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Sufficient conditions for the existence of a Nash equilibrium are given when 
preferences may violate the reduction of compound lotteries assumption (RCLA). 
Without RCLA decision makers may not be indifferent between compound lotteries 
which have the same probabilities of final outcomes. Therefore the conditions 
depend on how players perceive the game-whether they view themselves as 
moving first or second. We also review conditions under which the equilibria 
will be dynamically consistent. Journal of Economic Literature Classification 
Number: 026. 0 1991 Academic Press, Inc. 

I. INTRODUCTION 

There have recently been many generalizations of expected utility (EU) 
theory.’ These generalizations are concerned with the robustness of the EU 
model, and with explaining data which conflicts with the EU hypothesis. In 
order for such generalizations to be applied in economic models there are 

* The authors thank Edi Karni, Ariel Rubinstein, David Schmeidler, and Menahem Yaari 
for helpful comments and the National Science Foundation and SSHRC for financial support. 

’ A seminal reference is Machina [19]. For surveys of the literature, including empirical 
findings and generalizations of EU, see, for example, Macrimmon and Larson [24], Machina 
[2&22], and Fishburn [7]. 
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at least two issues which must be addressed.’ First, how should inter- 
actions among non-EU decision-makers be modelled, that is, how is game 
theory to be extended to non-EU preferences? Second, how are decisions 
over time to be modelled, in particular, when are non-EU decision-makers 
dynamically consistent? The former question has been addressed by 
Crawford [4] and Karni and Safra [17], the latter by Green [ll], Gul 
and Lantto [ 131, Hammond [14], and Machina [23], among others. 
Regarding existence, Crawford [4] and Karni and Safra [ 171 show that, 
in general, Nash equilibrium may fail to exist (in particular in the absence 
of quasi-concavity of preferences over lotteries). However, Crawford shows 
that existence of an equilibrium in beliefs can be guaranteed (the reader is 
referred to Crawford’s insightful paper for details regarding this result and 
the reason for a distinction between equilibrium in beliefs and in strategies, 
cf. Aumann [ 1 I). The analysis of dynamic consistency has used a variety 
of assumptions and different methods of applying preferences in dynamic 
models. Depending on the assumptions invoked, results have ranged from 
the conclusion that dynamic consistency imposes no restrictions on 
preferences (Machina [23]), through the restriction that it implies quasi- 
convexity (Green [ 1 1 ] ), quasi-concavity and quasi-convexity (i.e., 
betweenness) (Gul and Lantto [ 13]), to the conclusion that only expected 
utility preferences satisfy dynamic consistency (e.g., Hammond [14] and 
Karni and Safra [ 183). 

To clarify the issue of dynamic consistency, consider a decision-maker 
who can choose between two lotteries, X or Y. Suppose that this person is 
indifferent between X and Y, but prefers throwing a fair coin (denoted by 
Z = 0.5 X+ 0.5 Y), see Machina [23, Sect. 4.21. Hence V(Z) > V(X) = 
V(Y), where V( .) is the individual’s preference functional over probability 
distributions. Although ex ante the decision-maker would prefer to throw 
the coin and carry out the plan of X if heads, Y if tails, after the fact one 
might say that the decision-maker prefers to toss the coin again. The deci- 
sion-maker’s dilemma appears even worse if V(Z) > V(X) > V( Y), SO that 
ex post Y would never be chosen (unless the ex post and es ante preferences 
differed). Machina [23] addresses this issue by arguing that the expost 

preferences are derived from es ante preferences by conditioning on any 
borne risk, so that expost and ex ante choices will always coincide. Karni 
and Safra [ 171 examine when decision-makers would carry out their plans, 
assuming that the same preference function V is used both ex ante and 
expost, so that restrictions are necessary to avoid situations such as the 
one described above. 

All of the above papers (on games and on dynamic consistency) impose 

’ Machina 1231 provides a comprehensive discussion of the research which needs to be 
accomplished in order for non-EU models to be adopted. 
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the reduction of compound lotteries assumption (RCLA), so that com- 
pound lotteries (inherent in games and in dynamic choice problems) are 
reduced to single lotteries by multiplying the probabilities. Von Neumann 
and Morgenstern [25, p. 6321 discuss the crucial nature of this assumption 
and the desirability of relaxing it: 

It seems probable, that the really critical group of axioms is (3 : C), or more specifi- 
cally, the axiom (3 : C: b). This axiom expresses the combination rule for multiple 
chance alternatives [RCLA]... Some change of the system (3 : A) - (3 : C), at any 
rate involving the abandonment or at least a radical modification of (3 : C : b), may 
perhaps lead to a mathematically complete and satisfactory calculus of utilities, 
which allows for the possibility of a specific utility or disutility of gambling. It is 
hoped that a way will be found to achieve this, but the mathematical difliculties 
seem to be considerable. 

Segal [2628] has proposed and analyzed a model where individuals may 
violate RCLA. He has also shown that this approach can explain much of 
the empirical evidence that conflicts with the expected utility hypothesis. 
Moreover, dropping the RCLA addresses an interesting robustness ques- 
tion: What results are sensitive to the hypothesis that individuals multiply 
probabilities to reduce multi-stage lotteries to single lotteries?3 

The first concern of this paper is with the effect of dropping RCLA on 
game theory. We examine this effect while retaining the other assumptions 
which in the context of RCLA would imply EU-namely compound inde- 
pendence (a multi-stage version of the von Neumann and Morgenstern 
independence axiom, see Segal [28]),4 continuity, and the preference order 
axioms (completeness, transitivity, etc.). Our analysis is restricted to two- 
person normal-form games. Despite the restriction to normal-form games 
the analysis involves compound lotteries since each player separately 
chooses strategies. Moreover, there is a question of dynamic consistency 
since, unless they can commit to mixed strategies, in equilibrium each 
player must want to play any pure strategy which occurs with positive 
probability in her equilibrium mixed strategy. 

In order to describe our results it is important to recall that the way in 
which a decision problem is described may affect the ranking of the 
available strategies. In particular, when RCLA is dropped the individual 
need not be indifferent between compound lotteries that have the same 
ultimate probabilities over outcomes. Therefore, whether players perceive 

themselves as moving first or second may be important. We show that if 
the players perceive themselves as moving first, then without further 
assumptions (but still retaining the continuity, compound independence, 

’ Machina [22, pp. 147-1491 discusses and provides references to work on the systematic 
miscalculation of probabilities by individuals. 

4 The compound independence axiom implies that the expost preferences determine the 
ex ante preferences-in a sense this is the converse of Machina’s approach. 
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and preference order axioms) existence and dynamic consistency of Nash 
equilibrium is guaranteed. By contrast, when they perceive themselves 
as moving second, we need significant restrictions in order to guarantee 
existence. The standard assumptions used in proofs of existence are con- 
tinuity of the preferences (in order to guarantee upper hemi-continuity of 
the best reply correspondences), and quasi-concavity of the preferences, in 
order to obtain convex valued best reply correspondences. We show that 
convexity of the best reply sets implies that the preferences are EU. So in 
one case, even if players fail to multiply probabilities, existence and 
dynamic consistency of Nash equilibria is guaranteed; while in the other 
case the standard method of proving existence requires the assumption of 
EU preferences, and hence the assumption that players do multiply 
probabilities. 

The paper discusses first the question of existence, and then the issue of 
dynamic consistency. The results when RCLA is dropped were just 
described. When RCLA is assumed to hold our results focus on dynamic 
consistency, since existence of an equilibrium in beliefs has been discussed 
by Crawford, and for existence of an equilibrium in strategies quasi- 
concavity of preferences is the obvious and natural sufficient condition. 
Regarding dynamic consistency, we examine three models in which Nash 
equilibria in dynamically consistent strategies can be obtained. One is 
based on Machina [23], and we demonstrate by example the sense in 
which this approach conflicts with the notion of backwards induction and 
subgame perfection (see also Machina [23, Sect. 6.51). An alternative 
approach based on Karni and Safra [ 16, 171 requires either restrictions on 
the preferences, in particular assuming quasi-convexity (see also Green 
[ 11 I), or restrictions on the strategy space. The third approach is based on 
Segal [28] and assumes compound independence but not RCLA. 

There are several other papers which relate to this work. There has been 
other research on non-EU preferences in the context of game theory. 
Crawford [4] and Karni and Safra [ 17, 183 were discussed above. The 
transitivity axiom is weakened by Fishburn and Rosenthal [S], and the 
continuity axiom is weakened by Fishburn [6] and by Skala [30]. These 
last three papers are quite different from ours since they retain the 
assumption that players’ preferences are linear in their own mixed 
strategies. Geanakoplos, Pearce, and Stacchetti [lo] allow for probabilities 
to enter in a non-linear manner, but through the beliefs about other 
players’ beliefs and not directly through the strategies as we do. They also 
discuss the questions of existence (in the normal form) and backwards 
induction (sequential rationality) in the extensive form. Finally there are 
models of games where players make “mistakes” in calculating conditional 
probabilities (due to incorrect information processing), such as 
Geanakoplos [9] and Brandenburger, Dekel, and Geanakoplos [2]. 



NASH EQUILIBRIUM WITH NON-EXPECTED UTILITY 233 

II. THE MODEL AND EXISTENCE 

Consider a two-person game, where players 1 (female) and 2 (male) have 
finite pure strategy sets Si, and mixed strategy spaces C’ (throughout we 
use the index i for i = 1, 2 andj forj# i). The mixed strategy which assigns 
probability one to a pure strategy si in S’ will also be denoted by 8. Each 
player has an outcome function H’: S’ x S* --f R and a preference func- 
tional Vi: L + R, where L is the space of simple (finite outcome) lotteries 
over the reals. The functions Vi are assumed to be continuous and strictly 
monotone with respect to first-order stochastic dominance. (Of course the 
presumption of such a preference functional implies that the underlying 
(weak) preference relation on lotteries is transitive and complete.) The 
basic features of a game are thus given by r= (9, Hi, Vi). This specifica- 
tion does not describe the functions, denoted hi: Z’ x Z2 + L, by which the 
players reduce pairs of mixed strategies into lotteries. The standard reduc- 
tion mechanism (called the reduction of compound lotteries assumption 
-RCLA) simply involves multiplying out the probabilities, so that the 
lottery induced by any pair of mixed strategies (i.e., h’(a’, a’)) is the lottery 
which assigns probability a’(s’)x 02(s2) to the outcome H’(s’, s’). We 
write H’(o’, a’) for this lottery; that is, we extend H’ to a function from 
C’ x C* into L which simply multiplies out the probabilities. To save on 
notation we write Vi(al, a2) for V(h’(a’, a2)), which is the function that, 
for any given mechanism hi for reducing pairs of mixed strategies into 
lotteries, represents player i’s preferences over pairs of mixed strategies. 
The best reply correspondences BR’: C’ + Z’ are defined as usual by 
BR’(a’) = (0’1 Vi( ci, a’) > V’(z’, a’) VZ’E C’}. Finally, a pair of mixed 
strategies (G’, a*) is a Nash equilibrium if 0’~ BR’(d). Clearly, sufficient 
conditions for the existence of a Nash equilibrium are that V’(o’, &) is 
continuous (in the product topology) so that BR’ is upper hemi-continuous 
and non-empty valued, and that T/‘(a’, rrj) is quasi-concave in ai, so that 
BR’ is convex valued. 

In order to discuss alternative methods of reducing the pair of mixed 
strategies into a lottery, we must consider how the players may perceive the 
game. Focussing on player 1, she may perceive herself as either moving first 
or second. These correspond to Figs. 1 and 2, which should be understood 
as follows. In the former case if player 1 chooses s1 in S’ and player 2 
chooses (T’, then player 1 faces the lottery that gives her H’(s’, s2) with 
probability 02(s2). Using the extension of H’ discussed above we denote 
this lottery by H’(s’, a2). Hence, a choice of 0’ gives player 1 the com- 
pound lottery which yields the lottery H’(s’, a2) with probability a’(s’). 
Figure 2 corresponds to the case where player 1 perceives herself as moving 
second. Here, if player 1 chooses G’ and player 2 choose s*, then she faces 
the lottery H’(o’,s’) (which yields H’(s’,s2) with probability g*(.s’)). 
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H’(&s*) H’(s’$) H’(t’%*) H’(t’x’) 

FIGURE 1 

Hence, when player 2 chooses c2, player 1 faces the compound lottery 
which with probability 02(s2) yields the lottery H’(&, 3’). We call these the 
first and second hypotheses on the players’ perceptions of the mixed 
strategies, or perceptual hypotheses for short. We will also discuss two 
methods of evaluating compound lotteries-RCLA and compound 
independence (CI). Clearly under RCLA both perceptual hypotheses are 
equivalent to the simple lottery H’(a’, a2), hence there are three cases 
to consider. The example in Fig. 3 (similar to Crawford [4, Sect. 31) 
demonstrates the existence problem in the case where RCLA is assumed. If 
v’ is strictly quasi-convex (i.e., for any X, Y with vi(X) # vi(Y) and any 
0 < c1< 1, V’(ctX+ (1 -a) Y) is strictly less than either Vi(X) or Y’(Y), so 
that, roughly speaking, players prefer not to randomize) then there is no 
equilibrium in mixed strategies since for any mixed strategy of the column 
player, the row player will strictly prefer at least one of her pure strategies. 
Since there is no pure strategy equilibrium, this shows the failure of 
existence. 

Hl(tl*s*) H’(sh”) H’(t’,t*) 

FIGURE 2 
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U 1.0 0.4 

D OS 4.0 

FIGURE 3 

Turning now to alternative mechanisms for reducing pairs of mixed 
strategies to lotteries, we introduce the axiom of compound independence 
which in conjunction with RCLA would imply expected utility. Compound 
independence is an axiom on compound lotteries, so a notation for such 
lotteries will prove helpful. A compound lottery is an Zn-tuple (Xi, pi)‘, , , 
where Xi~ L and pi is the probability of receiving lottery Xi. Let V, repre- 
sent preferences over compound lotteries, and let V represent preferences 
over L. 

DEFINITION 1. Let (X,, pi):= 1 and ( Yi, pi):= 1 be any pair of compound 
lotteries which for some j E { 1, . . . . n} satisfy Xi = Yi for all i #i. Preferences 
represented by V and I’, satisfy compound independence (CI) if 
Vc((Xi, pi):= 1 ) 2 V,(( Yi, pi):= 1) if and only if VCxi) 2 v( Yj). 

Given any continuous and monotonic preference functional V: L --+ R 
there is a unique continuous and monotonic function V, from compound 
lotteries into R such that V and V, satisfy CI. This function I’, is calculated 
as follows. Let the certainty equivalent of a lottery X be denoted by 
CE(X) E R, so V(X) = V(CE(X)).’ Given a compound lottery (Xi, pi), let 
V,((Xi, p,)) = V((CE(X,), p,)). Henceforth, for notational simplicity, we 
often use V (rather than I’,) to denote the extension of V to a preference 
functional on compound lotteries. 

The table in Fig. 4 summarizes the different methods of reducing a pair 
of mixed strategies into a simple lottery. We now turn to our first result on 
the existence of Nash equilibrium. 

s Elements of R are used also to denote lotteries which assign probability one to that 
element. 
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FIGURE 4 

THEOREM 1. If both players satisfy the first perceptual hypothesis on 
mixed strategies and satisfy compound independence, then in any game r 
there exists a Nash equilibrium. 

ProoJ: It is sufficient to show that the best reply correspondences BR’ 
are upper hemi-continuous, non-empty, and convex valued. Upper hemi- 
continuity follows from continuity of both the preference functional I/ 
on lotteries, and of the extension V, on compound lotteries. That the 
correspondences are non-empty valued follows from this continuity and 
the compactness of C’. The main point of this proof is that under the first 
perceptual hypothesis the compound independence axiom guarantees 
convexity of the best reply sets. In fact BR’(aj) is equal to the convex hull 
of { si E S’: V(s’, a’) > V( ri, gi) for all rie Si>. To see that BR’(oj) is a 
superset of this convex hull note that if any two pure strategies si and t’ are 
best replies to OJ then V’(H’(s’, a’)) = V”(H’(t’, a’)), so the certainty 
equivalent of these two lotteries are equal. Therefore, the compound lottery 
generated by i playing any probability mixture on these two pure strategies 
yields the same utility as playing the pure strategies. To see that the convex 
hull described above is a superset of BR’(aj) it suffices to observe that if a 
mixed strategy cri is a best reply then every pure strategy in S’ assigned 
positive probability by (T’ is a best reply. This can be seen as follows. If 
t’ E S’ is not a best reply then there is an ri E 5” such that CE’(H’(r’, a’)) 2 
CE’(H’(s’, a’)) for all si, with a strict inequality for si= t’. If t’ is assigned 
positive probability by oi then the lottery which for each si in S’ gives 
CE’(H’(s’, a’)) with probability oi(si) is stochastically dominated by 
CE’(H’(r’, &)). So strict monotonicity and compound independence imply 
that oi is not a best reply. Q.E.D. 

Thus, under the first perceptual hypothesis, the assumption of compound 
independence, even without RCLA, is sufficient to guarantee existence. 
Moreover, it is intuitively clear, and formally stated in the next section, 
that under the first interpretation CI also guarantees dynamic consistency. 
However, the situation is quite different with the second interpretation. The 
example below demonstrates that CI is not sufficient to guarantee the 
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FIGURE 5 

existence of a Nash equilibrium under the second interpretation. Since we 
assume continuity of Vi the only reason for existence to fail is that the best 
reply sets are not convex. This suggests asking what conditions are 
necessary and sufhcient for convex best reply sets. The answer is that quite 
strong conditions are needed-under the second interpretation of the game, 
assuming compound independence and convex best reply sets is equivalent 
to assuming EU preferences. 

EXAMPLE. Consider a game where the payoffs from pure strategies are 
as described in Fig. 5. Let player l’s preferences over simple lotteries be 
given by Yaari’s [31] function, namely V’(X) = J t dg(X(t)), where X is a 
cumulative distribution function and 

g(p)= i? 2PY 0 6 p d 0.5 
1 0.5 < p < 1. 

Assume that player 2’s preferences over simple lotteries are linear (i.e., V2 
is an expected utility function) so that in conjunction with compound inde- 
pendence his preferences over compound lotteries are also EU.6 The best 
reply correspondences are as follows, where a pair (1 - p, p) denotes for 
player 1 the mixed strategy that assigns D probability p, and (1 -4, q) 
denotes for player 2 the mixed strategy that assigns R probability q.’ 

6 Although player l’s preferences are not strictly monotone (in first order stochastic 
dominance) since g is not strictly increasing, this is only done for simplicity. 

’ BR' requires tedious computations, which are omitted. 
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o<q< l/2 

BR’((l - q,4)) = 
{Cl -P3 PI: PE c3/4, ll>* l/2 d q < 213 

{U,O)f ” ((1 -Pt p): PE c3/4, ll>, q = 213 

(1, O), 213 <q d 1 

i 

(LO), o<p< l/2 

BR’( ( 1 - p, p)) = anything, p= l/2 

to, 11, 1/2<p< 1. 

These best reply correspondences are illustrated in Fig. 6, from which it is 
clear that the game has no Nash equilibrium. 

THEOREM 2. Assume that player i satisfies the second perceptual 
hypothesis and satisfies compound independence. The set BR’(a’) is convex in 
any game and for any opponent’s strategy ai 11 and only if V’ is linear, so 
that i has expected utility preferences. 

Proof “If” is trivial. For “only if,” it is enough to show that for all X, 
Y, 2 in L we have V’(X) = V’(Y) = v’(0.5 X+ 0.5 Z) = Vi(0.5 Y+OS Z) 
(see Herstein and Milnor [ 151). Using continuity we can restrict attention 
to lotteries such that X = (x,, l/N):=‘=,, Y = (y,, l/N),“,,, Z = 
(z,, l/N):= i. Consider now the game in which H’(s’, s*) is given by the 
matrix in Fig. 7. Assume that player j plays the mixed strategy oi which 
assigns each sj probability 1/(2N). 

First it is shown that BR’(a’) = .??, so that player i is indifferent among 
all her strategies. Let 0’ E BR’(aj) and denote a’($) = elk. We can identify 
any mixed strategy with probability vectors (pk):E,. Denote by I7, with 
generic element x, the set of the N permutations on { 1, . . . . N} of the form 
(1, 2, . ..1 N), (N 1 2, ..., N-l), (N- 1, N, 1, 2, . . . . N-2), . . . . (2, 3, . . . . N, 1). 
Denote by n(k) the kth element of the permutation n. It is easy to 
see that for any 71 player i is indifferent between the mixed strategies 

FIGURE 6 
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SN ‘N+l 

j 
‘Nc2 “’ 

J 
‘2N 

FIGURE 7 

~1s (Q,), . . . . I+,,,), a,(,)+,, . . . . aEtNj+ ,,,) and g’s (a,, . . . . uZN). (This is 
because CE’(H’(o’, s’,)) = CE’(H’(a’,, &))) and 
CE’(H’(a;, s&)+ N)), 

CE’( H’( d, 3’, + N)) = 
k = 1, . . . . N, so that the certainty equivalents are 

simply being permuted.) Similarly, player i is indifferent between 01,~ 
(a N+n(l)? ...> CLN+n(N)~ %(l)r . ..v %(N) ) and cri. Hence, for any permutation n 
in II, both 01 and 01, are elements of fIRi( Clearly [1/(2N), . . . . 
1/(2N)] = [Z&f, + (T 1,)]/(2N). By assumption BR’(&) is convex, 
so that [l/(2&), . . . . 1/(2N)] E BR’(o’). Now V( [ 1/(2N), . . . . 1/(2N)], (T)) = 
Vi(0.5 X + 0.5 Z), since (under the second perceptual hypothesis) each pure 
strategy of player j yields the lottery 0.5 X+0.5 Z. Moreover every pure 
strategy of player i yields the same lottery, so (again using convexity) 
BR’(aj) = ,Y’. Thus, it has been shown that player i is indifferent among all 
her strategies. We have also seen that there is a strategy which yields the 
lottery 0.5 X+0.5 Z. Now note that the mixed strategy (l/N, . . . . l/N, 
0 , . . . . 0) yields player i the compound lottery which with probability N/(~N) 
gives X and with probability N/(2N) gives Z. Therefore player i is indif- 
ferent between the lottery 0.5 X+0.5 Z and the compound lottery which 
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gives X and Z with probability l/2 each. If in the above game the xk’s are 
replaced by y,‘s then the same conclusion holds with X replaced by Y. So, 
V’(O.5X+O.5Z)= V:.(X,O.5;Z,O.5) and V’(O.5 Y+O.jZ)= V:,(Y,O.5; 
Z, 0.5). By hypothesis CE’(X) = CE’( Y), so by compound independence 
player i is indifferent between the compound lotteries (X, 0.5; Z, 0.5) and 
(Y, 0.5; Z, 0.5). Hence, V’(O.5 X+ 0.5 Z) = V’(O.5 Y + 0.5 Z). Q.E.D. 

Remark. It should be clear that Theorem 2 characterizes when player 
i’s best reply correspondence is convex valued regardless of the other 
player’s preferences. In particular if player 1 perceives herself as moving 
first, player 2 perceives himself as moving second, and both players satisfy 
compound independence, then both players best reply sets are convex for 
all games and opponents’ strategies if and only if player 2 is an expected 
utility maximizer. (Convexity for player 1 follows from the proof of 
Theorem 1. ) 

Theorem 2 is somewhat weaker than what we would want since it does 
not show that under the second perceptual hypothesis existence is 
equivalent to expected utility. We do not know whether or not the stronger 
result can be proven. However, Theorems 1 and 2 above do yield some 
additional results regarding the relationship between the sets of Nash equi- 
libria under the two approaches. 

COROLLARY 1. Assuming CI, the best reply correspondences under the 
first and second perceptual hypothesis are equal tf and only tf Vi is linear, so 
that player i has expected utility preferences. 

Proof. The proof of Theorem 1 implies that under the first interpreta- 
tion the best reply sets are convex valued. Theorem 2 states that convex 
valued best reply sets imply expected utility preferences. Q.E.D. 

COROLLARY 2. Assuming CI, the set of Nash equilibria coincide under 
the two perceptual hypotheses if and only tf the players have expected utility 
preferences. 

Proof If player 1 does not have expected utility preferences, construct 
a game in which player 2’s payoffs are constant so that he is indifferent 
between all his strategies. By Corollary 1 there exist payoffs for player 1 
and a mixed strategy for player 2 which yield different best reply sets for 
player 1. Hence in the constructed game there are different Nash equilibria 
according to the two perceptual hypotheses. Q.E.D. 

These two corollaries imply that under compound independence, if we 
want conclusions to be independent of the way the players perceive the 
game then we must assume expected utility preferences. 
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Remark. The extension of the analysis provided in this section to 
n-person games is straightforward. For example, the analog to Theorem 1 
would say that if each player i would view herself as selecting among sim- 
ple lotteries determined by the opponents’ mixed strategies then (assuming 
CI) a Nash equilibrium exists. (The other players’ mixed strategies can be 
reduced to a simple lottery in several different ways: either RCLA or CI 
can be used, and in the latter case player i can perceive different orders of 
play for her opponents. These reductions may yield different Nash equi- 
libria, but in all cases an equilibrium exists.) Similarly, under the second 
perceptual hypothesis each player i would view the choice of 6’ as deter- 
mining the compound lottery [CE’(H’(o’, s-j)), o-‘(s-‘)I, where 6’ is a 
probability distribution on the opponents pure strategy combinations and 
s e-i is an index for these pure strategy combinations. In this case a result 
analogous to Theorem 2 would hold: Assuming CI and convex best reply 
sets is equivalent to assuming expected utility preferences. 

III. DYNAMIC CONSISTENCY 

In this section we examine the issue of dynamic consistency. To formalize 
this notion we must separate the individual’s choice problem into two 
stages-first the choice of mixed strategy, and then the decision of whether 
to play the pure strategy which the mixed strategy specifies after the ran- 
domizing device is used. The main conclusion of this section is that there 
are several interesting ways of modelling the game which yield the existence 
of Nash equilibria that are dynamically consistent. 

Let W’: Zj x C’ x s’ x S’ --, R be the individual’s preference functional at 
the interim stage. That is, it represents preferences for a given mixed 
strategy of the opponent (the first argument), after having chosen a mixed 
strategy (the second argument), and after having observed the outcome of 
one’s own randomization (the third argument), over one’s choice of a pure 
strategy (the fourth argument). The relationship between the third and 
fourth arguments is the same as that between a mediator’s recommendation 
and the actual choice in a correlated equilibrium. Dynamic consistency is 
the requirement that the player actually play according to the mixed 
strategy (the mediator’s recommendation). 

DEFINITION 2. Given a mixed strategy of the opponent ai, a mixed 
strategy ai is dnamically consistent if for all si such that a’($‘) > 0, 
W(d, d, si, d) > W’(a’, d, 2, ti) for all t’ in S’. 

Thus, ex ante the player chooses ci according to Vi, and at the “interim” 
stage-having observed the outcome of her randomizing device-she 
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chooses #ES according to W’. The substantive issue concerns the rela- 
tionship between W’ and Vi.* To analyze this issue we assume that we are 
given a basic preference over lotteries U’: L -+ R, and describe how v’ and 
IV can be determined from u’. 

Model 1. This approach is based on Machina’s [23] idea that 
preferences are affected by risks born. In the context considered here this 
can be formalized as follows. Let Vf(ai, 0’) = Ui(H’(g’, a’)); and for Y, t in 
S’ let Wf(oj, o’, Y, t) = Vi(oi+,, a’), where 

o;+,(si) = 

1 

m’), s’#r, t 

a’(t) + a’(r), si= * 

0, d= r. 

The interpretation of IV’; is the following. Having decided upon 0; ex ante, 
the interim utility of playing t instead of r (in the event that r should be 
played according to 0’) is the same as having originally decided upon 
playing t instead of r. Therefore if at the interim stage a player would have 
preferred not to follow the ex ante choice, then the ex ante choice could not 
have been optimal. This leads to the following proposition. 

PROPOSITION 1. Let Vj , W’i be determined from U’ as in Model 1 above. 
If (a’, c?) is a Nash equilibrium then 0’ is dynamically consistent given oJ. 

Proof: V’,(a’, 0’) z V;(ri, a’) for all rie C’ implies,, by definition, 
W;(crj, &, si, s’) B Wf(c’, ci, s’, t’) for all si such that oi(si) > 0. Q.E.D. 

Despite this result, it is worth emphasizing that this approach conflicts 
with the idea of backwards induction (see also Machina [23]). Consider 
the extensive-form game in Fig. 8, where player l’s payoffs are in utiles and 
she has EU preferences, and player 2’s preferences over mixtures over the 
lotteries X, Y, Z are described in the simplex of Fig. 9. This is essentially 
a game of perfect information. Nevertheless there are three trembling 
hand perfect equilibria (Selten [29]): (R, r); (L, I); and [(L, cr; R, 1 - a), 
(1, l/2; r, l/2)]. Moreover, since Machina’s approach requires that 
preferences over future choices are determined from the ex ante preferences 
it seems natural to say that these are subgame perfect. (Alternatively stated, 
Machina’s approach and definition of interim preferences does not permit 
“snipping the decision tree,” while the intuition and definition of subgame 

s It is important to emphasize that V’ represents the players’ preferences over mixed 
strategies, and W’ represents preferences over Final choices (which are assumed to be elements 
of 9). One could imagine adding intermediate stages where the player would re-evaluate 
choices. However, it seems that there is only one point in time at which such a re-evaluation 
is meaningful-when the choice must be made. 
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FIGURE 8 

perfection is based on considering subgames separately. Therefore, the idea 
of subgame perfection conflicts with Machina’s approach.)’ In a recent 
paper Faruk GUI [ 121 made similar points using a related example. His 
paper focusses on various difficulties inherent in non-EU theories, with an 
emphasis on dynamic contexts. This example also helps relate this paper to 
Geanakoplos, Pearce, and Stacchetti [lo] who have shown that non-linear 
preferences can yield multiple subgame perfect equilibria (although in their 
paper trembling hand perfect equilibria may fail to exist). 

ModeI 2 (Karni and Safra [17]). I$(ai, a’) = U’(H’(a’, &)); 
Wi(crj, c’, s’, t’) = Vi(ti, &). In this model the preferences at both stages are 
given by u’. 

F~OPOSITION 2. Let Vi, Wi be determined as above. If (a’, a’) is a Nash 
equilibrium and if Cr’ is quasi-convex, then oi is dynamically consistent 
given &. 

Proof: If u’ is quasi-convex and Y;(ai, 0’)~ v~(z’, rrj) for all ~~ in L” 
then for every si such that a’(~‘) > 0, IQs’, a’) 3 V~(s’, aj) for each 9 E ,Zi. 

9 A slight modification of this example shows that trembling hand perfection may be more 
selective: change player 2’s preferences in the neighborhood of Z so that indifference curves 
are upward sloping. Then (L, i) is no longer trembling hand perfect. 

642/55/2-2 
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Y X 

FIGURE 9 

Hence, for every si such that ~~(3’) > 0, Wi(aj, c?, si, si) > #$(a’, G’, si, t’) 
for every t’ E S’. Q.E.D. 

In general, however, a Nash equilibrium may fail to be dynamically con- 
sistent. To see this consider an equilibrium (a’, a*) with strictly quasi-con- 
cave preferences where V’,(s’, a’) is not equal for all 3’ in the support of 6’. 
Clearly in such a case the equilibrium is not dynamically consistent. To 
address a related problem Karni and Safra [ 171 proposed that players will 
restrict attention to dynamically consistent strategies. That means that 
players, when deciding which strategy c? to choose ex ante in response to 
a mixed strategy aj of their opponent, will only consider strategies which 
are dynamically consistent given a j. Let DC’(a’) be the set of strategies of 
i that are dynamically consistent given aj. Then Dc’(aj) and BR’(aj) are 

Dci( a’) = {a’: a’(s’) > 0 * T/:(.4, ai) 2 Vi(t’, a’) for all t’ in S’}. 

BR’(a’) = (aiE DC’(a’): I’:( a’, a’) > Vi(r’, a’) for all riG oC(aj)). 

If u’ (and hence Vi) is quasi-concave the best reply correspondence is 
clearly convex valued. However, upper-hemi-continuity of BR’ may fail in 
the absence of quasi-convexity. Therefore, even if the strategies are restricted 
to be dynamically consistent, one is led to assuming quasi-convexity and 
quasi-concavity (i.e., betweenness, see Chew [3], Dekel [5]) in order to 
guarantee existence of a dynamically consistent Nash equilibrium. 

Model 3 (Segal [ 283). The approach using CI is the same as discussed in 
the previous section. We restrict attention to the first perceptual hypothesis. 
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In this case W:(o’ ci, t’, si)= U’(H’(s’, crj)). To define Vi let h’(a’, a’) be 
the lottery that assigns probability oi(,si) to CE’(H’(s’, a’)) E R and set 
V&7’, d) = U’(h(d, cd)). 

PROPOSITION 3. Let Vi, W; be determined as above. If (c', a') is a Nash 
equilibrium then CT’ is dynamically consistent given 6’. 

ProoJ Follows from the proof of Theorem 1. 

We have presented three models in which a Nash equilibrium in dynami- 
cally consistent strategies can be obtained. In the model based on Machina 
[23] the first period preferences are given by U, and second period 
preferences are induced from the first period preferences in a way that 
guarantees dynamic consistency. The model based on Segal [28] does the 
opposite: second period preferences are given by U and the first period 
preferences are induced from the second period preferences in a way that 
guarantees dynamic consistency (i.e., using compound independence). In 
the model based on Karni and Safra [17] both the first and the second 
period preferences were given by U. In this case restrictions (either on 
preferences or on the strategy space) are necessary to guarantee dynamic 
consistency. 
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