�a∈A1

i

P
(
Q�a | t ′i� t−i

)]
� ∀t ′i �= ti� (7)

and

p̂i

(
t
Ji−1
i

) ≤ p̂i

(
t ′i
) + Et−i

[ ∑
(Q�a)∈2I×A|i∈Q�a∈A0

i

P
(
Q�a | t ′i� t−i

)]
� ∀t ′i �= ti� (8)

The following lemma generalizes results in Ben-Porath, Dekel, and Lipman (2014) and
Erlanson and Kleiner (2017).

LEMMA 9: In any optimal mechanism, we have

P(Q�a | ti� t−i)= 0� ∀t−i if ti ∈ T+
i � i ∈Q� and a ∈A0

i � (9)

P(Q�a | ti� t−i)= 0� ∀t−i if ti ∈ T−
i � i ∈Q� and a ∈A1

i � (10)

Consequently, we can rewrite the incentive compatibility constraints (7) and (8) as

p̂i

(
t
Ji
i

) ≥ p̂i(ti)− q̂i(ti)� ∀ti ∈ T+
i � (11)

p̂i

(
t
Ji−1
i

) ≤ p̂i(ti)+ q̂i(ti)� ∀ti ∈ T−
i � (12)

18To be precise, this implicitly assumes the two types have the same prior probability. If not, we can reverse
the role of one of the types and “part of” the other.

19If tki and tk+1
i are both positive or both negative, then it is easy to see from (5) or (6) that the altered mech-

anism is incentive compatible. Our assumptions imply that if one of these types is positive and one negative,
then the negative type is tki . It is easy to see that in this case, reversing the roles of the types makes incentive
compatibility easier to satisfy.



564 E. BEN-PORATH, E. DEKEL, AND B. L. LIPMAN

PROOF: First, we show that we only require (7) for t ′i ∈ T+
i and (8) for t ′i ∈ T−

i . Specif-
ically, monotonicity of p̂i implies that (7) holds for all t ′i ∈ T−

i and (8) holds for all
t ′i ∈ T+

i . To see this, fix any t ′i ∈ T−
i . By assumption, vi(t ′i) ≤ vi(t

Ji
i ), so monotonicity im-

plies p̂i(t
Ji
i ) ≥ p̂i(t

′
i). Since p̂i(t

′
i) is weakly larger than the right-hand side of (7), this

implies (7) holds. A similar argument gives (8) for t ′i ∈ T+
i .

Next, suppose (9) fails, so we have an optimal mechanism P with P(Q�a | ti� t−i) > 0 for
some t−i ∈ T−i, ti ∈ T+

i , i ∈ Q, and a ∈ A0
i . In other words, there is a positive probability

that the principal checks a positive type and chooses an action giving that agent a payoff
of zero. Construct a new mechanism P∗ as follows. For any (Q′� a′) �= (Q�a) or t ′ �= t,
let P∗(Q′� a′ | t ′) = P(Q′� a′ | t ′). Let P∗(Q�a | t) = 0 and let P∗(Q \ {i}� a | t) = P(Q�a |
t)+P(Q\{i}� a | t). In other words, if i is checked but gets a zero payoff at (Q�a), we shift
this probability to (Q \ {i}� a), where i does not get checked but still gets the same zero
payoff. The incentive compatibility constraints for any agent j �= i are unaffected. Since
ti is a positive type, the only incentive compatibility constraint for i that is potentially
affected is (7) at t ′i = ti or where ti = t

Ji
i . But since we have only changed the checking

probability and not the marginal probabilities over actions a ∈ A, p̂i(ti) is unaffected.
Similarly, the second term on the right-hand side of (7) for t ′i = ti only involves actions in
A1

i , so this term also is unaffected. Hence P∗ is incentive compatible. Finally, since the
probability over A is unchanged but the principal checks less often, his payoff must be
strictly larger, a contradiction. A symmetric argument establishes (10).

To conclude, consider equation (7) for t ′i . Since P(Q�a | t ′i� t−i) = 0 if a ∈ A0
i , we see

that ∑
(Q�a)∈2I×A|i∈Q�a∈A1

i

P
(
Q�a | t ′i� t−i

) =
∑

(Q�a)∈2I×A|i∈Q
P

(
Q�a | t ′i� t−i

) = qi

(
t ′i� t−i

)
�

Hence we can rewrite (7) as p̂i(t
Ji
i ) ≥ p̂i(t

′
i) − q̂i(t

′
i) for all t ′i ∈ T+

i . A similar argument
applied to (8) completes the proof. Q.E.D.

We can compute q̂i(t
′
i) for all t ′i using Lemma 9. Since q̂i is costly for the principal, the

inequalities in equations (11) and (12) must hold with equality, so

q̂i(ti)=
{
p̂i(ti)− p̂i

(
t
Ji
i

)
if ti ∈ T+

i �

p̂i

(
t
Ji−1
i

) − p̂i(ti) if ti ∈ T−
i �

Substitute into the objective function for q̂i and rewrite it as

∑
i

Eti

[
p̂i(ti)vi(ti)− q̂i(ti)ci

] =
∑
i

[
Ji−1∑
k=0

ρi

(
tki

)[
p̂i

(
tki

)(
vi

(
tki

) + ci
) − p̂i

(
t
Ji−1
i

)
ci

]

+
Ki∑

k=Ji

ρi

(
tki

)[
p̂i

(
tki

)(
vi

(
tki

) − ci
) + p̂i

(
t
Ji
i

)
ci

]]
� (13)

The only remaining incentive constraints are that p̂i(ti) ≤ p̂i(t
Ji−1
i ) ≤ p̂i(t

Ji
i ) for all nega-

tive types ti and p̂i(t
Ji−1
i )≤ p̂i(t

Ji
i )≤ p̂i(ti) for all positive types ti.

Now consider a different mechanism design problem, this one with evidence instead of
costly verification. We have the same set of types as in the problem above and the same ui
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functions. As above, types t0
i � � � � � t

Ji−1
i are negative and types tJii � � � � � t

Ki
i are positive. The

principal’s objective function is now
∑

i ui(a)ṽi(ti) where

ṽi(ti)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vi(ti)− ci if ti ∈ T+
i and ti �= t

Ji
i �

vi(ti)+ ci if ti ∈ T−
i and ti �= t

Ji−1
i �

vi
(
t
Ji
i

) − ci + ci

ρi

(
t
Ji
i

) Ki∑
k=Ji

ρi

(
tki

)
if ti = t

Ji
i �

vi
(
t
Ji−1
i

) + ci − ci

ρi

(
t
Ji−1
i

) Ji−1∑
k=0

ρi

(
tki

)
if ti = t

Ji−1
i �

It is easy to see that this specification of ṽi makes the principal’s objective function in this
problem the same as the expression in equation (13).

We specify the evidence structure as follows. For any ti other than t
Ji−1
i or tJii , we have

Ei(ti) = {{ti}�Ti}. Also, Ei(t
Ji−1
i ) = Ei(t

Ji
i ) = {Ti}. The implied incentive compatibility con-

straints are the following. First, since types t
Ji−1
i and t

Ji
i can each claim to be the other

and send the other’s (trivial) maximal evidence, each must weakly prefer her own allo-
cation. Since t

Ji−1
i is a negative type and t

Ji
i is positive, this implies p̂i(t

Ji−1
i ) ≤ p̂i(t

Ji
i ).

Hence any other negative type prefers imitating t
Ji−1
i to imitating t

Ji
i , while any positive

type has the opposite preference. So the only other incentive compatibility constraints are
p̂i(ti) ≤ p̂i(t

Ji−1
i ) for any negative type ti and p̂i(ti) ≥ p̂i(t

Ji
i ) for any positive type ti, the

same constraints as in the costly-verification model.
Hence we can apply our results on optimal mechanisms with Dye evidence to com-

pute the optimal mechanism for the evidence model as a function of ṽi. We can then
substitute in terms of vi to rewrite in terms of the original costly-verification model. It is
straightforward to show that doing so for the case considered in BDL (2014) or for the
case considered in Erlanson and Kleiner (2017) yields the optimal mechanism identified
there.

Because the assumptions used here also cover these cases, we can use this approach
and the characterization given in Examples 2 and 3 of Section 3.1 to characterize optimal
mechanisms with costly verification for the case where the principal allocates multiple
identical goods or the case where he allocates a “bad.”
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