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A long-standing conjecture is that winner-take-all games such as patent races
lead to the survival of risk-takers and the extinction of risk-averters. In many
species a winner-take-all game determines the males' right to reproduce, and the
same argument suggests that males will evolve to be risk-takers. Psychological and
sociological evidence buttresses the argument that males are more risk-taking than
females. Using an evolutionary model of preference-formation, we investigate to
what extent evolution leads to risk-taking in winner-take-all environments. Journal
of Economic Literature Classification Numbers: C7, D8. � 1999 Academic Press

1. INTRODUCTION

Economists typically take preferences as given. This sets them apart from
other social scientists, such as psychologists, who often try to explain
preferences. In this paper we explore an evolutionary model where
preferences, in particular attitudes toward risk, are endogenously deter-
mined.

In economics, preferences are simply rules for choosing among feasible
consumption bundles. If ``successful'' choice rules become more prevalent in
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society, then the distribution of choice rules, hence preferences, is an
endogenous outcome. While there are many notions of ``success'' and
various dynamic processes that can determine how successful rules
proliferate, we consider an evolutionary process. That is, success means
reproductive success, and choice rules (preferences) are inherited by off-
spring from their parents. Preferences can be described as inherited either
if children emulate their parents' choices or if preferences are genetically
coded.

Of course, if preferences are endogenous, something else must be
exogenous, namely the ``game'' in which reproductive success is determined.
We investigate winner-take-all games, which are common in nature: the
leading male(s) mate with (almost) all the females, and therefore only that
male's genes (hence preferences) are inherited by the subsequent genera-
tion. In a winner-take-all environment it pays to take risks, so one might
expect that risk-taking preferences become dominant in the population.
For example, Tirole [29, pp. 396�7] explains that R6D competitions favor
riskier choices in the sense of mean-preserving spreads, since patent races
resemble winner-take-all games. We explore the sense in which risk taking
is selected in winner-take-all environments, and discover that the
evolutionary outcome is subtler than suggested.

In particular, risk taking is not selected if the winner-take-all competi-
tion is in small groups, and in large groups the selected form of risk taking
can depend on whether winner-take-all games are played simultaneously in
many randomly matched groups from a large population, or whether there
is only one match that comprises the entire population. In Sections 2 and
3 we present these two winner-take-all environments and show what form
of risk taking evolves.

To apply our theory to humans, we need to argue that humans inherit
risk-taking behavior from ancestors in whom risk-taking was evolutionarily
selected via winner-take-all games. The conjecture seems more plausible for
males than for females, both because there is considerable evidence from
biologists and sociologists that males are more risk-taking, and because
one can point to rituals in the animal world where males compete in tour-
naments for the right to mate. The evidence we have found, which is
reviewed in Section 4, is at best indirect. To build a bridge between the
observation that winner-take-all games lead to (a form of) risk taking and
the conclusion that human males will therefore evolve to be risk takers, we
argue that

v among species where winner-take-all games determine reproductive
success, the winning behavior can be interpreted as analogous to risk
taking in humans rather than something else;

v risk taking behavior in such species is genetically coded; and
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v humans inherit such genes from evolutionary ancestors who played
winner-take-all games.

Among economists, early proponents of the view that preferences are
endogenous included Becker [4, 5], Hirschleifer [15, 16] and Rubin and
Paul [26]. Their view has recently been revived. For example, Hansson
and Stuart [14] and Rogers [24] give an evolutionary account of how dis-
count rates are determined, and cite related work on the evolution of inter-
temporal preferences. Waldman [30] develops an explicitly sexual model,
where evolution can lead to ``second-best adaptation.'' For example, he
argues that such evolution may result in males overestimating their ability
and suffering disutility from effort, instead of being ``efficient'' by correctly
estimating ability and not suffering disutility of effort. Evolution of
attitudes toward risk were explored by Karni and Schmeidler [18], Cooper
[10] and Robson [22], who have used different evolutionary models to
show that preferences with an expected-utility representation will be selected.
Robson [22] extends his model to show how preferences conforming to
non-expected utility can also evolve.

Papers more closely related to this one are Rubin and Paul [26] and
recent (independent) papers of Robson [23] and Wa� rneryd [31]. Rubin
and Paul argue in a model that is not explicitly dynamic that males may
be risk taking if females only select males with income above a threshold.
Robson [23] shows that if males choose lotteries over wealth with the
objective to maximize offspring, and are selected by females according to
their (relative) wealth, they will choose very risky lotteries if they choose
any at all. Wa� rneryd [31] studies a rent-seeking contest which is similar to
the model below in that the winner is rewarded, but differs in that many
preferences can survive, since the rents are dissipated among the par-
ticipants. In the (unusual) case where only one kind of preference survives,
it is the one closest to risk neutrality. Skaperdas [27, 28] considers how
different attitudes toward risk affect outcomes in rent-seeking games.

2. A RANDOM-MATCHING MODEL OF
WINNER-TAKE-ALL GAMES

2.1. The Model

In both the random-matching model of this section, and the playing-the-
field model of the next section, players are genetically coded to choose one
of a finite number of lotteries, F#[F1 , ..., FL]. The set of lotteries is held
fixed throughout the analysis. Each section examines a dynamic process on
the proportions of the population choosing the different lotteries in F. For
each of the two dynamic processes discussed in this paper we say that a
particular Fl within F is selected (or evolves) if the proportion of the
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agents choosing it converges to 1. As is standard with revealed preference,
we interpret a player's (genetically encoded) choice of a lottery in F as
that player's most preferred element in the set. We thus characterize the
evolution of a choice rule, which specifies for a given finite F the chosen,
i.e., most preferred, lottery.

Although our model concerns selection within a given finite set of lot-
teries, we interpret it as a selection of preferences, i.e., a selection from all
``relevant'' sets F, where a set F is relevant if the agent is ``likely'' to face
that set. The interpretation we have in mind is that Nature determines in
each period the set of lotteries, F, from which the agents choose. For any
such set that appears ``often enough,'' evolution will select the lottery we
describe. This is not entirely satisfactory if there are uncountably many
sets, in which case evolutionary forces will not have the opportunity to
operate on every possible subset F. On the other hand, one might argue
that only finitely many lotteries are distinguishable by our coarse sensory
capabilities, in which case there are only finitely many subsets F among
which agents choose.

We apply replicator dynamics to an infinite population. The precise
dynamic process is specified below. Intuitively, in each period infinitely
many groups of size m are matched from the population, and Nature inde-
pendently determines an outcome for each player from his chosen lottery.
In each group the player with the highest outcome ``wins'' and has m off-
spring, all of whom are coded to choose the same strategy as the winner.
Losers have no offspring. We will describe the population in each time
period by a probability vector _(t)=(_1(t), ..., _L(t)), where _l(t) is the
proportion of players in the population who choose Fl when faced with F.
We call these the type-Fl or type-l players, or just Fl players. Our objec-
tive is to characterize how the limit of _(t), t=1, 2, ..., depends on the set
F, starting from a population with full support, _l(0)>0 for all l.

Let 2m#[k: �L
l=1 kl=m, k�0]. For k=(k1 , ..., kL) # 2m, we will inter-

pret kl as the number of type-Fl players in a group of size m. If the group
is drawn randomly from a population with relative frequencies _(t), then
k is a random variable from a multinomial distribution with probabilities
_(t)=(_1(t), ..., _L(t)). For each k in 2m, let fl(k)#kl_� [Fl(x)]kl&1

>i{l [F i (x)]ki dFl(x). Thus fl(k) is the probability that any of the type-Fl

players wins in a match with k=(k1 , ..., kL) players of the different types.
If m members of the population are selected randomly (with or without

replacement), then the probability of k is ( m
k ) >i [_i (t)]ki, where ( m

k )#
( m

k1 , ..., kL
). We assume that the population proportions evolve according to

the following dynamic process.

_l(t+1)= :
k # 2m \

m
k+ `

i

[_ i (t)]ki fl(k)
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This process describes replicator dynamics (e.g., Weibull [32, p. 72]),
applied to groups of size m rather than groups of size 2. Following the
literature, we justify this dynamic system by appeal to the law of large
numbers. Thus, we assume that the proportion of matches with profile k
equals the probability of drawing the profile k. We also appeal to the law
of large numbers a second time, and assume that within the matches with
profile k, the proportion of matches in which a type l wins equals the
probability of such a win, namely fl(k).

Justifying the dynamic process from a more fundamental story of ran-
dom matching is regrettably not as natural or as straightforward an
application of the law of large numbers as one would hope. If the popula-
tion is a continuum, there are the well-known technical difficulties
associated with selecting i.i.d. random variables. (See Feldman and Gilles
[13] or McLennan and Sonnenschein [20, footnote 4], who discuss the
implications in the context of random matching.) For countably large
populations, there are other difficulties. (See Boylan [7, 8] for a discussion,
and Propositions 2 and 5 in [7] for a matching process that embodies the
strong-law-of-large-numbers intuition.)

2.2. Orderings of Lotteries

Our results characterize which lottery from F is selected. We define a
lottery Fl as favored within F if, for any k # 2m, the probability that any
type Fl player wins is more than proportional to their number, i.e., greater
than kl �m. In the next subsection we show that when Fl is favored within
F, then Fl is selected.

Definition 1. F1 is favored within F in a random-matching environ-
ment with matches of size m, if f1(k)>k1 �m for all k # 2m, 0<k1<m.

The condition of being favored is a partial ordering of lotteries. It is
therefore of interest to investigate how it relates to standard orders, namely
first- and second-order stochastic dominance. Recall that F1 strictly FOSD
Fl if F1(x)�Fl(x) for all x, with strict inequality for some x; and F1

strictly SOSD Fl if � t
&� F1(x) dx�� t

&� Fl(x) dx for all t, with strict
inequality for some t.

Proposition 1. If F1 strictly FOSD Fl for l=2, ..., L then F1 is favored
within F.

Proof. f1(k) = k1 } � [F1]k1&1 >l1 [Fl(x)]kl dF1(x) > k1 � F1(x)m&1

dF1(x)=k1 �m, where the last integral is 1�m because it equals the probabil-
ity that one of m players, all of whom are type F1 , wins. K
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Example 1 (Being favored does not imply FOSD). Suppose that m=2,
that G places probability 1 on the outcome 1 and F places probabilities 1

3

and 2
3 respectively on 0 and 3

2 . We assume that if two players have the same
outcome, each wins with probability 1

2 . Clearly F is favored over G, even
though it does not strictly FOSD G.

The previous example might suggest that ``riskier'' lotteries (those that
are second-order-stochastically dominated) are always favored. However,
the following example shows otherwise. Thus the result in the next section
that evolution selects for favored lotteries does not confirm the intuition
that it should select riskier lotteries.

Example 2 (A lottery may be favored even if it SOSD (is less risky than)
another). Suppose that m=2, that G places probability 1 on the outcome
1 and F� places probability 2

3 on 1
4 and 1

3 on 2.5. While G strictly SOSD F� ,
G is favored over F� .

Remark 1(Intransitivity). Examples 1 and 2 can also be used to show
that a pairwise definition of favored does not give a transitive order: F is
favored over G which is favored over F� , and it can be checked that F� is
favored over F. Both examples can be generalized to any m by changing
the probability from 1

3 to 1�n for n sufficiently large.1

The result that evolution selects for favored lotteries can be shown to
imply that for large m evolution selects for a condition we call tail
dominance.

Definition 2. F1 tail dominates Fl if there exists x� l such that
F1(x)�Fl(x) for all x�x� l with strict inequality for x=x� l .

A lottery F1 tail dominates Fl if it first-order dominates Fl in an interval
at the top of the supports; see Fig. 1. If F1 tail dominates Fl for each Fl

in F, then we say that F1 tail dominates F. For a finite set of lotteries the
tail-dominance order corresponds to an expected-utility ranking where the
utility of the highest outcome in the supports of the lotteries is ``much''
larger than the utility of the second highest outcome, which is ``much''
larger than the next highest outcome, and so on.2 Proposition 2 links tail
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1 This intransitivity is similar to Gale's roulette wheel example, see, e.g., Binmore (1992,
p. 90). If F=[F, G, F� ] then there is a ``mixed-strategy equilibrium,'' i.e., a polymorphic
steady state of the dynamic process, in which 3

7 of the population is type F, 3
7 is type F� , and

1
7 is type G. We have not verified whether or not this steady state is locally stable.

2 How much larger depends on the probabilities that the various lotteries assign to the dif-
ferent outcomes. Thus, for an infinite set of lotteries on a finite set, the same can be done if
the utility function is non-standard and the utility of the highest outcome is infitely larger than
that of the second highest, and so on. Otherwise the tail-dominance order need not
correspond to any expected (or non-expected) utility ranking.



FIGURE 1

dominance to FOSD and SOSD, while Proposition 3 shows that for large
m tail-dominating lotteries are favored.

Remark 2 (Completeness of the tail-dominance order). If we restrict
attention to lotteries with finite support, tail dominance is a complete,
transitive order. However, if we compare two lotteries that do not have
finite support then it can happen that neither is tail dominant. Thus the
order is not complete without the restriction to finite support.

It remains an open question whether some other ordering would deter-
mine the selection within a set F for which no F # F tail dominates F.

Example 3. A sequence [F n] of lotteries that tail dominate a lottery G
can converge (in the weak convergence topology on lotteries) to a lottery
F that is tail dominated by G. For example suppose F n gives probabilities
1
2, ( 1

2&1�n), 1�n to the outcomes 0, 1, 1�n respectively. Then F n � F where F
gives probabilities 1

2, 1
2 to the outcomes 0, 1 respectively. Suppose G gives

probability 1 to the outcome 1. Then each F n tail dominates G and G tail
dominates F. Note however, that there is no finite group size m* such that
Proposition 3 below applies for all n in the sequence (i.e., such that F n will
be favored over G for all n). The minimum required group size grows with n.

Proposition 2. If F strictly FOSD G or if G strictly SOSD F, then F
tail dominates G.

Proof. Obvious.
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Proposition 3. Suppose that F1 tail dominates all other lotteries in F,
and that the support of F1 is an interval.3 There exists m* such that for
m>m*, f1(k)>k1 �m.

Proof. Let [x� l] be as in the definition of tail dominance. The rough
idea of the proof is that, by taking m large, with high probability the
winner will have value above x� l for each l, and in the region above x� l , F1

strictly FOSD Fl so that the intuition underlying Proposition 1 can be
applied.

The probability that one of the F1 players wins is at least the probability
that the winner is an F1 player and has outcome greater than some y(k),
which is the probability of the winner having value at least y(k) times the
probability of an F1 winning conditional on the winner being above y(k).

Let

K#{k # ZL
+ | k1>0, :

L

l=1

kl=m=
y(k)#max[x� l | Fl # F, kl {0] for each k # K

K+ #[k # K | F1( y(k))>0]

If F1( y(k))<1,

f1(k)�\1& `
L

l=1

Fl( y(k))kl+_
k1 ��

y(k) F1(x)k1&1 >L
l=2 Fl(x)kl dF1(x)

1&>L
l=1 Fl( y(k))kl

=\1& `
L

l=1

Fl( y(k))kl+ k1

_
��

y(k) F1(x)k1&1 [>L
l=2 Fl(x)kl+F1(x)m&k1&F1(x)m&k1] dF1(x)

1&>L
l=1 Fl( y(k))kl

=\1& `
L

l=1

Fl( y(k))kl+ k1_
��

y(k) F1(x)m&1 dF1(x)

1&>L
l=1 Fl( y(k))kl

+k1 |
�

y(k)
F1(x)k1&1 _ `

L

l=2

Fl(x)kl&F1(x)m&k1& dF1(x)

�
k1

m
+k1 _{|

�

y(k)
F1(x)k1&1 _ `

L

l=2

Fl(x)kl&F1(x)m&k1& dF1(x)

&
>L

l=1 Fl( y(k))kl

m = .
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So f1(k)>k1 �m if the term in large curly brackets is positive.
Choose m*, $>0 such that (2.2) below holds for each l and each k # K+

(a finite set).

F1( y(k))m*&kl [F1( y(k)+$)&F1( y(k))] _1&\F1( y(k)+$)
Fl( y(k)) +

kl

&
&

1
m*

>0 if kl�1

We now demonstrate that the term in large curly brackets is positive for
m>m*. This is immediate for k # K"K+ (i.e., k such that F1( y(k))=0),
since the integral term is positive by tail dominance, and the last term
vanishes. For k # K+ the term in curly brackets above is positive if

F1( y(k))m&kl |
�

y(k)
[Fl(x)kl&F1(x)kl] dF1(x)&

Fl( y(k))kl

m
>0 for some l.

To verify this, first notice that Fl(x)kl�F1(x)kl for all x� y(k) and all l,
using the fact that if y(k)�x<x� l , then kl=0. Then

{|
�

y(k)
F1(x)k1&1 _ `

L

l=2

Fl(x)kl&F1(x)m&k1& dF1(x)&
>L

l=1 Fl( y(k))kl

m =
={|

�

y(k)
F1(x)k1&1 _ `

L

l=2

Fl(x)kl& `
L

l=2

F1(x)kl& dF1(x)&
>L

l=1 Fl( y(k))kl

m =
={|

�

y(k)
F1(x)&1 _ `

L

l=1

Fl(x)kl& `
L

l=1

F1(x)kl& dF1(x)&
>L

l=1 Fl( y(k))kl

m =
�{|

�

y(k) _ `
L

l=1

Fl(x)kl& `
L

l=1

F1(x)kl& dF1(x)&
>L

l=1 Fl( y(k))kl

m =
�{|

�

y(k)
F1(x)m&kl$ [Fl$(x)kl$&F1(x)kl$] dF1(x)&

>L
l=1 Fl( y(k))kl

m =
�F1( y(k))m&kl$ |

�

y(k)
[Fl$(x)kl$&F1(x)kl$] dF1(x)&

Fl$( y(k))kl$

m
.

Since l$ was chosen arbitrarily, the term is curly brackets is therefore
positive if (2.2) holds for some l.
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By considering the integral from y(k) to y(k)+$, we can conclude that

F1 ( y(k))m&kl |
�

y(k)
[Fl(x)kl&F1(x)kl] dF1(x)

&
Fl( y(k))kl

m
�F1( y(k))m&kl [F1( y(k)+$)&F1( y(k))]

_[Fl( y(k))kl&F1( y(k)+$)kl]&
Fl( y(k))kl

m

But the latter term is positive for m>m* by choice of $, m*. K

2.3. Selection

We now use the orders defined above to illuminate the outcome of
evolution. Our first result is that evolution selects favored lotteries.

Proposition 4. Consider a random-matching winner-take-all environ-
ment with matches of size m�2, and suppose that F1 is favored within F.
Given � s.t. 0<�<1, if _1(0)>0, then there exists t* such that
_1(t)>1&� for t>t*.

Proof. For k such that m>k1>0, we have _1(t+1)=
�[k # 2m] Pr(k) f1(k)>�[k # 2m] Pr(k) k1 �m=k1�m=_1(t). So _1(t) increases
over time and, by continuity of 2.1, it converges to a steady state, which
requires k1=0 or k1=m. The former is ruled out by assumption. K

Propositions 1 and 4 imply that evolution selects for preferences that are
monotonic in the sense that they respect FOSD. Proposition 4 and
Example 1 imply that evolution leads to a more refined order than FOSD,
but Example 2 shows that this order does not respect SOSD. Thus our
intuition that evolution selects for risk-taking in winner-take-all environ-
ments is not true in general. However Proposition 5 below shows that for
large m the intuition is correct, and that the appropriate notion of risk
taking is tail dominance. Combined with Proposition 2, Remark 2 and
Example 3, we see that for large m evolution selects for preferences that are
complete and transitive, and that respect FOSD and SOSD, provided the
set of feasible lotteries is finite and each has finite support. However, if the
set is infinite, the order need not be continuous, and if the set includes
lotteries that do not have finite support, the order may not be complete.

Proposition 5. Consider a random-matching winner-take-all environ-
ment, where F1 # F tail dominates all other lotteries in F, and the support
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of F1 is an interval.4 Given � s.t. 0<�<1, if _1(0)>0, then there exists m*
and t* such that for m>m* and t>t*, _1(t)>1&� for all t>t*.

Proof. This follows from Propositions 4 and 3.

3. A PLAYING-THE-FIELD MODEL OF A
WINNER-TAKE-ALL GAME

In this section we show that the preferences selected in winner-take-all
games with random matching are different than those selected in winner-
take-all games where each player is pitted against the entire population,
which we call playing the field. Even though playing the field might
correspond more immediately to the intuitive notion of a winner-take-all
game, the results are (surprisingly) weaker than in random matching, and
less supportive of the intuition that winner-take-all games should lead to
risk taking.

In particular, we show that F can tail dominate G (as defined in the pre-
vious section) and still not be selected. However, there is a strengthening
of the notion of tail dominance such that F will be selected, and it is
satisfied if F is riskier than G in a particularly strong sense.

We now assume there are n players in the population who are encoded
to choose between the lotteries F and G. The extension to more than two
lotteries is straightforward. In each time period, each player has a random
draw from his or her chosen distribution, F or G, and the player with the
highest realization reproduces the next generation of n players. If there
were no mutations, the dynamic process would end in the second period,
since all players��and hence all future generations��would be of one type.
We therefore assume that each offspring has a probability + of mutating.
(In the random matching game we did not have mutations. We argue
below that the differences between playing-the-field and random-matching
environments are due to whether competition is in small independent
groups or in the whole group, and not due to mutations.) We will define
a Markov process with three states: An ``F state'' means that all n players
are coded to play F, a ``G state'' means that all players are coded to play
G, and an ``M state'' means that the population is mixed because there was
at least one mutation.

There is a unique ergodic distribution of the Markov process denoted by
(x~ F, x~ G, x~ M). (This distribution depends on n and on +, but we suppress the
notation for simplicity.) We present below an example which explains why
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tail-dominating lotteries, which were selected in the random-matching
environment, need not be selected in the playing-the-field model. Thus, tail
dominance is not a sufficiently strong notion of risk taking for selection in
playing-the-field environments. However when the population n is large,
and the mutation rate, +, is small, if F ``strongly'' tail dominates G as
defined below, then F will be selected (x~ F is close to 1).

The following example shows that two of the main results from the ran-
dom-matching model do not extend to the playing-the-field environment.

v In the playing-the-field environment, first-order stochastically
dominating distributions need not be selected.

v In the playing-the-field environment, tail dominating distributions
need not be selected.

Thus in the playing-the-field environment, preferences will not
necessarily evolve to be monotonic or risk taking.

Example 4. Suppose that F places probabilities 1
2, 1

2 on the outcomes
1, 2 respectively, while G places probabilities 1

2, 1
2 on 0, 2. We assume that

if n players have the same outcome, each wins with probability 1�n. Clearly
F tail dominates G, so F is selected in the random-matching environment
of the previous section. However, F will not be selected in the playing-the-
field environment. This is because for large n the probability that an F pop-
ulation turns into a G population is almost the same as the probability that
a G population turns into an F population, hence the two populations will
alternate at approximately equal intervals. If n is large, then since each
player has probability 1

2 of obtaining the outcome 2, it follows that with
high probability the winner in any generation (whether F or G) wins with
outcome 2, and will win according to the tie-breaking rule. In order that
an F population turns into a G population, there must be at least one
mutation of an F player to G, and the G player must win, and similarly
in reverse. Conditional on the winner having outcome 2, these are equally
likely events. The probability that a G population turns into an F popula-
tion is actually slightly higher than the reverse because the F 's have an
advantage in those outcomes where no player has outcome 2.

In the notation of the following proof, ``c�d '' does not converge to zero
in the example as n becomes large, and therefore the proportion of the time
that the population is F does not converge to 1.

Example 4 shows the contrast between playing the field and random
matching. If we pit F against G in random matches, the G players will even-
tually disappear. In every period there are many matches and in most
matches the winner will win with outcome 2 using the tie-breaking rule.
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The winners of tied matches will split evenly between F and G, with no
aggregate effect on the population proportions. However in the other
matches F will win more often than G. Therefore, in every period the
proportion of F grows, albeit slowly if m is large. To highlight this, imagine
that F and G both gave the outcome 2 with probability 1. Then in the ran-
dom-matching environment, the population distribution between F and G
would be constant: _(t)=_(0) for all t. On the other hand, in the playing-
the-field model, in every period the population would either be (almost) all
Fs or (almost) all Gs.

The playing-the-field game differs from the random-matching game in
three ways: It has a finite population, it has mutations, and it has competi-
tion within the whole population. We now argue that the difference in
results is due to the latter. First, Example 4 can be modified to show that
the difference in results is not due to population size. If there were a con-
tinuum of players, in every period after an F wins, the proportion of F
types would be 1&+, and half of them would obtain the outcome 2;
similarly a proportion + would be G types, half of whom would obtain the
outcome 2. The probability of shifting from an F state to a G state or con-
versely would then be +�(1&+) so that half the time would be spent in
each state. In every period the winner would have outcome 2, so the
difference between F and G would never be relevant.

Second, the difference in outcomes is apparently not due to the fact that
mutations are permitted in playing-the-field, but not in random-matching.
The intuition is that if independent mutations occur in random matches
with equal probabilities for both F and G players, then if there are con-
tinuously many random matches, the mutations can have no aggregate
effect.

It seems then that the difference between the outcomes of random match-
ing and playing the field derives from the different forms of interaction, that
is, competition within small random groups or within the whole group.
Reasoning from the random-matching model, one might have guessed that
in Example 4 above, the population should be mostly type F most of the
time. This is wrong for the following reason. In almost all periods when the
population switches from almost all Fs to almost all Gs, the switch has
nothing to do with the outcomes other than 2, which are equally probable
under the two distributions, whereas in the random-matching model there
is movement in the population proportions precisely because of the out-
comes other than 2.

The following definition strengthens tail dominance so as to exclude
Example 3. The reason that strong tail dominance suffices is that if there
are ``many'' players with the strongly tail-dominant lottery, some such
player will have an outcome higher than the maximum in the support of
dominated distributions, and will win.
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Definition 3. F strongly tail dominates G if there is an x� such that
F(x� )<1 and G(x� )=1.

Proposition 6. Suppose that F strongly tail dominates G. Let x~ F (n, +n)
be the stationary proportion of type-F players in a playing-the-field game of
size n when the probability that each offspring mutates is +n . Then given
=>0 there exist n* and a sequence +n � 0 such that for n>n* we have
x~ F (n, +n)>1&=.

Proof. We will drop the arguments (n, +n) to (x~ F, x~ M, x~ G) for sim-
plicity. We first show that we can choose (n, +) such that x~ M<=�2. In the
transition matrix below, let N (for ``no mutation'') be either an F state or
G state, and let M represent mixed generations in which at least one muta-
tion has occurred.

N M

N (1&+n)n 1&(1&+n)n

M (1&+n)n 1&(1&+n)n

The probability of changing from N to M is the same whether the N
generation was comprised of F players or G players. Similarly, the prob-
ability of changing from M to N does not depend on the mixture of G and
F in the M generation, since the ``winner'' will produce n offspring, and
each has the same probability of mutation irrespective of the parent's type.
The probability of no mutation is (1&+n)n. Recall that x~ N=x~ F+x~ G, and
the stationary probabilities are (x~ N, x~ M)=((1&+n)n, 1&(1&+n)n). Con-
sider a sequence +n � 0 such that n+n � =�2. Expanding (1&+n)n as a
Taylor series around +n=0, (1&+n)n is equal to 1&+n n plus a positive
series. Thus, since (1&+n)n=x~ N�1&+nn and +nn � =�2, x~ N is bounded
below for large n by, say, 1&=. That is, the population is in a mutant state
at most a fraction = of the time.

It is straightforward to adapt this proof to the case of finite support; we
present the more difficult case.

We now restrict attention to the N states. Let x̂F and x̂G represent the
stationary probabilities of being in the F state and G state respectively,
conditional on being in one or the other: x̂Fx~ N=x~ F and x̂Gx~ N=x~ G. The
steady state probabilities for the Markov process described in the table
below satisfy x̂F�x̂G=d�c. Since x̂F+x̂G=1, this implies that x̂F=d�(c+d ),
and x~ F=x~ Nd�(c+d ). Thus to prove the theorem it is enough to show that
as n grows large, and +n becomes small, d is bounded above zero and c
converges to zero. We complete the proof by showing these two claims.
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F G

F 1&c c

G d 1&d

We first show that c converges to zero as n becomes large and +n

becomes small. To get from an F state to a G state or vice versa there must
be at least one mutation, and a mutant must win. We will describe a muta-
tion state with mixed F and G players by an integer k which represents the
number of type-G players it contains. The number of type-F players is
therefore n&k. A player wins if he has the highest order statistic among the
random draws of all n players. The probability that a G player wins
depends on the number of G players, k. Denoting this probability by g(k),
the probability c of changing from the F state to the G state is
�k�1 ( n

k) +k
n(1&+n)n&k g(k).

We can calculate an upper bound on g(k) as follows. The event that a
G player wins is the same event as that every F player loses. Thus we want
an upper bound on the event that every F player loses. Letting
q#1&F(x� ), such a bound is (1&q)n&k, which is the probability that no
F player has a random draw in the upper tail of F where G puts no prob-
ability. The event that no F player has a random draw in the upper tail is
necessary for all the F 's to lose (if any F had a draw in the upper tail it
would win), but is not sufficient. Thus the probability that all the F players
lose is smaller than (1&q)n&k. Thus, g(k)<(1&q)n&k and c<�k�1 ( n

k) +k
n

(1&+n)n&k (1&q)n&k=[+n+(1&+n)(1&q)]n&(1&+n)n (1&q)n. The
equality follows because the sum would be a polynomial expansion if it
included the k=0 term. Thus c goes to zero as n becomes large.

We turn now to the parameter d, the probability that a G state becomes
an F state. We will let f (k) denote the probability that one of the F players
wins when there are k G 's. Thus d=�k�1 ( n

k) +n&k
n (1&+n)k f (k). We want

a lower bound for d, the probability that one of the F players wins. F will
surely win if one of them has a random draw in the upper tail where G has
no weight. The probability this does not happen is (1&q)n&k, and there-
fore 1&(1&q)n&k is a lower bound for the probability that one of the F
players wins.

That is, f (k)�1&(1&q)n&k. Thus

d� :
k<n \

n
k+ +n&k

n (1&+n)k [1&(1&q)n&k]

= :
k<n \

n
k+ +n&k

n (1&+n)k& :
k<n \

n
k+ +n&k

n (1&+n)k (1&q)n&k

=1&(1&+n)n&[(1&+n)++n(1&q)]n+[1&+n]n

=1&[1&+nq]n
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Since +nq=n+n q�n and n+n � =�2, the second term converges to e&=q�2<1.
Thus, d is bounded above zero. K

If F is riskier than G in the sense that F is created by adding strictly
positive noise at every point to G, then F strongly tail dominates G. In this
weak sense, risk-taking preferences are selected in the playing-the-field
environment. But it is a weaker sense than the selection in the random-
matching environment.

4. BIOLOGICAL AND BEHAVIORAL EVIDENCE
ABOUT RISK-TAKING

We now ask whether the ideas discussed above are relevant to the evolu-
tion of preferences in humans, and in particular, in males. Before address-
ing the three bullet items in the introduction, we note some of the evidence
that male humans are more risk taking than females. Much of the evidence
is experimental. Arch [1] summarizes it, and reports

Research clearly supports the existence of differences between
females and males in the extent of their ... risk taking. (Ellis
[11]). It appears that the differences in behavior do not occur
simply because males perceive the physical world as less
threatening ... but because they are actually more likely to seek
out and enjoy risk-ladened situations (Zuckerman [34]).

The same conclusion is corroborated by many other authors, e.g., Zinkhan
and Karande [33] report a study in which ``Men ... showed more risk-
taking behavior than women;'' Levin, Snyder and Capman [19] quote
Hudgens and Fatkin [17], who concluded that ``men are more inclined
than women to take risks,'' and also describe a study in which ``males res-
ponded more favorably to the hypothetical gambling options than did
females.'' Avnery [2] comes to the same conclusion based on computer
experiments with young children. Even if the evidence is confounded by
environmental influences, it is nevertheless provocative.

Since our hypothesis is that risk taking among males is inherited rather
than learned, we turn to the three questions identified in the introduction.

Can a meaningful concept of risk taking be distinguished from other
behaviors in non-humans, so that risk taking in humans has a logical
evolutionary antecedent?

Naturally it is hard to measure risk taking in nonhumans, but researchers
have identified behaviors that seem observationally equivalent both to risk
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taking and to sensation seeking. For example, Fairbanks [12] reports
variation in the willingness of vervet monkeys to enter new environments,
approach new food sources and approach strangers. Possingham, Houston
and McNamara [21] report that ``patterns of risk-sensitive foraging in
bumble bees are now well documented,'' where they define an animal to be
risk sensitive if both the mean and the variance of the energy contributed
by a reward influence their revealed preference. Battalio, Kagel and
MacDonald [3] examine rats' preferences over lotteries that differ by mean
preserving spreads and find evidence of risk aversion.

Do non-human males play winner-take-all games?

The reproductive games played by males are complex. An exhaustive
description can be found in [9], of which one section is devoted to mam-
mals, and in particular to deer, elephant seals, lions, vervet monkeys and
baboons. While none of the examples exhibits the extreme feature of
Section 3, where a single male fathers the entire next generation, they all
have dominance hierarchies, which might be interpreted as winner-take-all
games in small groups, as in Section 2. The behavior of elephant seals is
most clear-cut: Of the sample followed by the researchers, only 8.80 of the
males breeded during their lifetimes.

Is risk taking genetically coded? If so, there should be biological correlates
with this behavior.

Roy, De Jong and Linniola [25] report in their abstract that ``Pathological
gamblers may have a disturbance of their central nervous system
noradrenergic functioning,'' and that their ``results suggest that the distur-
bance ... may be partly reflected in their personality.'' The survey in
``Biology of Brain May Hold Key for Gamblers,'' the New York Times C1,
Oct. 3, 1989, summarizes this study as finding that ``The psychological for-
ces that propel so many chronic gamblers ... may spring from a biological
need for risk and excitement ... . The study showed that gamblers had lower
levels than usual of the brain chemicals that regulate arousal, thrill and
excitement.''

Even if risk taking is heritable, is there any connection between different
species, in particular a connection between current species and their
ancestors?

The evidence here is obviously circumstantial, but nevertheless plausible.
Ellis [11] reports
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Research over the past 25 years has established that andro-
gens��and, to a lesser degree, other sex hormones��profoundly
affect brain functioning, and thereby, behavior ... . When one
finds males on average behaving differently from females, there-
fore, one should suspect neuroandrogenic etiology, especially if
the sex differences are evident in several species.

This report has demonstrated that average sex differences in
several human behavior patterns have close parallels in other
mammals. In addition, experiments with nonhuman mammals
for many of these behavior patterns have shown that androgenic
effects on brain functioning highly influence these behavior pat-
terns. Together, these observations strongly imply that average
sex differences in such behavior even among humans are at least
partially the result of neuroandrogenic factors.

... at least three additional behavior patterns could be neuroan-
drogen influenced in light of persistent tendencies for males to
display the behavior more than females, both in humans and in
several other primate species. These were ... sensation seeking ... .

This literature supports a biological basis for behaviors such as risk tak-
ing, and if such a basis is shared by mammals with common ancestors,
then reproduction according to winner-take-all games among our
ancestors, retained in other contemporary species, might explain a
preference for risk taking among human males.
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