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Game-theoretic analysis often leads to consideration of an infinite hierarchy of
beliefs for each player. Harsanyi suggested that such a hierarchy of beliefs could
be summarized in a single entity, called the player's fype. This paper provides
an elementary construction, complementary to the construction already given in
{J-F. Mertens and S. Zamir, Formulation of Bayesian analysis for games with
incomplete information, Ini. J. Game Theory 14 (1985). 1 29] of Harsanyi's notion
of a type. It is shown that if a player's type is coherent then it induces a belief over
the types of the other players. Imposing common knowledge of coherency closes the
model of beliefs. We go on to discuss the question that often arises as to the sense
in which the structure of a game-theoretic model is, or can be assumed to be,
common knowledge. Journal of Economic Literaiere Classification Number: 026,

€ 1993 Academic Press, Inc.

[. INTRODUCTION

Hierarchies of beliefs arise in an essential way in many problems in deci-
sion and game theory. For example, the analysis of a game, even of one
with complete information, leads to consideration of an “infinite regress”
in beliefs. Thus, supposing for simplicity that there are just two players i
and J, the choice of strategy by i will depend on what i believes j's choice
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will be, which in turn will depend on what 7 believes ; believes i’s choice
will be, and so on. An infinite regress of this kind underlies the idea of
“rationalizable™ strategies, introduced by Bernheim [57] and Pearce [19].
For games with complete information, this regress in beliefs has tradi-
tionally been “cut through” by the imposition of an equilibrium concept
such as Nash equilibrium. It was in the context of games with incomplete
information, in which some parameters of the game are not common
knowledge among the players, that the problem of an infinite regress in
beliefs was first tackled by Harsanyi [15]. Harsanyi's solution was to
summarize the entire stream of beliefs of a player in a single entity, called
the player’s rype, such that each type induces a belief over the types of the
other players. Harsanyi’s formulation of a gamc with incomplete informa-
tion has become an indispensable tool in many areas of economics, but it
is only relatively recently that rigorous arguments have been given in
support of Harsanyi’s notion of a type by Armbruster and Boge [1], Boge
and Fisele [7], and Mertens and Zamir [18]. This paper provides an
alternative construction of types, which is similar to that in [ 18] but which
relies on more elementary mathematics and is more explicit about what is
assumed to be common knowledge.

Our construction of types has two stages. First, we show that if an
individual’s type is coherent then it induces a beliel over the types of the
other individuals. {Coherency is a requirement that the various levels of
beliefs of an individual do not contradict one another--—-see Definition 1.)
This result (Proposition 1) is essentially just a statement of Kolmogorov's
Existence Theorem from the theory of stochastic processes (see, for example,
Chung [9, p. 60]). Second, the model of beliefs is closed by imposing,
via a simple inductive definition, the requirement that cach type knows (in
the probabilistic sense of assigning probability 1) that the other individuals’
types are coherent, that each type knows that the other types know this,
and so on. That is, the model is closed by imposing common knowledge of
coherency. (What is meant here by “closed” is elucidated in the paragraph
preceding Definition 1.)

At a technical level, we replace the assumption in Mertens and Zamir
that the underlying state space is compact with the assumption that it is
complete separable metric. (Remark 2.18 in Mertens and Zamir suggests
that such a replacement is possible.) Recently, Heifetz [16] has provided
a general construction of types, assuming only that the underlying state
space is Hausdorfl.

Having completed our construction of types in Section 2, we go on in
Section 3 to discuss the question that often arises as to the sense in which
the structure of a game-theoretic model is, or can be assumed to be,
common knowledge. This question has been discussed by Aumann and
others; see [2, 3, 4, 12, 17, 20, 21, 227]. Aumann has argued that if the
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structure is not common knowledge, then the description of the states of
the world is incomplete and so the state space should be expanded. The
construction of types shows what the expanded state space should be,
namely the product of the underlying state space and the individuals’ type
spaces. Moreover, on the expanded state space, common knowledge of the
structure is captured by the assumption of common knowledge of
coherency.

2. CONSTRUCTION OF TYPES

In this section hierarchies of beliefs are constructed. The notions of type
and coherency are defined and it is shown that a coherent type induces a
belief over other individuals’ types. We go on to prove that common
knowledge of coherency closes the model of beliefs in the sense that all
beliefs are then completely specified.

There are two individuals i and j who face some common (underlying)
space of uncertainty S.' The space S is assumed to be compiete separable
metric (Polish). For any metric space Z let 4(Z) denote the space of prob-
ability measures on the Borel field of Z, endowed with the weak topology.
According to Bayesian decision theory, each individuai must have a belief
over the space S; the individuals’ first-order beliefs are then elements of
A(S). Since each individual may not know the belief of the other, each
must have a second-order belief. That is, i’s second-order belief is a joint
belief over S and the space of j’s first-order beliefs; i’s second-order belief
1s thus an element of A(Sx A4(S)). Similarly for ;. Formally, define spaces

X():S
X, =Xy x 4(X,)

Xu:Xu !XA(Xn ])

A type 1" of iis just a hierarchy of beliefs 1= (d}, 3%, ...)e x,/_,4(X,).
Similarly for j. Let To= x_, 4(X,) denote the space of all possible types
of iorj.

Of course, i only knows his own type and not the type of /. (Likewise
for j.} So it seems that a “second level” hierarchy of beliefs is required,
wherein i has a belief over j's type, over j’s belief over i's type, and so on.
Thus, in the absence of further assumptions, a model which specifies only
the hierarchy of beliefs (3, 85, ...) € X, _, 4(X,) for i, and likewise for j, is

" All our arguments generalize immediately to the case of more than two individuals.
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not closed. The condition under which the specification of i’s type already
determines his belief over j’s type is defined next.

DEFINITION 1. A type 1= (3. 9,...)0€ T is coherent if for every n=2,
marg,, ,d,=9d, ,, where marg, . denotes the marginal on the space
X, -

”

Coherency says that the different levels of beliefs of an individual do not
contradict one another.” Let 7, denote the set of all coherent types. The
following proposition shows that a coherent type induces a belief over S
and the space of types of the other individual.

PROPOSITION L. There is a homeomorphism 2 T, — A(S x T,).

Proposition | will be an easy consequence of the following lemma, which
itself 1s essentially a statement of Kolmogorov's Existence Theorem.

LEMMA (. Suppose | Z, )} |, is a collection of Polish spaces, and let

nin

D=1{(0,.0,,..00, e MZyx - xZ, ;)¥nz1,

‘ Yy =0 bR
marg , . L :()H_‘)u ! \7/'12,_’,

Then there is a homeomorphism - D — A x| ,Z,).

Proof- Consider any element (48,,0,,..)e D. By a version of
Kolmogorov's Existence Theorem [10, p. 68] there is a unique measure
seAlx,; 4 Z,) such that marg,, . ., 0=0, forall n=1. Let / map
(d,,0,...) into this 6. The map f is 1 | since the value of ¢ on the cylin-
ders is given by the d,’s; / is onto since given any deA( x,_,Z,)
Slmarg,, d,marg, . , d...)=0. Note that f '(d)=(marg , é,marg, . , ...}
so f ' is continuous since the maps > marg, . ., é, n =1,
are all continuous. To see that f is continuous, consider a sequence
(87,85, ..} = (d,, 9,5, ..y in D, ie., &7 converges weakly to d, for all n> 1.
Let 8" =/(5'. 0%, ..), 0=/(d,,6,,..). We have to show that é" converges
weakly to 3. But this follows from the fact that the cylinders form a
convergence-determining class and the values of ", 5 on the cylinders are
given by the 8.’s, d,’s, respectively. |

Proof of Proposition 1. In Lemma I, set Z,=X,, Z,=4(X, ) for
nzl.SoZ,x - xZ,=X, and x,).,Z,=SxT, If Sisa Polish space
then so 1s A(S) (Dellacherie and Meyer [10, p. 73]}, hence the Z,’s will be

> What is here called coherency 1s usually called consistency in the theory of stochastic
processes. The term coherency is used to avoid confusion with Harsanyt's use of the term
consistency, which means something different.
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Polish spaces provided S is. The set of coherent types T, is exactly D. So
Lemma t implies that there is a homeomorphism [ T, — A(Sx T,). |

An obvious question to ask is why the particular homeomorphism £, just
constructed, is “natural.” The reason is the following property of f: the
marginal probability assigned by f(J,, d,,..) to a given event in X, | is
equal to the probability that &, assigns to that same event. That is, in
deriving probabilities on the product space Sx Ty= X, x A X ) x A(X,)x -+
from (9,, d,, ...). the function / preserves the probabilities specified by each
d, oneach X, ,.

Coherency implies that i's type determines i’s belief over j's type. But /’s
type does not necessarily determine i’s belief over j's belief over i’s type—in
particular this is so if / believes it possible that j’s type is not coherent. For
a type to determine af/ beliefs (including behefs over behefs over types),
common knowledge of coherency must be imposed. To do so, define a
sequence of sets T,, k=2, by

T,=1teT,  fuSxT, )=1}

{It is straightforward to show inductively that 7, , is a Borel set, so T,
is indeed well defined.) Let T=/_, T,. The set Tx T is the subset of
T, x T, obtained by requiring the following statements to hold: (1) /
knows j's type is coherent; (2) j knows i's type is coherent; (3) i knows j
knows i's type is coherent; and so on. That is, Tx T is the set of types
which satisfy common knowledge of coherency. The following proposition
shows that the space T closes the model, and corresponds to the “universal
type space” of Theorem 2.9 in [18].

PROPOSITION 2. There is a homeomorphism g: T — A(Sx T).

Proof. 1t is easy to check that T={reT,: fuUNSx T)=1}, s0 f(T)=
(8eA(SxTy):d(Sx T)=1} since f is onto. But f(T) is homeomorphic to
Tand {0e A(Sx Ty):0(Sx Ty=1} is homeomorphic to A4(Sx T} (for any
metric space Z and measurable subset W of Z, {de MZ):. 8(W)=1] is
homeomorphic to 4(W)). So T is homeomorphic to 4(SxT). |

Once again an immediate question arises as to why the homeomorphism
g is “natural” The answer is that g preserves the beliefs of each individual
in exactly the same way as the function f of Proposition 1 preserves beliefs.
{See the discussion following the proof of Proposition 1.) Moreover, the
development in Section 3-—where we show how the model of hierarchies of
beliefs can be transformed into a standard model of differential informa-
tion--~uses the homeomorphism g, and, in particular, Proposition 3 relics
essentially on the specific homeomorphism g.

A technical aspect of the construction worth noting is that closure of the
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model of hierarchies of beliefs is not a purely measure-theoretic result.
Recall in fact that we assumed S to be a Polish space. This is because (cf.
[13, pp.211-212]) Kolmogorov’s Existence Theorem is itself not purely
measure-theoretic, and relies on topological assumptions.

3. RELATIONSHIP TO THE STANDARD MODEL OF DIFFERENTIAL INFORMATION

The standard formulation of a model of differential information as
commonly used in game theory and economics is a collection {2, H', H’,
p'. p'>. The set Q is the space of states of the world, H' is i’s information
partition (if e is the true state, i is informed of the cell of H’ that
contains ), p'is i’s prior probability measure on 2, and H' and p " are the
analogous objects for j. In this section we discuss the relationship between
the standard formulation and the types model constructed in Section 2.
First, we use the types model to shed some light on the interpretational
question mentioned in the Introduction, namely the sense in which the
structure of the standard model is, or can be assumed to be, common
knowledge. Second, we describe a transformation of the types model
into a stantard model and demonstrate, by way of example, that the trans-
formation is meaningful.

An interpretational question that often arises in discussions of the
standard model of differential information is whether the information
structure (consisting of partitions and priors) is “common knowledge” is an
informal sense. (We say in an informal sense because the information struc-
ture is not an event in Q and hence the formal definition of common
knowledge does not apply. In what follows we will use quotation marks
when we wish to signify informal usage.) The issue of “common
knowledge” of the information structure arises in the following manner.
Given an event A in £2 one can define, using i’s information structure H'
and p’, the event that i knows A4 (see, e.g, [2]), to be denoted K'(A).
Similarly for j. Now suppose in fact that 4 = K'/(B) for some event B in £2.
Then K'(4)= K'(K’(B)) is certainly interpretable as the event that / knows
K’(B). But in practice we interpret K (K'(B)) as the event that i knows j
knows B—and this latter interpretation relies on an implicit assumption
that / “knows™ j's information structure. That is, it is assumed that ;
“knows™ H/ and p’. Applying the same argument to more complex events
such as KY(K/(K'(C))) and the like shows that in fact “common
knowledge™ of the information structure is needed.

The nature of this “common knowledge” has been much discussed by

* We maintain the simplifying assumption of only two individuals i and j.
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Aumann and others; see [2, 3, 4, 12, 17, 20, 21, 22].* Aumann has argued
that “common knowledge” of the information structure is without loss of
generality since the description of a state in 2 should include a description
of the manner in which information is imparted to the individuals (the par-
titions) and a description of the players’ beliefs (the priors). If this is not
the case, Aumann argues that the description of the states is incomplete
and so the state space should be expanded. The observation we wish to
make is that the appropriate expanded state space is the product of
the underlying state space S and the type spaces 7. More precisely, the
expanded state space is S x 7'x T where the first copy of T is the type space
of individual i and second copy of T is the type space of individual j.° The
point is that “common knowledge” of the information structure on the
expanded state space is captured by the assumption of common knowledge
of coherency that we made in Section 2. To see this, consider, for example,
theset T, = {te T : f(tSx T,)=1} as defined there. The set T, is the set
of types of i, say, which know that ;’s type is coherent. So T, is the set of
types of i which can calculate beliefs over j’s beliefs over i’s type, or in
other words the set of types of i/ which “know”j’s information structure.
Similarly, T, is the set of types of i/ which can calculate beliefs over j’s
beliefs over i’s beliefs over j’s type, or in other words, the set of types of
i which “know” that j “knows” i’s information structure. And so on. The
upshot is that since common knowledge of coherency is a natural
rationality assumption (it merely states that it is common knowledge that
the various levels of beliefs of an individual do not contradict one another),
“common knowledge” of the information structure (on the expanded state
space) is indeed without loss of generality.

To summarize, the same model, namely the model of hierarchies of
beliefs, validates Harsanyi’s notion of a type and Aumann’s notion of a
space of completely specified states of the world.

We now show how to transform the types model into a standard model,
thus demonstrating that the standard model is in fact no less general than
the types model. From this, it follows that the standard model, which is, of
course, a simpler construct, can be employed whenever doing so is more
convenient.

Starting with an underlying space of uncertainty S and induced type
spaces T, we can construct a standard model as follows. The set 2 of states
of the world is the product space S x T'x T, where, as before, the first copy
of T is the type space of individual i and the second copy of T is the
type space of individual j. Note that even if S is finite, Sx T'x 7T is an

* There are also relevant literatures in computer science, artificial intelligence, linguistics,
and philosophy; see [11, 14, 23], and the references therein.
*Thus 2 =Sx Tx T. A formal treatment of the information structure on £ is given below.

64259 1-14
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uncountable space and the information structure on Sx I'x T must be
specified in terms of o-fields rather than partitions. Let # denote the
Borel field of $x 7'x T. Since the information that / possesses is exactly
knowledge of his own type, the natural sub o-field of .# for i is
{Sx Bx T:Bis a Borel subset of T}. The homeomorphism g of Proposition 2
determines i’s beliefs: the natural conditional probability for 7 to access to an
event A € # atastate (s, £, t')is g(1'(A,) where A= {(s, t/):(s, ', t')e A }.
Individual j’s sub g-field and beliefs are specified in analogous fashion. In
sum, we have shown, with one proviso about to be discussed, how the
types model can be transformed into a standard model. The proviso is that
we have specified i/ and j’s system of conditional probability measures rather
than their prior probability measures. In fact, there would be no difficulty
in constructing for / and j (different) prior probabitity measureson Sx T'x T
with the indicated conditionals. (The technical conditions allowing this are
readily verified.) But since it is the conditionals, and not the priors, that are
of decision-theoretic significance, we refrain from going into details on
constructing the priors.®

So far, we have shown how the types model can, formally speaking, be
transformed into a standard model. That this is a sensible way of viewing
the types model is best seen by working through an example. Suppose we
wish to write down the statement that an event is common knowledge
between / and j. There is a natural way, which we give in a moment, of
doing this in the context of the types model. There is also the well known
definition, due to Aumann [2], of common knowledge in the context of a
standard model of differential information. What we are going to do is to
show that the “types” definition of common knowledge is equivalent to the
“standard” definition of common knowledge when the latter is applied to
the standard model derived from the types model in the manner described
in the preceding paragraph.

We start with the “types” definition. Given an event £ in S, let

VIIE)={teT:guUExT)=1}
and then define a sequence of sets V,(E), k=2, by
VilE)={teT:g()(SxV, (E))=1}.

(It is straightforward to show inductively that V, | (E) is a Borel set, so
V,.(E) is indeed well defined.) Let V(E)=N\_, V. (E). Then we say that
F is common knowledge between i and j according to the “types” definition
if (¢, /) e V(E) x V(E). This definition simply states that i is of a type that
assigns probability 1 to E, j is of a type that assigns probability 1 to E,

¢ Also worth noting is that the constructed conditionals are regular and proper (the latter
in the sense of Blackwell and Dubins [6]).



HIERARCHIES OF BELIEFS AND COMMON KNOWLEDGE 197

i is of a type that assigns probability 1 to j being of a type that assigns
probability 1 to E, and so on.

We now turn to the “standard” definition of common knowledge.
Aumann’s original definition was couched in terms of partitions. However,
as was pointed out above, the set 2 =5 x 7 x T is uncountable and o-fields
rather than partitions must be employed. A generalization of Aumann’s
definition to cover this case was proposed in [8] and we follow this
approach here. The event that / knows an event 4 € J#, to be denoted by
K'(A), is given by

K'(AY=1{(s. £, t7): g()(A,)=1).

The event that j knows A, to be denoted by K/(A), is defined in analogous
fashion. Thus K(A)=K'(A)n K’(A) is the event that everyone knows A.
We say that 4 is common knowledge at a state (s, t', t’) according to the
“standard” definition if (s, ', t')e K, (A4), where K, denotes the infinite
application of the K operator.

It remains to establish that the event £ in S is common knowledge
according to the “types” definition if and only if the event Ex Tx 7T in 2
is common knowledge according to the “standard” definition.” The
equivalence is stated formally in the foliowing proposition.

PROPOSITION 3. Sx V(E)Yx V(E)=K_ (ExTxT).

Proof. The proof follows immediately from the definitions. Observe
that

K(EXTxTy={(s, 0, t/): gt WExT)=1}=SxV (E)xT.

Similarly, K'(ExTxT)=8SxTx V,(E) and hence K(ExTxT)=
Sx V(E)x V,(E) Continuing in this fashion establishes that
K, (ExTxT)=SxV(EYx V(E}). |

Proposition 3 confirms that our transformation of the types model
into a standard model makes sense although, strictly speaking, this has
been shown to be true only insofar as common knowledge of events is
concerned. Nevertheless, it should be clear that in fact any calculation
involving the individuals’ beliefs is preserved under the transformation.

The reserve transformation has been considered by Tan and Werlang
[22]. They show how, starting from the standard formulation of a
model of differential information, to calculate the induced hierarchies of
beliefs and hence how to construct an associated types model. They also

" Note that the equivalence relates E in S to Ex T x T in £. This is because the set E is not
an event in £2, but is naturally identified with the event Ex T'x T.
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demonstrate that their transformation is meaningful by showing that it
preserves the notion of common knowledge.

[ ]
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