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Abstract

We survey theoretical work on the use of evidence, including work in game theory
and in mechanism design.



1 Introduction

Standard models of strategic communication are primarily based on the key insight of
Spence (1974) and Crawford–Sobel (1982). The idea of these models is to use variation
in preferences across types to induce different choices by different types. In Spence, the
agent’s costs of actions depend on her type and so seeing these actions reveals information
about her type. In Crawford and Sobel, the actions she wants the receiver to take depend
on her type and so seeing her message (implicitly, her request for an action) reveals
something about her preferences and hence her private information.

Similiarly, traditional work in mechanism design (e.g., Myerson (1981) and Maskin–
Riley (1984)) introduces monetary transfers and differences across types in willingness
to pay. Again, differences in preferences that are correlated with private information are
exploited to obtain an outcome that depends on the private information.

By contrast, the focus of this survey is on the role of evidence — hard information
that establishes facts regardless of the incentives of the presenter of the information.

Evidence plays an important role in many contexts. A lawyer presents evidence in
court to try to persuade a judge to rule in her favor. Sellers may provide evidence to
buyers about their product to persuade them to purchase. An entrepreneur can show
evidence about her company to influence potential investors. A department head in an
organization presents evidence regarding the abilities of his department to try to persuade
the management to give them more resources. A potential employee may be asked for
evidence of her ability by a potential employer. In many of these cases, what the presenter
of evidence wants is independent of the facts they are giving evidence about. For example,
the lawyer wants a ruling in favor of her client, in any situation. The seller wants the
buyer to purchase, the entrepreneur wants funding, and the potential employee wants to
be hired, regardless the value of this to the other party. In such settings, information
cannot credibly be communicated without the use of evidence.

While the incentives of the informed party to reveal evidence will also be impor-
tant to the equilibrium belief in response to the evidence, without evidence, incentive
considerations alone would not allow information transmission in many of these settings.

Section 2 presents the basic model of evidence. We discuss applications in game theory
in Section 3, beginning with the classical single–agent model and unraveling in Section
3.1 before turning to models without unraveling in Sections 3.2, 3.3, and 3.4. Section 3.5
discusses games with multiple agents. We turn to mechanism design in Section 4. We
focus primarily on one–agent mechanisms, discussing the Revelation Principle in Section
4.1, some applications in Section 4.2, and the value of commitment in Section 4.3. Section
4.4 discusses some mechanism design problems with multiple agents. In Section 5, we
turn to related models, discussing verification in Section 5.1 and evidence acquisition in
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Section 5.2. Section 6 briefly concludes.

Because of space constraints, there are many outstanding papers we only briefly
mention or even omit entirely. The discussion of many of our own papers is not because
we believe these are the best papers in the literature but because these are the papers
we know the best.

2 Modeling Evidence

Throughout, we use t (or, in the multi–agent case, ti) to denote the type of the (an)
agent and T (respectively Ti) the set of possible types. As usual, we assume the agent
knows her type but this is private information. We assume a common prior µ over T .
Types vary in aspects similar to those in the usual literature — e.g., different types may
have different productivities or different tastes — but also differ in the evidence they can
present.

There are two equivalent ways to model evidence which we use interchangably. In
the first, we specify a function M : T → L where L is the set of all possible evidence
messages. Here M(t) is the set of evidence messages type t is able to send.

In this formulation, sending message m is proof that the agent is able to send message
m. That is, it proves that the agent’s type is in the set of t with m ∈ M(t), i.e., proves
t ∈ M−1(m). If I show you a deed to a house with my name on it, that unambiguously
proves that either I have owned a house or that I have acquired a forged document. There
is no other way I could show you this document, so I prove that my type is in this set.

For example, suppose the agent’s private information is whether she can play the
piano. So T = {n, p} where p is the piano–playing type and n can’t play. Let L = {c, r}
where c means playing a classical sonata and r means random banging on the keyboard.
Then M(p) = {c, r}, while M(n) = {r}. That is, the type who can play the piano can
play the sonata or simply bang on the keyboard, while the type who can’t play can only
do the latter.

Note that playing c proves that the agent’s type is p. On the other hand, playing
r proves nothing as either type could do this. As this illustrates, provability can be
asymmetric in the sense that it might be possible to prove event E when it is true, but
not possible to prove Ec when E is false.

Alternatively, we could focus on the set of events a type can prove. That is, we can
let E(t) be the set of E ⊆ T that type t can prove. Given a function M, we can define
this by

E(t) ≡ {E ⊆ T | E =M−1(m), for some m ∈M(t}. (1)
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The second model takes as the primitive a function E . It is not difficult to show that
there exists M generating E in the sense of equation (1) if and only if E satisfies the
following two properties. First, evidence must be true. That is, E ∈ E(t) implies t ∈ E.
Second, E is consistent in the sense that any type not ruled out by evidence E must be
a type who has evidence E available. That is, if E ∈ ∪t∈TE(t) (so E is something some
type can prove) and s ∈ E, then E ∈ E(s).

Returning to the piano player example, it is not hard to see that we could equally
well describe that example by saying that type n can only prove T , while type p can
prove either {p} or T . So E(n) = {T} and E(p) = {{p}, T}.

With either approach, we assume the agent can only present one piece of evidence
— that is, present one message or prove one event. At least for some purposes, this is
without loss of generality. If the agent could present, say, K messages, we could redefine
what “a message” is and replace messages with K–tuples of messages.

Much of the literature adds an assumption which makes the restriction to one piece of
evidence irrelevant. Intuitively, this assumption implies that there are no costs of or time
constraints on evidence presentation in the sense that it is as if the agent could present
an unlimited number of messages. This condition was first given in Lipman–Seppi (1995)
who referred to it as the full reports condition. It says that for every t ∈ T ,

E∗t ≡
⋂

E∈E(t)

E ∈ E(t).

E∗t , as defined above, is what the agent would prove if she were able to prove every
E ∈ E(t). So the statement of the assumption is that this is itself an event the agent
of type t can prove. We refer to the event E∗t as maximal evidence. Bull and Watson
(2007) gave an equivalent definition using the messages model which they referred to as
normality, the name most commonly used in the literature. Their formulation is that for
every t, there exists m∗t ∈ M(t) such that m∗t ∈ M(t′) iff M(t) ⊆ M(t′). This condition
implies that presenting m∗t proves the event {t′ |M(t) ⊆M(t′)}, exactly what presenting
every message in M(t) would prove.

Returning to the piano player example, it is easy to see that this satisfies normality.
In the event version, we have E∗p = {p} ∈ E(p) and E∗n = T ∈ E(n).

For an analogous example that violates normality, suppose there are two kinds of
music and four types of agent. Type n cannot play the piano, type c can play classical
music, type b can play blues music, and type a can play anything. If there’s only time
to play one piece of music, then (focusing on the event version of the model)

E(n) = {T}

E(c) = {{c, a}, T}
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E(b) = {{b, a}, T}

E(a) = {{c, a}, {b, a}, T}.

For each of the first three sets, E∗t ∈ E(t). However, E∗a = {a} /∈ E(a), so normality is
violated.

3 Games

In this section, we discuss game–theoretic models with evidence. Unless stated other-
wise, “equilibrium” refers to perfect Bayesian equilibrium. We use the terms “sender”
and “agent” interchangably to refer to the privately informed player who communicates
information and “receiver” or “principal” to refer to the player who receives the commu-
nication.

3.1 Classical Single–Agent Model

In the classic model, there is a single sender who first learns her type t ∈ T , then sends
an evidence message to the receiver. The receiver then chooses some action a ∈ A which
affects both of their utilities. We let u(a, t) denote the utility of the sender and v(a, t)
the utility of the receiver.

The seminal papers on evidence are Grossman (1981) and Milgrom (1981). To present
the key ideas most simply, we focus on a square–error loss utility function for the receiver.
More specifically, we assume T is a finite subset of R+, A = R+, u(a, t) = a, and
v(a, t) = −(a − t)2. In other words, the receiver is trying to estimate the sender’s type
and so the receiver’s optimal response is his conditional expectation or estimate of the
type. The sender wants the receiver’s estimate to be as large as possible.

For example, we could think of the receiver as an employer and the sender as an
employee. As in Spence, the receiver’s action is a wage and the receiver wants to set this
equal to the sender/employee’s productivity t. As another example which we will use
later, the receiver could be “the market” wanting to price a firm’s stock at its true value
t. In this formulation, the sender is the manager of the firm and a is the stock price.

Grossman and Milgrom assume complete provability — that is, the sender has access
to evidence that can prove any true fact. More formally, E(t) = {E ⊆ T | t ∈ E}.

The result shown by Grossman and Milgrom is remarkable at first sight: In every
equilibrium, the receiver’s action equals the sender’s type for every t. That is, the
receiver always learns the sender’s type.
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While we show this result for a finite type space and pure strategy equilibria, it is
easy to generalize. We write T as {t1, . . . , tN} where t1 < t2 < . . . < tN . Fix any
equilibrium, say (m∗(·), a∗(·), µ∗(·)) where m∗ : T → L is the sender’s strategy and must
satisfy m∗(t) ∈ M(t), a∗ : L → A is the receiver’s response, and µ∗ : L → ∆(T ) is
the receiver’s belief. Note that the receiver’s belief must respect the evidence presented
in the sense that µ∗(M−1(m)) = 1 for all m ∈ L. Sequential rationality implies that
a∗(m) =

∑
t µ
∗(m)t — that is, it is the conditional expectation of t given the receiver’s

equilibrium belief.

Suppose that a∗(m∗(tN)) 6= tN . That is, the receiver’s response to the message sent
by type tN in the equilibrium is not tN . Sequential rationality implies it must be weakly
below tN , so a∗(m∗(tN)) < tN .

But then type tN could strictly improve by proving her type is tN . The belief in
response to such a message must be degenerate on tN so sequential rationality implies
the response by the receiver must be a = tN . Since tN strictly gains from the deviation,
we have a contradiction, implying a∗(m∗(tN)) = tN .

This implies that m∗(tN) must prove tN . Otherwise, some other type could also send
this message and get a response strictly above what she would get in equilibrium, a
contradiction.

Hence the receiver’s belief in response to m∗(tN−1) must put zero probability on tN
and so his action in response must be weakly less than tN−1. So suppose a∗(m∗(tN−1)) <
tN−1. Then, again, tN−1 would strictly gain by proving her type, a contradiction. Hence
m∗(tN−1) must prove t ≥ tN−1.

Clearly, the reasoning works down to t1. Hence there is no equilibrium in which
the response to some type’s equilibrium message differs from her type. This argument
is often referred to as unraveling since the top type must reveal, implying the second
highest must, implying . . .

This argument shows that there is no equilibrium in which a∗(m∗(t)) 6= t for some t.
That there is an equilibrium where a∗(m∗(t)) = t for all t is easily shown using Milgrom’s
notion of skeptical beliefs. In fact, every equilibrium has skeptical beliefs.1

Formally, given any message m ∈ L, define the skeptical belief for the receiver, say
µ∗S(m), to put probability 1 on the smallest t such that m ∈M(t) and define a∗S to equal
this smallest t, as required by sequential rationality given this belief.

It is easy to see that the sender’s best response to this strategy for the receiver is
to rule out any type below her true type. It is impossible for her to provide evidence
ruling out her true type. Ruling out types above her own is feasible but does not affect

1See Rappoport (2024) for a broader study of skeptical beliefs in equilibria of games with evidence.
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her payoff. So the best she can do is to rule out all types below her true type. Given
this strategy by the sender, the receiver’s belief is correct in equilibrium. Thus we get
an equilibrium where a∗(m∗(t)) = t for all t. Furthermore, if the receiver had a different
belief in response to some message, the worst type who could send that message, say
t, would get a response a > t, contradicting our observation that a∗(m∗(t)) = t in any
equilibrium.

One gets the same result with various forms of less than complete provability. The
simplest is what is referred to as a disclosure game. Here each type can either prove her
type (“disclose”) or prove nothing. That is, E(t) = {{t}, T} for all t. In this case, it’s
clear that the highest type will prefer disclosing her type to pooling with lower types.
Hence the second–highest type cannot pool with the highest type and so will definitely
want to disclose as well, etc.2

With complete provability, both the existence and uniqueness of this equilibrium out-
come are easily generalized to a wide range of other preference structures. (See Seidmann
and Winter (1997).) However, the existence of such an equilibrium outcome is much more
general than its uniqueness. To see the point, consider the following payoff structure.

Suppose the receiver has two actions, A = {0, 1} where 1 is “accepting” the receiver
and 0 is “rejecting.” The sender has a finite set of types, say, {t1, . . . , tN} where t1 <
t2 < . . . < tN . The sender’s payoff is again equal to a. The receiver’s payoff is

v(a, t) = a(t− t̄)

for some t̄ ∈ (t1, tN). In other words, the receiver (strictly) prefers to accept the sender
(set a = 1) if the sender’s type is (strictly) above t̄ and prefers to reject otherwise.

Again, there are many natural economic examples fitting this setup. Suppose that
the receiver is an employer who cannot set the wage t̄ he must pay, only decide whether
or not to hire the sender. The sender always wishes to be hired, while the receiver wants
to hire only if the sender’s productivity t is above the wage.

Using skeptical beliefs, we again get an equilibrium where the receiver effectively
learns the sender’s type and chooses her action accordingly. If the receiver always believes
the worst thing consistent with whatever the sender proves, the sender will prove her type
is above t̄ if she can.

However, there can be other equilibria. For example, suppose that E(t) > t̄. Then it
is an equilibrium for the sender to never prove anything and for the receiver to always
accept.

Why do we not get unraveling? The highest type of the sender could deviate and prove

2More generally, one can show that this is the unique equilibrium outcome iff every type t can prove
an event for which t is the smallest type.
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something strictly better about herself. But this strictly better belief doesn’t translate
into a strictly better response by the receiver, so the highest type has no incentive to do
so.

See Titova (2023), Zhang (2024), and Ali, Kleiner, and Zhang (2024) for more general
characterizations of the set of equilibrium payoffs for the sender in these games, including
when the sender can do as well as in the Kamenica–Gentzkow (2011) Bayesian persua-
sion model. See also Callander, Lambert, and Matouschek (2021) and Ali, Lewis, and
Vasserman (2023) for economic applications.

3.2 Games with Incomplete Provability: Dye Evidence

Complete provability is a natural starting point, but does not seem realistic. In this
section, we discuss plausible relaxations of complete provability which given interesting
models which are useful in economic applications.

The most widely used such relaxation is often referred to as Dye evidence in honor
of the first author to use the idea, Dye (1985).3

The Dye evidence model is a variation on the disclosure game discussed in Section
3.1. In the Dye model, some types can disclose but some types cannot. In this model,
types are fundamentally (at least) two–dimensional because the type determines what
the receiver wants to know but also determines whether the sender can disclose. For this
reason, we generalize the model to assume the agent’s type t determines a certain value,
v(t), which the receiver cares about and also determines the sender’s evidence.

Specifically, Dye assumes that every type t either has no evidence or can prove her
type. That is, for every t, either E(t) = {T} or E(t) = {{t}, T}. Dye wrote this differently,
saying that a given type t can disclose with some fixed probability q and not otherwise.
In our formulation, this says that there are two types, t′ and t′′, with v(t′) = v(t′′) = v,
where E(t′) = {T} and E(t′′) = {{t′′}, T} and that conditional on v(t) = v, the probability
that t = t′′ is q. While the distinction between these formulations is not important for
some purposes, it is useful for mechanism design to treat types as determining everything
rather than have a second layer of randomness.

To illustrate this model, we return to the square–error loss formulation and augment
it as follows. As before, A = R and u(a, t) = a. Now, though, we take the receiver’s
utility function to be v(a, t) = −(a− v(t))2. So the receiver wants to set his action equal
to v(t), not t. For example, this is the natural formulation if we think of v(t) as the value
of a firm under a manager of type t and the receiver as “the market” setting the stock
price a equal to the expected value of the firm.

3See also Jung and Kwon (1988) who corrected Dye’s analysis.
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Note that there must be a positive probability that the sender does not prove anything
(other than the trivial event T ) along the equilibrium path because there are types who
have no other option. Let v∗ denote the receiver’s expectation of v when the sender
presents no evidnece in equilibrium.

Given v∗, the sender’s optimal strategy is immediate. If E(t) = {T}, the sender
cannot prove her type. Otherwise, if v(t) < v∗, proving her type would lead to a lower
action than remaining silent, so the sender will provide no evidence. If v(t) > v∗, the
sender will prove her type. Hence in equilibrium, we must have

v∗ = E [v(t) | t has no evidence or v(t) ≤ v∗] . (2)

A remarkable fact about this model is that v∗ exists and is unique, even without simpli-
fying assumptions regarding the v(·) functions or the distribution of t.4

Note that v∗ is independent of the behavior of indifferent types. If t is indifferent
because v(t) = v∗, then the conditional expectation or “average” is the same whether we
include this type or not as this value equals the average.

In short, we define v∗ uniquely by equation (2) and (up to irrelevant indifference) this
completely determines the sender’s strategy and the receiver’s.

This model is very widely used in applications in economics, finance, and accounting.
We discuss some examples in the next section.

3.3 Applications of Dye Evidence

Shin (2003) uses the Dye evidence model to understand stock price responses to disclo-
sure of information by the firm. The firm has N projects, each of which succeeds with
probability r ∈ (0, 1) and fails otherwise. If s projects succeed and N − s fail, the value
of the firm at date D + 1 is hs`N−s where 0 < ` < h.

The sender in this model is the firm’s manager. At each date d = 1, . . . , D, for any
given project, the manager has a probability q of receiving evidence which proves whether
that project succeeds or fails. If the manager receives evidence, she can choose whether
or not to disclose it. These evidence events are iid over time and independent of the
success or failure of any projects.

The receiver is “the market” which observes the manager’s disclosures (or lack thereof)
and sets the price of the firm’s stock at each date d equal to the expected value of the
firm given observations up to that date. In other words, the market is a receiver with
square–error loss utility.

4See, e.g., Lemma 2 of Guttman, Kremer,and Skrzypacz (2014).
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The manager’s utility is a function of the sequence of stock prices where her utility
is strictly increasing in the stock price at any given date. For intutiion, think of the
manager as maximizing the sum (or discounted sum) of the sequence of stock prices.

Clearly, one equilibrium of this game has the manager disclosing any success as soon
as possible and never disclosing any failure. If this is the manager’s strategy, then dis-
closing a success increases the market’s expectation of the value of the firm at that
and all subsequent dates, all else equal. Disclosing a failure would reduce the market’s
expectation. Hence it is optimal for the manager to follow this strategy.

The simplicity of this equilibrium makes it ideal for exploring the model’s empirical
implications. Shin contrasts the behavior of stock prices over time in this model of
strategic disclosure versus a world of exogenous disclosure, where all evidence must be
disclosed.

First, consider the effects of nondisclosure. With exogenous disclosure, the fact that
nothing is shown means nothing was observed and hence has no effect on the stock price.
With strategic disclosure, nondisclosure could mean nothing was observed but could also
be because of bad news. Hence nondisclosure is bad news and reduces the stock price.

Second, consider how the effect of disclosure varies with time. With exogenous dis-
closure, information is disclosed as it arrives. Since the timing of the arrival of the
information conveys no information regarding fundamentals, the price impact of disclo-
sure is independent of time. With strategic disclosure, many periods of nondisclosure
will lead the market to believe that it is likely the manager has learned that the project
has failed. Consequently, a late disclosure of success increases the expected value of the
firm by more than an early disclosure.

Finally, consider the uncertainty about (i.e., the variance of) the future stock price
as a function of the current price. With exogenous disclosure, this uncertainty is not
monotonic in the current price. Uncertainty will be a function of the number of projects
for which the manager has disclosed the outcome, not what is disclosed. If a large
number of projects have the outcome disclosed, there will be little uncertainty, whether
these were all successes, giving a high current stock price, or all failures, giving a low
current price. By contrast, uncertainty is monotonic in the current stock price under
strategic disclosure. The only disclosures are successes, so more disclosure means both
less uncertainty about future prices and a higher current stock price.

See Shin for more details on these comparisons, including a discussion of empirical
evidence suggesting the data is more consistent with strategic disclosure than exogenous
disclosure.

In Shin’s model, the set of projects undertaken is exogenous. Ben-Porath, Dekel, and
Lipman (2018) — henceforth BDL18 — explores the implications of disclosure on project
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selection and shows that the manager has incentives to choose inefficiently.

In BDL18, at period 0, the manager makes an unobserved choice of a project — a
probability distribution over firm values — from a fixed set of options. In period 1, with
probability q ∈ (0, 1), the manager receives evidence proving the outcome of the project
chosen. If so, she can disclose this to the market. The period 1 stock price is the market’s
expectation of the value of the firm given manager’s disclosure or lack thereof. In period
2, the outcome of the project is observed by the market and we have a second stock price,
equal to the true realization.

So, as in Shin, the market is the receiver and maximizes square–error loss. The
manager is the sender and her utility is assumed to be a convex combination of the first
and second period stock prices where α is the weight on the second or “long–run” stock
price.

BDL18 show that strategic disclosure can lead to significant efficiency loss. Intuitively,
the manager discloses good information and suppresses bad. Hence the manager has an
incentive to take actions ex ante to influence this information revelation stage. These
incentives are inefficient: the manager has an incentive to improve appearances even if
this doesn’t help (or even harms) reality.

Consider the following example. Suppose α = 0 so the manager only cares about
the first period stock price. Suppose there are two possible projects, F1 and F2. F1 is a
degenerate distribution giving a firm value of x = 4 with certainty. F2 gives x = 6 with
probability 1/2 and 0 otherwise. Obviously, F1 gives a higher expected value and so is
more efficient in this sense.

Is it an equilibrium for the manager to choose project F1? If so, then in this equi-
librium, in the strictly positive probability event that the manager discloses nothing at
period 1, the market, knowing the manager’s strategy is F1, puts probability 1 on x = 4.
Hence the first–period stock price is 4 if nothing is disclosed. Of course, it is also 4 if
the manager discloses x = 4. Hence the manager’s expected payoff in this hypothetical
equilibrium is 4.

Suppose that the manager deviates to F2. If the manager can’t disclose anything or if
the realization is 0 and the manager doesn’t disclose this, the first–period stock price will
be 4. If the realization is 6, the manager can disclose this and make the stock price equal
to 6. Hence, the manager’s expected payoff is a convex combination of 4 and 6 which is
strictly larger than 4. So this is not an equilibrium as the manager would deviate.

The key observation is that the market cannot be fooled in equilibrium. Out of
equilibrium, market can be fooled and this might be better for the manager, as in the
example. This eliminates some equilibria, potentially (as in the example) making the
manager and stockholders worse off.
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To see the intuition, suppose we have an equilibrium where the manager chooses
project F . The market must expect the distribution of profits to be F and so if the
manager does not disclose, the market’s belief will be given by the Dye value associated
with F , say x̂F . Given this, the manager’s expected payoff as a function of the realized
value of the firm x is

αx+ (1− α)[(1− q)x̂F + qmax{x̂F , x}].

Note that max is a convex function, so the manager is, in effect, risk–loving. Thus the
manager prefers riskier projects, even if this requires accepting a lower mean. Similarly,
note that this is strictly increasing in q. Thus the manager also prefers projects where
she is more likely to have the option to disclose information, again, even if this requires
accepting a lower mean.

BDL18 characterize worst–case outcomes. For example, they show that in any equi-
librium with any set of possible projects, the equilibrium value of the firm can never be
below 50% of the maximum possible expected value but can be arbitrarily close to 50%.

Aghamolla and An (2025) and Guttman, Kremer, Skrzypacz, and Wiedman (2025)
develop further models along these lines.

DeMarzo, Kremer, and Skrzypacz (2019) study a formally similar model focused on
test selection rather than production. An agent selects a test with the goal of convincing
a receiver that her value is high. The main result is that the agent will select a test for
which the belief in response to nondisclosure is minimal. They examine the implications
for the quality of public information.

There are many other interesting game–theoretic applications of Dye evidence in the
literature. For example, Acharya, DeMarzo, and Kremer (2011) use a dynamic Dye model
to show that public events can trigger clustering of negative disclosure announcements
by firms in response to bad market news. Guttman, Kremer, and Skrzypacz (2014) show
the surprising result that otherwise equivalent disclosures have a more positive effect on
market prices when they come later.

3.4 Costs of/Constraints on Evidence Presentation

A different class of models involve costs of or constraints on evidence presentation. One of
the standard models in this literature, due to Verrecchia (1983), assumes that presenting
evidence is costly to the sender. Describing Verrecchia in the language of this paper, he
assumes the sender can exactly prove her type but this is costly. This implies that only
types who gain enough from disclosure will provide evidence, again preventing unraveling.
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While this model seems to have fewer applications than Dye in economics and finance,5 it
is very widely applied in accounting. We are less familiar with that literature and hence
do not attempt to survey it. We note that Verrecchia’s model seems especially influential
in the empirical literature in accounting which explores the correlation of disclosure with
other parameters to see if the empirical regularities conform to a full disclosure model
or are more in line with the kind of partial disclosure induced by disclosure costs. For
surveys in accounting on financial reporting that also discuss disclosure costs, see Beyer,
Cohen, Lys, and Walther (2010) or Leuz and Wysocki (2016).

A related approach models such costs only indirectly, assuming that there is a limita-
tion on how much evidence the sender can present. In other words, this approach focuses
on evidence structures which are not normal.

Building on an example in Milgrom (1981), Fishman and Hagerty (1990) give a model
of such constraints and illustrate the implications for communication. They consider a
seller of a good with N attributes, each either h (high) or ` (low). The value of the good
to a buyer is the number of attributes that are h. The seller has time to prove the value
of any one attribute. Clearly, this evidence structure violates normality.

While there is an obvious equilibrium where the seller shows any one h chosen at
random if she has one, there is a subtler and more informative equilibrium. Suppose the
seller shows the first attribute that is h (if there is one). In this case, if the seller shows h
for the kth attribute, the buyer infers that the first k − 1 attributes are all `. Hence the
buyer’s inference is worse for the seller the larger is k, so the seller will optimally show
the lowest attribute with an h.

In Section 4.2, we discuss similarly motivated work in the area of mechanism design.

3.5 Multi–Agent Games

Additional issues arise in the multi–agent case. Suppose we have N agents, all of whom
know the state of the world θ. Suppose they have potentially different abilities to provide
evidence about θ and potentially different incentives to reveal information about it to
the receiver.

It is intuitive that senders competing to persuade a receiver may reveal more infor-
mation than any one of them would reveal without competition. This idea was first
explored in the context of evidence by Milgrom and Roberts (1986) who showed that
with complete provability but limited rationality by the receiver, the receiver can learn
the state with conflicting interests among the senders.

5At least some applications of Dye evidence, such as the Shin model discussed in Section 3.3, seem
unlikely to change much if redone using Verrecchia’s approach.
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Lipman and Seppi (1995) show separation with conflicting interests among the senders
with much weaker evidence structures. Consider the following example, based on an
example in their paper. The state of the world, d, is the level of damages lawyer 2’s
client has done to lawyer 1’s client. Lawyer 1 wants the judge to conclude d is large,
while lawyer 2 wants the judge to conclude it is small.

Only lawyer 2 has evidence. The structure of evidence is very restrictive. For every
damage level d′ not equal to the true level, there is a piece of evidence available which
proves that damages are not equal to d′ but proves nothing else. Lawyer 2 can only show
one of these pieces of evidence. Clearly, this violates normality.

Consider the following three–stage game. First, lawyer 1 makes a claim d1 about the
true d. Next, lawyer 2 observes d1, provides one piece of evidence, and makes her own
claim d2 about d. Finally, the judge rules on the value of d.

Suppose the judge believes lawyer 1’s claim if lawyer 2 does not prove it to be false
and believes lawyer 2’s claim otherwise. In this case, it is clear that lawyer 1 will report
truthfully. Lawyer 2 cannot refute the truth, so this will be the judge’s inference. If she
lied instead, lawyer 2 would always refute the lie if there is some other belief that would
be better for lawyer 2 and hence worse for lawyer 1.

Note that the judge learns the true level of damages, even if he doesn’t know the
preferences of the lawyers or even the range of possible d’s.

Hagenbach, Koessler, and Perez–Richet (2014) give a characterization of equilibria
with separation with multiple agents and partial provability. Roughly speaking, the key
condition on the evidence structure is that one can use Milgrom’s skeptical beliefs to
support a fully revealing equilibrium.

Onuchic and Ramos (2025) consider a very different multi–agent model, where agents
are a team who jointly control disclosure decisions. For example, suppose there are
two agents with independent types, t1 and t2. Suppose that the true t = (t1, t2) can be
disclosed or not. That is, the events that can be proved are E(t1, t2) = {{(t1, t2)}, T1×T2}.
Assume preferences are as in the square–error loss model, so the receiver chooses two
actions, a1 and a2, his payoff is −

∑
i(ai − ti)

2, and agent i’s utility is ai. Suppose
disclosure occurs only if both agents agree — either can block disclosure unilaterally and
assume that the receiver sees only what, if anything, is disclosed.

One equilibrium of this game is a version of the Dye model where the availability of
evidence is endogenous. If we let t∗i be the receiver’s expectation of ti given that nothing
is disclosed, it seems natural that we get disclosure iff ti > t∗i for both i. Hence we have
an equilibrium with

t∗i = E [ti | t1 ≤ t∗1 or t2 ≤ t∗2] , i = 1, 2.

Here i’s ability to disclose is determined by j’s incentive to do so.
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4 Mechanism Design

We primarily focus on mechanism design with one agent, discussing applications with
multiple agents in Section 4.4.

4.1 Revelation Principle

To consider optimal mechanisms with evidence, we first develop a useful form of the
Revelation Principle identifying a relatively simple class of mechanism structures we can
reduce attention to. Throughout, we maintain the usual assumption that the agent can
only present one evidence message.

As above, T denotes the set of types of the agent and A the set of outcomes or
actions for the principal. We let u : A× T → R denote the agent’s utility function and
v : A× T →M the principal’s.

An outcome of a mechanism is a function f : T → ∆(A). As usual, f is implementable
if there exists a mechanism and an equilibrium of that mechanism whose outcome is f .

The most general result we discuss is the following. If f is implementable, then it is
implementable in a multi–stage mechanism with the following structure. First, the agent
makes a cheap talk report of her type. Next, the principal requests an evidence message,
possibly at random, as a function of this report. Third, the agent sends an evidence
message. Finally, the mechanism specifies an outcome, possibly random, as a function
of the history. The mechanism is chosen so that it is optimal for the agent to report her
type truthfully and send the requested evidence.

The argument for why this result is true is similar to a standard intuition for the
Revelation Principle. Given any other game and equilibrium, we ask the agent her type
and play her equilibrium strategy for her, asking her to present evidence when we hit the
points at which this is required. If the original strategies were an equilibrium, she would
have no incentive to deviate.

Note that if the mechanism makes a deterministic request for evidence as a function
of the agent’s reported type, then we could omit this step without changing anything.
Hence this step is only important if the request is random. Why is such randomness
needed?

As first observed by Glazer and Rubinstein (2004), when evidence is not normal, this
randomization can make all of the agent’s available evidence messages relevant.6 To see

6See Carroll and Egorov (2019) for a more general analysis of when such randomization can induce
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the idea, consider the following example. Suppose the agent has three types, t1, t2, and t3.
Suppose the evidence sets are M(t1) = {m1}, M(t2) = {m2}, and M(t3) = {m1,m2}.
Note that this evidence structure violates normality.

Consider the outcome f where we give t3 $1 and nothing to t1 or t2. Take the
mechanism to be as follows. If the agent reports that her type is t1 or t2, the mechanism
requests the only message the reported type has and gives the agent 0 regardless of the
evidence she provides. If the agent reports type t3, the mechanism requests m1 with
probability 1/2 and m2 otherwise. If the agent provides the requested evidence, she
receives $1. Otherwise, she is fined $10.

It is easy to see that this mechanism implements f as it induces the agent to report
truthfully. Only t3 will report t3 since only t3 has both messages and hence can be sure to
avoid the fine. By being willing to claim t3, the agent, in effect, does show both messages
as she signals clearly that she has both.

In many settings, large fines like the ones above, even off the equilibrium path, are
unnatural and such mechanisms are unintuitive. If we assume normality, we obtain an
alternative simplification in which this kind of mechanism is not useful.

With normal evidence, it is without loss of generality to focus on simple, truth–telling,
maximal evidence mechanism. By “simple,” we mean that the agent makes a report of
her type and sends evidence without any need for the principal to act between the report
and the sending of evidence. After this, the principal chooses an outcome. By “truth–
telling,” we mean that the mechanism induces the agent to report her type truthfully.
By “maximal evidence,” we mean that the mechanism also induces the agent to report
maximal evidence.

The reason the maximal evidence is used is that this ensures the agent proves as
much as she could ever prove, thus eliminating the largest possible number of incentive
constraints.

It is not hard to use this to show that f is implementable iff the following two
conditions hold. First, we have a restricted form of incentive compatibility:∑

a∈A

f(a | t)u(a, t) ≥
∑
a∈A

f(a | t′)u(a, t),

∀t, t′ with m∗t′ ∈M(t). (3)

In other words, if type t can send the maximal evidence of t′, then f must induce t
not to do so. Second, we must have a way of deterring “obvious deviations.” If the
agent reports type t but does not send the maximal evidence for t, we know the agent is
deviating from the mechanism and need to punish this. More specifically, we require that

truth–telling.
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for every provable event E which is not maximal evidence, there exists a “punishment”
that is worse for every type who can prove E than what that type is supposed to get
under f . That is, for every m ∈ ∪tM(t), there exists qm ∈ ∆(A) such that∑

a∈A

f(a | t)u(a, t) ≥
∑
a∈A

qm(a)u(a, t), ∀t with m ∈M(t).

See Green and Laffont (1986), Bull and Watson (2007), Deneckere and Severinov
(2008), and Forges and Koessler (2005), and Schweighofer-Kodritsch and Strausz (2024)
for various versions of the Revelation Principle for games with evidence. Ben-Porath,
Dekel, and Lipman (forthcoming) provide Revelation Principles for more general evidence
models.

4.2 Characterizations of Optimal Mechanisms

Glazer and Rubinstein (2004, 2006) study a binary action principal–agent problem with
a general evidence structure. An agent wants a principal to choose action a (accept)
regardless of her type while the principal wants to accept only some types and to reject
(action r) otherwise. The focus in both papers is on the structure of optimal mechanisms
with particular interest in situations like those discussed in Section 3.4 where costs of or
constraints on evidence presentation lead to a failure of normality. In the 2004 paper,
Glazer–Rubinstein examine the full protocol described at the beginning of this section.
That is, the agent sends a cheap talk message, the principal requests evidence, possibly
in a random way, the agent presents evidence, and finally the principal takes a (possibly
random) action.7 As mentioned in Section 4.1, this paper was the first to recognize
the imporance of a random request for evidence by the principal. In the 2006 paper,
they study a simpler protocol, which in some applications is more plausible, where the
agent presents evidence and then the principal selects (possibly randomly) an action.
Both papers give various interesting examples, obtain characterizations that are useful
for computing optimal mechanisms, give conditions under which an optimal mechanism
is deterministic, and show that there is no value for commitment. That is, there is an
equilibrium of the game where the agent and principal use the protocol but without prior
commitment by the principal which has the same outcome as the optimal mechanism.
We discuss this issue further in Section 4.3.

Sher and Vohra (2015) study optimal selling mechanisms when the agent (the buyer)
can present evidence about her value for the good. They assume normality of the evidence

7The 2004 paper is written as if the principal can “check” claims by the agent and hence seems more
a model of verification (see Section 5.1). As observed in their 2006 paper, the model can be interpreted
as an evidence model as we describe it here.

16



and develop graph–theoretic techniques to cleanly identify which incentive constraints
remain relevant and their impacts.

Koessler and Skreta (2019) study a problem with a different structure than most of
those discussed here. Their principal (a seller) also has private information and is the
party that provides evidence.

4.3 Value of Commitment

In most of the literature on mechanism design without evidence, commitment to the
mechanism is critical. For example, in the adverse selection principal–agent model in
Mas-Collel, Whinston, and Green (1995), the “low type” takes inefficiently low effort ro
reduce information rents to the “high type.” Without commitment to the mechanism,
the principal would want to renegotiate the contract, undermining the incentives.

As noted in Section 4.2, Glazer and Rubinstein (2004, 2006) show that commitment
is not valuable in their mechanism design models with evidence and Sher (2011) and
Hart, Kremer and Perry (2017) have generalized this result. As we show in this section,
these results are not due to some “magical” property of evidence, but rather that with
evidence, we are led to consider economic environments that are not of interest without
evidence. For example, settings where the agent’s utility is independent of her type are
typically not interesting without evidence.

Formally, when we discuss the value of commitment, we consider a particular game
between the agent and principal. Without commitment, we consider equilibria of this
game as above. With commitment, we mean that the principal can choose her strategy
in this game first and is committed to it. The principal chooses this strategy knowing
the agent will best–respond to it. When there is an equilibrium without commitment
giving the principal the same payoff as the maximum possible with commitment, we say
that commitment has no value.

To illustrate, consider the following example. Suppose T = {1, . . . , 1000} and that
the prior distribution over T satisfies µ(1000) = 2/1001 and µ(t) = 1/1001 for t 6= 1000.
The evidence structure is a simple version of Dye: Type t = 1000 cannot prove anything,
but any other type can disclose her type. That is, E(1000) = {T} and E(t) = {{t}, T} for
t 6= 1000. Suppose the set of actions is A = R+ and the sender/agent’s utility function
is u(a, t) = a.

Consider the simplest game where the agent proves some event (possibly “proving”
T ) and then the principal chooses an action. Under commitment, the principal commits
to an action as a function of what the agent proves. Without commitment, we have some
equilibrium of this game.
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We contrast the results under two different utility functions for the principal. First,
suppose

v(a, t) =

ß
1, if a = t
0, otherwise.

That is, the principal gets a payoff of 1 if he estimates the agent’s true type and 0
otherwise.

In this case, in every equilibrium without commitment, the principal’s response to
observing no evidence (i.e., proof of T ) is a = 1000. To see this, observe that type
t = 1000 cannot provide evidence. Hence the principal’s posterior belief on t = 1000
relative to any other t′ must be at least the prior likelihood ratio. Since the prior has
t = 1000 more likely than any other type, the posterior has this property too. So the
principal’s optimal action is a = 1000. Since this is the best action for the agent, no type
presents evidence and the principal’s expected payoff is µ(1000) = 2/1001.

With commitment, the principal can obtain a strictly higher expected payoff. Suppose
the principal commits to a = 0 if no evidence is presented and a = t if the agent proves
her type is t. In this case, every type t 6= 1000 will prove her type. So the principal will
choose correctly with probability 999/1001.

Next, suppose that the principal’s utility function is the square–error loss function
used above, v(a, t) = −(t− a)2. In this case, commitment has no value.

To see the intuition, consider the commitment mechanism above where the principal
commits to a = 0 if the agent does not prove her type and a = t if she proves she is type t.
With this utility function, the principal could improve his payoff by instead committing
to a = 1 if no evidence is provided. This gives the principal a strictly higher payoff when
t = 1000 and does not interfere with the incentives of other types to report truthfully.

The principal can improve further. This mechanism pools types 1 and 1000 with the
same action. With square–error loss, the best action when pooling these types is the
conditional expectation given t ∈ {1, 1000} and changes in this direction strictly increase
the principal’s payoff. Hence changing this common action to 2 strictly improves the
principal’s expected payoff conditional on t ∈ {1, 1000} without interfering with the
incentives of other types.

Similar reasoning implies that it would be better to pool types 1, 2, and 1000 at a
higher action, such as 3. But then it would be better to pool 1, 2, 3, and 1000 at 4, etc.
This continues until we reach a mechanism where types 1, . . . , n and 1000 are pooled at
the conditional expectation given this set of types and the expectation is between n and
n+ 1. But at this point, we have the Dye equilibrium: the conditional expectation is the
Dye cutoff previously defined. Hence commitment does not help the principal.

Ben-Porath, Dekel, and Lipman (2025) (henceforth BDL25) give a result which unifies
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the various results in the literature on when commitment has no value. The key hypoth-
esis of the result is on endogenous variables, making it difficult to interpret. However,
this condition is easily verified for all the earlier results in the literature, so it provides a
unified way of understanding what is critical for these results.

To formalize this result, continue to let T denote the set of types, A the set of
outcomes, u(a, t) the agent’s utility function, and v(a, t) the principal’s. Fix any protocol.
By this, we mean a specification of the structure of the mechanism — i.e., stages of cheap
talk, evidence presentation, etc., and ultimately the principal’s choice of a. It would be
natural to focus on the kind of mechanism the Revelation Principle says is without loss
of utility for the principal, but this is not necessary.

Let B denote the set of pure strategies for the agent in this protocol and ∆(B) the
set of mixed strategies with typical element β. For example, in the protocol for normal
evidence where the agent reports a type and sends an evidence message, B would denote
the set of functions b : T → T × L where we require b(t) ∈ T ×M(t).

Similarly, let G denote the set of pure strategies for the principal in this protocol
and ∆(G) the set of mixed strategies with typical element γ. In the protocol for normal
evidence, G is the set of functions from possible type reports and evidence messages to
A.

Given mixed strategy profile (β, γ), let U(β, γ) denote the expected utility for the
agent and V (β, γ) the expected utility for the principal, where these expectations are
taken with respect to the randomness in the mixing, any randomness in the mechanism
itself, and over the type of the agent.

Let BRu(γ) denote the set of best replies for the agent to γ. That is, the set of
β ∈ ∆(B) that maximize U(β, γ).

We take the payoff to the principal under commitment to be

V ∗ ≡ max
γ∈∆(G)

ï
max

β∈BRu(γ)
V (β, γ)

ò
.

Implicitly, we let the principal choose the best reply for the agent. BDL25 compare this
to the Nash equilibrium of the simultaneous move game with strategy sets B and G and
payoff functions U and V .

BDL25 makes two assumptions. First, for simplicity, the set of pure strategies for the
agent and for the principal are finite. This assumption can be replaced with appropriate
continuity conditions.

The more substantive assumption is the following. BDL25 assumes that there is some
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mixed strategy for the principal, γ∗, with the property that for every β ∈ BRu(γ
∗),

V (β, γ∗) = V ∗.

That is, there is an optimal commitment strategy for the principal with the property
that changes by the agent to alternative best replies do not affect the principal’s payoff.

BDL25 shows that under these assumptions, there is a Nash equilibrium in the game
giving the principal an expected payoff of V ∗. Hence commitment has no value.

Because this result is about Nash equilibrium, it is natural to wonder about issues of
sequential rationality. Without further assumptions on the protocol, we have no informa-
tion about the structure of unreached information sets and so cannot say anything about
sequential rationality. BDL25 show that one can extend the result to perfect Bayesian
equilibrium with appropriate additional structure on the protocol.

To see how this result unifies results in the literature, first, suppose there are two
possible outcomes and that no type is indifferent between these. In this case, the best
response for the agent to any γ∗ must give each t the highest possible probability of her
preferred outcome. Hence any other best reply has the same probability distribution
over outcomes for every type. Therefore, the principal’s payoff is unchanged if the agent
switches to a different best reply, so the BDL25 condition is satisfied. This includes all
accept/reject problems and hence generalizes Glazer–Rubinstein (2004, 2006).

Next, consider any setting where there is an optimal mechanism which is determin-
istic. Assume that for every t ∈ T , the agent’s utility is either strictly increasing or
strictly decreasing in a (where this can vary across t). Just as above, this implies any
best response for the agent gives each t the highest/lowest action she can generate. So
as we vary the agent’s best reply, the outcome for each type is the same, so the principal
is indifferent across the agent’s best replies. This includes the type–independent square–
error loss settings discussed in Section 3 and generalizes Sher (2011) and Hart, Kremer,
and Perry (2017).

4.4 Multi–Agent Mechanisms

There are a few papers considering mechanism design with evidence in settings with
many agents. For example, there are papers on full implementation with evidence. Since
the techniques of full implementation are quite different, we omit details here. See Kartik
and Tercieux (2012), Ben-Porath and Lipman (2012), and Banerjee and Chen (2025).

Ben-Porath, Dekel, and Lipman (2019), henceforth BDL19, give a set of results apply-
ing to a range of multi–agent mechanism design problems. One of the problems covered,
which we also discuss in other applications below, is the simple allocation problem. In
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this problem, the principal has one unit of a good to allocate to one of N agents. Each
agent receives a payoff of 1 if she receives the good and 0 otherwise. The payoff to the
principal of giving the good to agent i is vi(ti) where ti is agent i’s type. No monetary
transfers are possible. For example, the principal could be the dean of a College, the
agents departments in the College, and the good a job slot the dean can allocate. Alter-
natively, the principal is a regional government choosing a city in the region for a new
hospital, where the agents are the cities. In both cases, the agents want the good and
have private information which affects the principal’s payoff from the allocation. The
result also covers a public goods problems where the principal chooses whether or not to
provide a public good, charging each agent 1/N of the cost.

For brevity, we discuss only the simple allocation problem. There are N agents and
Ti is the finite set of types for agent i. A = {0, 1, . . . , N} is the set of actions available
to the principal where a = 0 means the principal keeps the good, while a = i 6= 0 means
the principal gives the good to agent i. Agent i’s utility is 1 if a = i and 0 otherwise,
regardless of her type. The principal’s utility is vi(ti) if a = i and 0 if a = 0.

In the multi–agent setting, agents can have evidence about the profile of types or only
about their own types. BDL19 assume the latter. So Ei(ti) is the collection of subsets of
Ti that type ti can prove. They assume the evidence structure satisfies normality.

The main result in BDL19 gives several properties of optimal mechanisms. First, there
is always a deterministic mechanism which is optimal. Second, there is always an optimal
mechanism which satisfies a variation on dominant strategy incentive compatibility which
BDL19 call robust incentive compatibility. So there is no cost to the principal of requiring
this robustness.

Third, there is no value to commitment. That is, there is an equilibrium of the game
without commitment giving the same outcome as an optimal mechanism. In addition,
this equilibrium has two desirable properties. First, it can be constructed in a simple
fashion. Specifically, this construction considers a family of auxiliary games, one for
each agent, where the auxiliary game for agent i is just a game between agent i and
the principal. Agent i’s equilibrium strategy in her auxiliary game is the same as her
strategy in the overall game without commitment and the optimality of her strategy in
the auxiliary game implies its optimality in the game without commitment.

Second, this property implies the equilibrium of the game without commitment has
a certain robustness property. The fact that agent i’s strategy is constructed from the
equilibrium of a game without any of the other agents suggests, correctly, that agent i’s
strategy in the game without commitment is optimal regardless of the strategies of the
other agents.

BDL19 construct the auxiliary game between agent i and the principal as follows.
First, i learns her type, ti. Next, i sends a cheap talk message si ∈ Ti and proves an
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event Ei ∈ Ei(ti) which the principal observes. Finally, the principal chooses v̂ ∈ R. The
payoff to agent i is v̂. The payoff to the principal is −(vi(ti) − v̂)2. In other words, we
have the square–error loss payoff structure discussed in Section 3.

To construct an equilibrium for the game without commitment, for each agent i, fix
an equilibrium of the auxiliary game for i and take i’s strategy in the game without com-
mitment to be her equilibrium strategy in the auxiliary game. The principal’s strategy in
the game without commitment is her best reply to these strategies by the agents. BDL19
show that we can choose the equilibria of the auxiliary games so that these strategies
form an equilibrium of the game without commitment with the same outcome as in the
optimal mechanism.

Intuitively, in the auxiliary game, agent i wants to induce the principal to believe that
vi(ti) is large. In the game without commitment, the principal will allocate the good to
that agent for whom his expectation of vi(ti) is largest given the reports and evidence he
sees. Hence in this game, again, agent i wants the principal to believe that vi(ti) is large
and so finds it optimal to use the strategy from the auxiliary game. The proof that there
is an equilibrium of this form that gives the same outcome as the optimal mechanism is
more involved.

We can illustrate this result using Dye evidence. Recall from Section 3.2 that the
equilibrium outcome with Dye evidence is unique, so here there is no need to select
equilibria from the auxiliary games — there is only one. Recall that the structure of the
equilibrium of the auxiliary game for agent i is that there is a unique v∗i defined by

v∗i = E[vi(ti) | Ei(ti) = {T} or vi(ti) ≤ v∗i ].

Types with no evidence, of course, cannot disclose. Types with evidence disclose iff
vi(ti) > v∗i .

This structure is easily used to show that there is a favored–agent mechanism which
is optimal. For such a mechanism, there is an agent, say i∗, who is the favored agent
and a threshold v∗. If no agent i 6= i∗ proves a value above v∗, then the favored agent
receives the good regardless of what she proves. If some agent i 6= i∗ does prove a value
above v∗, then the good goes to an agent who proves the highest value. In particular, in
this case, no agent who doesn’t prove something can receive the good.

To see that this is implied by the structure of the auxiliary game, let i∗ be any agent
i with the highest value of the Dye cutoff. Let the threshold be v∗ = v∗i∗ , that is, the
highest Dye cutoff.

Suppose no agent i 6= i∗ proves a value above v∗. Then either i proves a smaller value
or else i proves nothing and the principal’s expectation of vi is v∗i ≤ v∗i∗ = v∗. On the
other hand, i∗ either proves some value above v∗ or proves nothing and the principal’s
expectation of vi∗ is v∗. Hence i∗ will be the agent the principal most wants to give the

22



good to as the expectation of vi∗ will be larger, at least weakly, than the expectation of
any vi for i 6= i∗. In the case where some agent i 6= i∗ does prove some value above v∗,
obviously, the agent who proves the highest value is the one the principal will most want
to give the good to.

In short, the favored–agent mechanism is a description of the equilibrium under Dye
evidence. The result of BDL19, then, implies that this is an optimal mechanism.

5 Other Directions

In this section, we discuss other models which incorporate evidence but which take some
different approach than the models discussed above. In Section 5.1, we discuss models
of costly verification, which can be thought of as changing which party has access to
evidence. In Section 5.2, we discuss models of evidence acquisition.

5.1 Verification

In the models discussed so far, the agent has control of evidence and can choose whether
to provide it to the principal. The principal may incentivize the agent to provide evidence
but cannot take evidence from the agent without the agent’s consent.

Verification can be thought of as reversing the property rights over evidence. Here the
principal is able to get evidence about the agent without requiring the agent’s agreement.
Naturally, for the model to be interesting, this verification process must be costly for the
principal. Otherwise, obviously, the principal will always take free evidence.

Townsend (1979) initiated the study of optimal mechanisms with verification. Unlike
the work we discuss below, Townsend made critical use of monetary transfers. Other
papers following this vein include Gale and Hellwig (1985), Border and Sobel (1987), and
Mookherjee and Png (1989). Instead, we focus on models where monetary transfers are
not possible, as in Glazer and Rubinstein (2004).8

We illustrate these ideas through a discussion of Ben-Porath, Dekel, and Lipman
(2014), henceforth BDL14. This paper considered the simple allocation problem discussed
in Section 4.4, but with costly verification rather than evidence.

It will be convenient to alter the notation slightly. Instead of writing the types as ti
and the value to the principal of giving the good to agent i as vi(ti), we will write the

8See also Ball and Gao (2025) for a related game–theoretic model.
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types directly as vi’s, the value of giving the good to i. In this section, there is no need
to distinguish between the evidence available and the value, so we do not need the extra
notation of ti’s.

To be more explicit, the type of agent i is denoted vi, where this is continuously
distributed on some interval [v, v̄] with 0 < v < v̄. Types are independent across agents,
but the distributions may vary across agents. The principal has one unit of a good to
allocate and the payoff to the principal of giving the good to agent i is vi, i’s type. The
payoff to any agent i of receiving the good is 1 and the payoff to not receiving it is 0.

Agents know their types. The principal can learn the type of any agent at a cost c > 0
per agent. (BDL14 allowed costs to vary across agents, but we simplify for brevity.)

Agents do not have evidence in this model, so a mechanism simply has them reporting
types. As usual, we can focus on incentive compatible mechanisms which induce agents
to report honestly. Given a profile of reports, the principal decides which agents, if any,
to verify — i.e., to pay the cost to learn their types. After this, the principal chooses
which agent (if any) to give the good to.

Perhaps surprisingly, BDL14 show that the optimal mechanism in this problem is
again a favored–agent mechanism. In this setting, they define such a mechanism as
follows. There is a favored agent, i∗, and a threshold v∗ ∈ [v, v̄]. If all agents other than
the favored agent report types below the threshold, then the principal does not verify
any agent and gives the good to the favored agent. If some agent other than the favored
agent reports a type above the threshold, then the principal verifies the report of the
agent with the highest reported type and if (as will happen in equilibrium) the principal
learns that the agent reported truthfully, the principal gives her the good.

BDL14 characterize the optimal agent to favor and the optimal threshold. For any i,
define v∗i by

E(vi) = E max{vi, v∗i } − c.
The optimal favored agent is any agent with the highest value of v∗i and the optimal
threshold is her v∗i . While the definition of this cutoff is different in the evidence case,
otherwise the selection of the favored agent and the threshold is the same as in that case.
Later, we explain this unexpected similarity across these different models.

Another similarity between this favored–agent mechanism and the one discussed in
Section 4.4 is that the mechanism is robustly incentive compatible. A difference between
the two favored–agent mechanisms we have introduced is that commitment is necessary
for this one. Clearly, when the principal verifies an agent, he is spending a cost expecting
he will find that the agent didn’t lie. If he were not committed, he would deviate. Since
the agents would anticipate this, incentive compatibility would break down.

BDL19 identify the reason for the resemblance between these favored–agent mecha-
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nisms, also explaining the similarity between the results of Erlanson and Kleiner (2020)
on costly verification in a public goods problem and BDL19’s solution to the analogous
Dye evidence problem. Loosely, these models are related by a change of variables. Intu-
itively, in BDL14, the principal pays a cost for evidence, while in BDL19, he incentivizes
agents to reveal evidence and thus pays a “shadow price” for the implied distortions. In-
terestingly, these two distinct forms of cost enter the structure in mathematically similar
ways, creating this similarity of results.

There are a number of papers which consider versions of verification. Mylovanov
and Zapechelnyuk (2017) explore the implications of costless ex post verification and
limited penalties, while Li (2020) considers a different form of limited penalties with
costly verification. Li and Libgober (2023) consider a dynamic verification problem with
projects proposed over time. Patel and Urgun (2025) consider an allocation problem
with costly verification similar to BDL14 but where the principal can request agents to
burn money. Kattwinkel and Preusser (2025) combine an evidence model of the kind
considered in Section 4, evidence acquisition of the kind discussed in the next section,
and costly verification by the principal. Ball and Kattwinkel (forthcoming) develop
a framework for studying probabilistic verification, showing that every implementable
social choice function can be implemented via what they call most discerning tests.

5.2 Evidence Acquisition

In the standard evidence model, we exogenously specify what evidence each type has.
A natural and economically significant extension is to study agent choices to acquire
evidence.

Note that evidence acquisition is related to but distinct from information acquisition.
If the agent doesn’t know her type, then acquiring evidence about it can also help her
learn her type. On the other hand, evidence is acquired, at least in part, to persuade a
principal, not just for learning.

There are a number of interesting game–theoretic models of evidence acquisition in
the literature. Che and Kartik (2009) consider how evidence acquisition incentives shape
the preferences of a receiver regarding what sender he would like to get information from.
They consider a model where the state of the world, t, is normally distributed with a
certain variance. The receiver and potential senders differ regarding their prior mean for
the state. The receiver has to choose an action a ∈ R. The receiver and all potential
senders have utility function −(a− t)2.

The receiver chooses one of the potential senders who then exerts costly effort to
obtain a signal about the true state. The probability the sender gets a signal is increasing
in the effort expended. If the sender receives a signal, this is evidence which she can show
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to the receiver if she wishes. That is, we have a Dye evidence model where the probability
the sender has evidence is a function of the effort she chooses.

One might expect the receiver to prefer a sender with the same prior mean on the
state as her own. If the probability the sender has evidence were exogenous instead of
endogenous, this would be optimal for the receiver. The sender would not hide evidence
since the receiver would use the evidence to make the choice the sender would like him
to make. On the other hand, if the sender has a different mean than the receiver, the
sender will sometimes withhold evidence. Intuitively, if the sender’s prior mean is much
larger than the receiver’s and the signal suggests a value below the receiver’s prior mean,
the sender’s preferred action will fall but will remain above the receiver’s. So the sender
would not want the receiver to see the signal and choose an even lower action.

But when the probability the sender gets evidence is endogenous, the receiver may
prefer a sender with a different prior than her own. Intuitively, if the sender’s prior
beliefs are different than the receiver’s, then the sender will expect evidence to pull the
receiver’s beliefs closer to her own. If the difference in their beliefs is larger, the desire
by the sender to influence the receiver’s beliefs will be stronger and the sender will exert
more effort to obtain evidence. Of course, as observed above, a sender with very different
beliefs than the receiver will withhold evidence more often, so there is a tradeoff for the
receiver.

Chade and Pram (2024) give an interesting application of evidence acquisition in
a game–theoretic model. They consider college entrance exams. Suppose students have
imperfect information about their abilities. A student can take a costly test which reveals
noisy but more precise information about her ability and which can be shown as evidence
to a university to which she applies. Assume the qualities of the universities are known
and all students agree on the ranking of universities. Assume also that universities all
want students with higher ability so that if ability were known, we would have positive
assortative matching of students and universities.

Among other things, Chade and Pram ask what effect various disclosure requirements
have on the students’ utility. For example, suppose students can choose whether to take
the test or not. Compare the utility of students in a world where they are free to disclose
or hide their test results versus a world where anyone who takes the test must reveal
the score. Perhaps surprisingly, students whose prior beliefs are that they are low ability
prefer the world where scores must be revealed. The reason is that these students are
skeptical about the likelihood they will perform well on the test and so will not take the
test in either case. When revealing one’s score is not required, students who took the
test and did badly are pooled with students who did not take it. Since the test is more
informative than one’s priors, this group makes the inference in response to nondisclosure
worse.

26



Other interesting papers in this area include DeMarzo, Kremer, and Skrzypacz (2019)
and Shiskin (2022), both of which develop models of optimal test design.

Ben-Porath, Dekel, and Lipman (forthcoming) discusses mechanism design for evi-
dence acquisition for the case where the agent knows her type ex ante but wishes to
acquire evidence to persuade the principal. For example, the agent may take a test that
generates a probability distribution over evidence messages. The paper characterizes the
class of mechanisms the principal can use without loss of utility for this setting and a
broad class of models with stochastic evidence. It also gives conditions on the evidence
structure which allow for simplifications in the required structure and hence relatively
tractable analysis.

Ben-Porath, Dekel, and Lipman (2024), henceforth BDL24, give a model of mecha-
nism design with costly evidence acquisition in a setting where agents don’t know their
types ex ante, so that evidence acquisition goes hand–in–hand with information acquisi-
tion. The model is again the simple allocation problem discussed earlier. The principal
has one unit of a good to allocate to one of N agents. Each agent receives a payoff of 1
if she gets the good, 0 otherwise (not including costs discussed below). The value to the
principal of giving the good to agent i is vi. The vi’s are unknown to the principal or any
agent at the outset and are independently and continuously distributed with support
[0, 1]. Agent i can pay a cost ci ∈ (0, 1) to both learn her vi and to obtain evidence
proving this value to the principal.

The tension in the model is that an agent must have a high enough chance to obtain
the good to be willing to pay for evidence, while the principal would like information
from as many agents as possible. Ideally, the principal would like to ask all agents to
obtain and provide evidence. In the symmetric case, for example, this cannot be incentive
compatible if c > 1/N since the expected payoff to any agent from obtaining evidence if
all others do so is (1/N) − c. So in this case, the agent would prefer to opt out of the
mechanism.

The optimal mechanism in BDL24 is easiest to understand when the costs and dis-
tributions are the same across agents. In this case, the principal begins by choosing
an agent at random (where each agent has probability 1/N of being chosen first). The
chosen agent is asked to obtain and report evidence. If the agent proves a value above a
certain threshold, v∗, the mechanism ends and this agent receives the good. Otherwise,
the principal selects one of the remaining agents at random (now each with probability
1/(N−1)) and asks this agent to obtain and provide evidence. Again, if this agent proves
her value is above v∗, she receives the good and otherwise we continue this process. If
all agents have values below v∗, the principal will end up asking all for evidence. In this
case, the principal will give the good to the agent with the highest value.

An important aspect of the mechanism is that an agent is given no information when
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she is asked for evidence (other than knowledge of the mechanism itself, that is).9 So the
agent does not know if she is first to be asked, last, or somewhere in between. To see the
idea, suppose the principal uses the mechanism above but does tell each agent how many
others have already obtained evidence. In this case, the last agent to be asked knows
that all the other agents have values below the threshold and hence she has a relatively
high probability of succeeding in getting the good. The first agent to be asked has a
much lower probability of receiving the good. If the first agent asked has a high enough
probability of receiving the good that she is willing to pay the cost to obtain evidence, the
other agents’ incentive constraints must be slack. Hence it must be possible to improve
the mechanism.

In the asymmetric case, instead of comparing the agent’s value to a threshold or
other agents’ values, the mechanism is based on virtual values, equal to the value plus
an agent–specific constant, λi, where this is the Lagrange multiplier on the incentive
constraint for agent i. Second, the distribution over the order in which agents are asked
for evidence is asymmetric. Third, the threshold may decrease over time.

The proof of optimality combines Weitzman (1979) and Border (1991). BDL24 show
that if one treats the Lagrange multipliers for the optimization as if they were exogenous,
the Lagrangian is equivalent to Weitzman’s objective function. In this reinterpretation,
agents correspond to the boxes in Weitzman, the cost of opening box i is λici, and the
prize in box i is vi + λi. One can then apply Weitzman’s characterization of optimal
search procedures to characterize the solution given the Lagrange multipliers.

Also, in Weitzman, the randomizations over the order are irrelevant as he considers a
decision problem, but they affect incentive compatibility for BDL24, so they must char-
acterize these along with the multipliers. BDL24 show that one can characterize the set
of feasible Lagrange multipliers and probabilities of asking each agent for evidence using
methods based on those of Border (1991). The parameters of this dynamic mechanism,
such as the randomizing probabilities, could depend on the values observed along the
way, leading to a very complicated mechanism. The characterization of the multipliers
and probabilities using Border shows that it is without loss of utility for the principal to
restrict to mechanisms which do not use such information.

6 Conclusion

As we hope this survey demonstrates, evidence is relevant in a wide range of economic
environments and can be fruitfully studied to understand the nature of the distortions

9The optimal mechanism in Gershkov and Szentes (2009) is similar in this respect. Their model has
pure information acquisition, not evidence acquisition, and involves a public good rather than private,
so the nature of the incentives and constraints differ.
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it alleviates and creates. The literature has only started to ask these questions and we
expect to see interesting applications in other directions.
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