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Abstract

This paper discusses the implications of learning theory for the analysis of games with a m
Nature. One goal is to illuminate the issues that arise when modeling situations where play
learning about the distribution of Nature’s move as well as learning about the opponents’ stra
A second goal is to argue that quite restrictive assumptions are necessary to justify the con
Nash equilibrium without a common prior as a steady state of a learning process.
 2003 Elsevier Inc. All rights reserved.
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1. Introduction

This paper discusses the implications of learning theory for the analysis of game
a move by Nature. Our premise is that equilibrium in games arises as the result of lea
and that just what people will learn depends both on the true distribution of Nature’s
and on what they observe when the game is played. One of our goals is to illuminate
of the issues involved in modeling players’ learning about opponents’ strategies wh
distribution of Nature’s moves is also unknown. In this vein, we show how the rele
equilibrium concept changes when there are many agents in the role of a single “p
and when Nature’s move is determined once and for all at the beginning of the game
of being drawn independently each period. A second and more specific goal is to inve
the concept of Nash equilibrium without a common prior, in which players have correc
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hence common beliefs about one another’s strategies but disagree about the dist
over Nature’s moves.1 This solution is worth considering given the recent popularity
papers that apply it, such as Banerjee and Somanathan (2001), Piketty (1995), and
(2000).2 We argue that Nash equilibrium without a common prior is difficult to justify
the long-run result of a learning process, because it takes very special assumptions
set of such equilibria to coincide with the set of steady states that could arise from lea

The intuition for our concern is simple: In order for repeated observations to lead p
to learn the distribution of opponents’ strategies, the signals observed at the end o
round of play must be sufficiently informative. Such information will tend to lead pla
to also have correct and hence identical beliefs about the distribution of Nature’s m
While this basic argument is straightforward, our examples highlight some less ob
points.

Our point of departure is the notion of self-confirming equilibrium, which has been
to model the outcome of learning processes (see, e.g., references in footnotes 3, 4
This equilibrium concept requires that each player’s strategy is optimal given the pl
beliefs about opponents’ strategies and Nature’s moves, and that these beliefs are co
with the distribution of outcomes in the game that the player observes. In Section
give a formal definition that extends the notion to allow for different possible maps
outcomes of the game to observations, in particular allowing for the case where play
not observe the actions taken by others or their own payoffs.

When players observe the “outcome” of a round of play, meaning both the actions
and the realization of Nature’s move, the set of self-confirming equilibria is the sam
the set of Nash equilibria with a common prior, so any strategy profile that is not a
equilibrium with a common prior cannot be a self-confirming equilibrium. When pla
observe less than the outcome, more beliefs are consistent with the players’ obser
so a Nash equilibrium without a common prior may be a self-confirming equilibr
but only because the set of self-confirming equilibria is then large (and therefore
well include many outcomes that are not Nash equilibria). This leads us, in Sect
to explore the relationship between the set of Nash equilibria when players have
possibly inconsistent, beliefs about Nature on the one hand, and the set of self-con
equilibria with the same beliefs on the other; we use a series of examples and
propositions to illustrate our concern with the use of Nash equilibrium when the pr
not common. Propositions 1–3 present cases in which these sets only coincide for t

1 Harsanyi (1967) proposed that games of incomplete information be analyzed as games with a m
Nature, where the move by Nature is an artificial construction (see, e.g., Dekel and Gul (1997) for a disc
He defined (Bayesian) Nash equilibrium in his model both for the case of a common prior and for the cas
priors are allowed to differ; this is the notion of Nash equilibrium we use herein. Our approach is motiva
a learning model in which play is repeated. In those cases where we assume that the move by Natur
repeatedly drawn and its consequences observed, the interpretation of Nature’s move as an artificial con
is not necessary, so it seems inappropriate there.

2 We do not explore these applications in detail, so in particular we do not claim that their use of
equilibrium is inappropriate. We only want to argue that in the context of incorrect priors, the use of
equilibrium requires more careful justification than is typically given. In fact, Spector (2000) assumes that
are observed while payoffs are not, noting that, while these are fairly extreme assumptions, if payof
observed then the players would learn the true distribution of Nature’s move.



284 E. Dekel et al. / Games and Economic Behavior 46 (2004) 282–303

uilibria

firming

es in
atched
on that

each
game

tructure
ium
choice
used
a once-

le can
plex,

on for
ash
how
lties
rium

are
ea
e with
mmon
rium
have

layer
ause in
blem

out a
es on
on the
ding to

self-
lated.
ria of

portant
m play
states
e say
of a common prior. Proposition 4 presents a case where there are self-confirming eq
with correct beliefs about Nature that are not Nash even withcorrect prior. On the other
hand, Proposition 5 identifies a very special case where the sets of Nash and self-con
equilibria do coincide.

Section 4 shows how to extend the equilibrium concept used in Section 3 to gam
which there are many agents in the role of each player and agents are randomly m
each period. This situation is of interest because it serves to motivate our assumpti
subjects ignore repeated-game considerations and try to maximize their payoff in
play of the stage game; for the same reason, this is a commonly used design in
theory experiments. Section 5 considers alternate specifications of the stochastic s
of Nature’s move, explaining how they alter the definition of self-confirming equilibr
and its properties. We begin with the case where Nature makes a once-and-for-all
of a single profile of types that will apply to all matches; this specification has been
in many game-theory experiments. We then consider the case where Nature makes
and-for-all choice for each agent, but where different agents in a given player ro
have different types, and we conclude with a brief discussion of alternate, more com
stochastic structures.

Of course, our conclusions are all based on the idea of learning as a justificati
equilibrium. In particular, if players achieve equilibrium through deliberation, then N
equilibrium without common priors may be sensible. However, it is not at all clear
this would work in the presence of multiple equilibria. Moreover, the practical difficu
in computation and the amount of information that can be required to find an equilib
makes this seem to us a weak justification for studying Nash equilibrium.

Our criticism of Nash equilibrium without a common prior does not mean we
arguing for the common prior assumptionper se. Indeed we are sympathetic to the id
that some situations are better modeled without common priors; our concerns ar
the uncritical use of the Nash equilibrium solution concept in the absence of a co
prior. Our learning-theoretic critique is related to two other problems of Nash equilib
without a common prior. One is internal consistency: a Nash equilibrium when players
different priors in general is not a Nash equilibrium when Nature is replaced with a p
who is indifferent among all her choices and who behaves exactly as did Nature, bec
a Nash equilibrium the strategy of the player replacing Nature is known. A related pro
(Dekel and Gul, 1997) is that the epistemic foundations of Nash equilibrium with
common prior are unappealing. The epistemic foundation for Nash equilibrium reli
a common prior about strategies, and it is not obvious why we should impose this
states of Nature underlying the strategic uncertainty and not on those correspon
other aspects of the state of Nature.

As mentioned, this paper is related to other work that uses notions similar to
confirming equilibrium. Jordan (1995) and Jackson and Kalai (1997) are also re
Like us, they compare the long-run outcomes of a learning process to the equilib
a static stage game, and several of our findings are similar to some of theirs. One im
difference between those papers and this one is that they study Bayesian equilibriu
of an overall “recurring game” that has a common prior, while we study the steady
of nonequilibrium learning processes that need not start out with common beliefs. W
more about the relationship between these papers in Sections 3 and 5.
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2. The model

We consider a static simultaneous-movegame withI player roles. (All parameters of th
game, including the number of players, and their possible actions and types, are a
to be finite.) For any finite setX, we let∆(X) denote the space of probability distributio
overX. In the static game, Nature moves first, determining players’ types, which we d
θi ∈ Θi . To model cases where the types alone do not determine the realized payo
also allow Nature to pickθ0 ∈ Θ0; we call this “Nature’s type.” Players observe their typ
and then simultaneously choose actionsai ∈ Ai as a function of their type, so that a strate
σi for playeri is a map from her types to the space∆(Ai) of her mixed actions. Playe
i ’s utility ui(a, θ) depends on the profilea = (a1, . . . , aI ) ∈ A of realized actions and o
the realizationθ = (θ0, θ1, . . . , θI ) ∈ Θ of Nature’s move. When playeri ’s utility does not
depend on Nature’s move beyondi ’s own type, i.e.,ui(a, θ) = ui(a, θi), we refer to the
game as havingprivate values.

Our solution concept is motivated by thinking about a learning environment in w
the game given above is played repeatedly. We suppose that players know their own
functions and the sets of possible moves of all of the players. We suppose that theΘ

contains all of the type profiles that any player thinks is possible; some of these ma
probability 0 under the true distribution governing Nature’s move. Players are not ass
to know either the strategies used by other players or the distribution of Nature’s
they learn about these variables from their observations after each period of play. F
time being, we also suppose that each period the types are drawn independently ov
from a fixed distributionp. This is the simplest specification, and as we will see, it is
one that corresponds most closely to standard models of Bayesian games. For t
being, we also assume that there is a single agent in each player role. Sections
discuss the case where there is a large population of agents in each role who are m
together to play the game.

Of course, what players might learn from repeated play depends on what they o
at the end of each round of play. To model this, we adopt the formalism used by Bat
(1987) and Rubinstein and Wolinsky (1994), and suppose that after each play of the
players receive private signalsyi = yi(a, θ). As the notation indicates, these signals ar
deterministic function ofa andθ . We assume that each player observes her own pr
signal yi , along with her own action and own type, so this is their only informa
about Nature’s and their opponents’ moves.3 Since the definition given above places
restrictions on the signal functions, it is consistent with the signal being the termina
of an extensive-form game and so it can be applied to more than just static games
initial move by Nature. However, to focus on the issue of games with moves by Natu
will not consider an explicit extensive-form structure, and we concentrate on obser
structures arising from play of a one-shot simultaneous-move game. We will not for

3 We consider the case in which knowledge of opponents’ play comesonly from learning by observation an
updating, and not from deduction based on opponents’ rationality, so we do not require that players kno
opponents’ utility functions or beliefs. This is also the reason we do not need to consider moves by Nat
one player thinks that another thinks are possible, as no deductions are made, only learning from obse
Rubinstein and Wolinsky (1994), Battigalli and Guaitoli (1997), and Dekel et al. (1999) present solution co
based on steady states in which players do make deductions based on rationality of the other players.
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model the dynamics of learning, but will appeal informally to the idea that a steady st
a belief-based learning process should be a self-confirming equilibrium.4 Thus, our focus
is on how the information that players observe at the end of each round of play dete
the set of self-confirming equilibria, and how these equilibria relate to the Nash equ
of the game.

The key components of self-confirming (and Nash) equilibrium are each playi ’s
beliefs about Nature’s move, herstrategy, and herconjecture about the strategies use
by her opponents. Playeri ’s beliefs, denoted bŷµi , are a point in the space∆(Θ) of
distributions over Nature’s move, and her strategy is a mapσi :Θi → ∆(Ai). The space o
all such strategies is denotedΣi , and the player’s conjectures about opponents’ play
assumed to be âσ−i ∈×−i Σ−i , that is, a strategy profile ofi ’s opponents. The notatio
µ̂i(· | θi) refers to the conditional distribution corresponding toµ̂i andθi , while σi(ai | θi)
denotes the probability thatσi(θi) assigns toai .

Definition. A strategy profileσ is a self-confirming equilibrium (SCE) with conjectur
σ̂−i and beliefsµ̂i if for each playeri,

(i) for all θi with p(θi) �= 0, µ̂i(θi) = p(θi)

and for any pairθi, âi such thatµ̂i(θi) · σi(âi | θi) > 0 both the following conditions ar
satisfied

(ii) âi ∈ argmax
ai

∑

a−i ,θ−i

ui(ai, a−i , θi, θ−i )µ̂
i(θ−i | θi)σ̂−i (a−i | θ−i ),

and for anyȳi in the range ofyi

(iii )
∑

{a−i ,θ−i : yi (âi,a−i ,θi ,θ−i )=ȳi}
µ̂i(θ−i | θi)σ̂−i (a−i | θ−i )

=
∑

{a−i ,θ−i : yi (âi ,a−i ,θi ,θ−i )=ȳi}
p(θ−i | θi)σ−i (a−i | θ−i ).

We say thatσ is a self-confirming equilibrium if there is some collection(µ̂i, σ̂−i )i∈I
such that (i), (ii), and (iii) are satisfied.5

4 By “belief-based learning” we mean a process in which players base their actions on their beliefs
opponents’ play; Fudenberg and Kreps (1995) and Fudenberg and Levine (1993b) showed that the
outcomes of such processes correspond to the self-confirming equilibria; they considered general exten
games and supposed that the signals corresponded to the terminal nodes of the game. Matsushima (199
steady-state play in games when, instead of using a belief-based learning rule, players use a form of reinfo
learning that leads them to choose the maximin action in bandit problems.

5 It is appropriate to have a singlêσ−i for each playeri in the definition because we assume that ther
a single agent in each player role. This is called the “unitary” version of self-confirming equilibria; whe
consider large populations and matching in Section 4, we allow for heterogeneous beliefs. Note thati ’s beliefs
about opponents’ play take the form of a strategy profile as opposed to a probability distribution over s
profiles. The complications that arise due to correlations in conjectures are discussed in Fudenberg a
(1988) and Fudenberg and Levine (1993a); we simplify by ignoring them here. Given this restriction, the
further loss of generality in taking beliefs to be point conjectures. Battigalli (1987) defined a similar conc
the one above, as did Kalai and Lehrer (1993).
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Condition (i) is a consequence of the assumptions that players observe their own
and that the types are i.i.d. over time; it will not apply in the setting considere
Section 5, where a player’s type may be fixed once and for all. Condition (ii) says
any action played by a type of playeri that has positive probability is a best response
her conjecture about opponents’ play and beliefs about Nature’s move. Condition (iii
that the distribution of signals (conditional on type) that the player expects to see e
the actual distribution. This captures the least amount of information that we would e
to arise as the steady state of a learning process.

Note that the set of self-confirming equilibria can in general depend on the setΘ of
types that players think are possible, as this set determines the domain on which
liefs µ̂i are defined. Note also that a complete belief-based learning model would s
priors over both Nature’s probability distribution and opponents’ strategies. These
would be updated over time, so that the steady-state belief–conjecture pair(µ̂, σ̂−i ) need
not be the same as priors. In the learning process, different priors can lead to a
ent distribution over steady states; in our definition the set of self-confirming equi
corresponds to the set of possible steady states for all initial conditions of the le
process.

We will sometimes consider the restriction of self-confirming equilibria to the
where players’ beliefs about Nature satisfy certain restrictions. In particular, we say
self-confirming equilibrium has “independent beliefs” if for all playersi the beliefsµ̂i are
a product measure. Because the domain ofµ̂i is all of Θ0 ×Θ1 × · · · ×ΘI , independence
implies that playeri ’s beliefs about the types of her opponents do not depend on
own type. This restriction is most easily motivated in games where the true distrib
p is a product measure, that is, players’ types are in fact independent, as in thi
assuming independent beliefs amounts to saying that players understand this particu
about the structure of the game. The following game demonstrates the effect of ass
independent beliefs.

Example 1 (Independent beliefs). Consider the following “bandit problem,” a one-perso
two-type, two-action game, with two different states inΘ0. The actions are labeledIn and
Out; the player’s types are labeled “Timid” (T ) and “Brave” (B), the “Nature’s type” states
Θ0, are labeledL andR. Both types get a payoff of 0 fromOut. Payoffs fromIn are given
in Table 1.

Notice thatIn is a dominant strategy for the Brave type. Suppose the player doe
observe Nature’s move but does observe her own payoff. Suppose also that the o
distributionp on Nature’s move assigns equal probability to the four states(B,L), (B,R),
(T ,L), and(T ,R). The Brave type hasIn as a dominant strategy, and soBrave will go In
in every self-confirming equilibrium. Thus, since the player observes her payoff, the p
learns the distribution of Nature’s move conditional onBrave, so the only self-confirming

Table 1

L R

Brave 1 2
Timid 2 −1
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equilibrium with independent beliefs hasµ̂ = p and both types playingIn. However, there
is also a self-confirming equilibrium without independent beliefs where theTimid type
staysOut because the player believes that Nature playsR whenever the player isTimid,
that isµ̂i(R | T ) = 1.

If there were only aTimid type, then clearly there would be a self-confirmi
equilibrium in which the player staysOut; this is exactly Example 5 (and similar
Example 1) of Jackson and Kalai (1997).

We explore the consequence of independent beliefs further in Example 7 of Sec
This independence is one example of a situation where players usea priori information
about the joint distribution of types to restrict their beliefs. Another example is the
where players know the conditional distribution of Nature’s type conditional on
own. Since players learn the distribution of their own type, they will be able to de
the distribution of Nature’s type,θ0. Thus Nash equilibria will only be self-confirming
players have correct beliefs about Nature’s type. A third example is where players
the distribution of their opponents’ types conditional on their own, but not neces
that of Nature. In this case players will learn the distribution of players’ types; th
in any self-confirming equilibrium the marginal of̂µ on players’ types will coincide
with the marginal ofp on players’ types. This is one of the hypotheses of Propositi
below.

We are interested in the relationship between the set of self-confirming equilibri
the set of Nash equilibria. In aNash equilibrium, each player’s strategy must maximi
her expected payoff given correct conjectures about the play of the opponents a
exogenous “stage-game prior” about the distribution ofθ .6 This (stage-game) prior i
denotedµi ∈ ∆(Θ); µ = {µ1, . . . ,µI } is the profile of such priors. Whenµi = µj for
all i andj , the game has acommon prior; in the complementary case whereµi �= µj for
somei andj we say that the priors arediverse. The distributionp corresponds to the tru
distribution of Nature’s move in the stage game, so whenµi = p for all playersi we say
thatthe priors are correct.

Definition. A strategy profileσ is aNash equilibrium with conjectureσ̂−i and beliefsµ̂i

if for each playeri, and for any pairθi, âi such thatµ̂i (θi) · σi(âi) > 0

(ii) âi ∈ argmaxai
∑

a−i ,θ−i
ui (ai, a−i , θi, θ−i )µ̂

i(θ−i | θi)σ̂−i (a−i | θ−i ), and

(iii ′) σ̂−i = σ−i , µ̂i = µi .

6 Note that if players are Bayesians they will have a prior about the state of the overall learning proce
this prior need not be the fixedµi that is taken as data in the specification of the stage game. We call the
objects “priors” to conform to past usage, but the language is inaccurate once we set the stage game in a
learning setting; we occasionally emphasize this by referring to them asstage-game priors.
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Note that (iii′) has the further implication thatµi(θi) > 0 impliesµ̂i(θi) > 0.7 Note also
that the definition of Nash equilibrium, unlike that of SCE, is unrelated to the observ
structure; that is, the mapsyi(a, θ) do not appear in the definition.

When the stage-game priors are diverse, we say that the Nash equilibrium hasdiverse
priors. Finally, to distinguish the case where the beliefs are correct, that isµi = p for all i,
we say this isa Nash equilibrium with correct priors.

The next result shows the restrictive effect that the assumption of private value
on the extent to which allowing for diverse priors increases the set of Nash equili
profiles. Later results in the paper show how the private-values assumption enable
comparisons of the sets of Nash and self-confirming equilibria.

Proposition 0. The set of Nash equilibria of a two-player game with private values and
arbitrary, possibly diverse, priors depends only on the support of the priors, and equals the
set of Nash equilibria of the same game with common priors and the same support. That
is, if Θ is the fixed support of the distributions, the set of σ that are Nash equilibria for
some µ1,µ2 with support Θ equals the set of σ that are Nash equilibria for some common
prior µ on Θ .

Proof. A player’s prior about her own type does not matter to her, and so there is no
in modifying it to reflect her opponent’s belief. In a similar vein, neither player cares a
Nature’s typeθ0. Thus, ifσ is a Nash equilibrium where player one’s prior onΘ1 ×Θ2 is
µ1 = µ1

1 × µ1
2, and two’s prior isµ2 = µ2

1 × µ2
2, then it is also an equilibrium when th

priors are bothµ2
1 × µ1

2. ✷
The following proposition summarizes how opposite extreme assumptions on pl

observations effect the beliefs and strategy profiles in the self-confirming equi
leading in particular to ruling out profiles that are Nash equilibria only with diverse p
at one extreme, and allowing for a very large set of outcomes at the other. This lead
the next section to explore the extent to which intermediate assumptions on observ
can result in a closer relationship between Nash and self-confirming equilibria.

Proposition 1. If players observe Nature’s move, then in any self-confirming equilibrium
the beliefs equal the objective distribution (µ̂i = p). Conversely, if players observe nothing
(yi(a, θ) = ȳ for all a and θ) then the set of self-confirming equilibria allows for any
beliefs µ̂, including µ̂ = µ, and includes all profiles of ex-ante undominated strategies.

Proof. The proof of this statement is an immediate consequence of the definitions,
omitted, as are some of the proofs of later statements. In this case, the conclusion
from condition (iii) of the definition of SCE, which requires that the beliefs and conjec

7 This definition of Nash equilibrium allows for a player to believe that an opponent is not optimizing,
j can assign strictly positive probability to a type ofi to which i assigns zero probability. To deal with this iss
we could state the primitives of the game as conditional probabilitiesµi(θ−i | θi ) and impose interim optimality
even for own types to which one assigns zero probability. We chose to avoid this extra complexity in the n
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generate the distribution of signals that the player actually sees. In particular, th
hypothesis implies that any profileθ−i generates a unique signal, so for each such pro

∑

a−i

µ̂i (θ−i | θi)σ̂−i (a−i | θ−i ) =
∑

a−i

p(θ−i | θi)σ−i (a−i | θ−i ),

and hencêµi(θ−i | θi) = p(θ−i | θi) as claimed. Regarding the second claim, the strate
areex-ante undominated because there is only one agent in each player role, so t
agent’s conjectures about the other players’ strategies must be the same regardles
agent’s action and type, and the belief about Nature must also be conditionally indep
of the action chosen given the type.✷

3. The relationship between self-confirming equilibria and Nash equilibria

In this section we focus on the relationship between self-confirming equilibria
Nash equilibria. Specifically we use a series of examples to explore the assumption
observability under which the set of self-confirming equilibrium profiles with beliefsµ̂ that
are equal to some givenµ coincide with the set of Nash equilibrium profiles of the ga
where players’ exogenous stage-game priors regarding Nature are this same valuµ.
We refer to this equality of profiles by saying that the sets of Nash and self-confir
equilibria with beliefsµ coincide.

3.1. The tension between Nash and self-confirming equilibria

As mentioned above, if players cannot observe or deduce their opponents’ action
end of each period, then in general there can be self-confirming equilibria that are no
equilibria. So we begin by considering the case in which players either directly ob
or indirectly deduce from other observations, the realized actions of their opponent
each play of the game.

Proposition 2. If either

(i) payoffs are generic (ui(a, θ) �= ui(a
′, θ ′) if a �= a′ or θ �= θ ′) and observed, or

(ii) there are private values (ui(a, θ) = ui(a, θi)) and observed actions,

then the set of strategy profiles in self-confirming equilibria coincides with the set of Nash
equilibrium profiles of the game with the correct (hence common) prior.

Proof. (i) Let θ−i = (θ0, θ1, . . . , θi−1, θi+1, . . . , θI ) denote a specification of the typ
of Nature and of all players other thani. Because payoffs are observed,ui(a, θ) �=
ui((ai, a

′−i ), (θi, θ
′−i )) impliesyi(a, θ) �= yi((ai, a

′−i ), (θi, θ
′−i )). With generic payoffs the

mapui(a, θ) is 1–1, and both the actions of other players,a−i , and Nature’s move,θ , can
be uniquely determined fromyi . Consequently, from condition (iii) of the definition o
SCE, the only beliefs and conjectures that are self confirming are the correct ones.
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(ii) If players observe their opponents’ actions, then in a self-confirming equilib
players must correctly forecast the conditional distribution of opponents’ actions
their own type. In a game with private values, a player’s payoffs do not depen
her opponents’ types, so any strategy for playeri that is a best response to conjectu
and beliefs consistent with the observed distribution over actions must also be
response to the true distributions of opponents’ actions and Nature’s move. This im
that with private values and observed actions every self-confirming equilibrium ha
same strategies as a Nash equilibrium of the game with the correct and hence c
priors. ✷

Under either condition of the proposition, if the stage-game priors in a given Bay
game are not common, and in addition, if the set of Nash equilibria of that game d
from the set of Nash equilibria with the correct prior (that is if the presumption of div
priors has any significance), then the Nash equilibria of the game with diverse prior
not coincide with the self-confirming equilibria. This is demonstrated in Example 2 b

Jackson and Kalai (1997), Theorem 1, prove a related result. They assume that
are “privately observable,” and that “social learning implies private learning,” and r
the similar conclusion that Bayesian equilibria of a “recurring” game converge to Bay
equilibria of the stage game (with correct priors).8 Their Example 2, of a repeated privat
values first-price sealed-bid auction with observed winning bids, is an instance o
result, and of ours. Proposition 2(i)’s assumption of observed payoffs implies that p
are privately observed, but this is not sufficient for the result, as shown by Exam
The assumptions of Proposition 2(ii) also imply that payoffs are privately observed,
before the latter is not sufficient for our conclusion.

Example 2 (Nash equilibria that are not self-confirming equilibria). We consider a gam
with a column player,C, and two row players,R1 andR2. Nature choosesL or R, with
equal probability; the column player observes Nature’s choice ofL or R, while the two
other players do not. Thus playersR1 andR2 each have a single type, playerC has two
types,L andR, and the setΘ0 of Nature’s types is empty.

In this game,C ’s payoff depends only on her own action and type, but not on the ac
taken by the row players: specifically,C ’s actions are labeledl and r, andC gets 1 for
choosing the same as Nature, and 0 for choosing the opposite. The row players’ p

8 A game hasprivately observed payoffs if for all players i and alla, θ, ā−i , θ̄−i , yi (a, θ) = yi ((ai , ā−i ),

(θi , θ̄−i )) implies ui(a, θ) = ui((ai , ā−i ), (θi , θ̄−i )). Jackson and Kalai considerrecurring games in which
successive players play a stage game, and observe a public signal, but need not know the distribution
own type or actions played by former players in the same role. Nature picks a stage game distribution
fixed distribution, as in our discussion of exchangeability in Section 5.3, and players have a correct an
common prior about this initial move by Nature. Their condition thatsocial learning implies private learning
says, roughly, that whenever the distribution of past public signals permits an observer to forecast as wel
knew the distribution of Nature’s move, then the players’ forecasts conditional on past public signals, the
type, and own action, are the same as if they also knew the distribution of Nature’s move. This is a cond
the equilibrium of the overall recurring game; it is always satisfied when actions are observable and ty
independently distributed.
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Table 2

R1 l r

U 3/4 3/4
D 1 0

R2 l r

U 3/4 3/4
D 0 1

each depend on the column player’s action and their own action, as shown in th
matrices in Table 2.

This is a game with private values because the row players’ payoffs depend only
column player’s action, not her type. We will assume that actions are observed at the
each round of play in the learning environment, so that Proposition 2 applies. Clea
column player has a dominant strategy of playingl when typeL andr when typeR, so in a
self-confirming equilibrium, the column player playsl onL andr onR. Thus the column
player takes each action half of the time in a self-confirming equilibrium, and becau
row players observe this, they must playU .

Now suppose thatR1’s stage-game prior assigns probability 0.9 to typeL and 0.1 toR,
while R2’s stage-game prior is the reverse, with 0.1 probability of typeL and 0.9 toR.
In a Nash equilibrium,C playsl upon observingL andr upon observingR, and the row
players know this. Given the stage-game priors, this implies thatR1 andR2 believe that
they will face the actionsl andr respectively with probability 0.9. Consequently, in th
Nash equilibrium with diverse stage-game priors,R1 andR2 will both chooseD. However,
this is not a Nash equilibrium for any common prior, and so it is not a self-confirm
equilibrium for anyp when the column player’s action is observed.

We see in this example that, when players observe actions, the self-confi
equilibrium in which beliefs are equal to the stage-game priors is unique and is dif
from the Nash equilibrium. When players observe nothing at all, the set of self-confi
equilibria with beliefs equal to the stage-game priors includes the Nash equilibrium,
fact it imposes no restrictions at all on the play byR1 andR2 since the row players wil
not know anything about column’s choice.

One way of summarizing this example is to say that although Nash equilibrium req
two players to agree about an opponent’sstrategy, these players can have different foreca
about the distribution of that opponent’sactions if they have different beliefs about th
distribution of that player’s type. In contrast, with observed actions players corr
forecast the distribution of opponent’s actions in any self-confirming equilibrium, but
can have different beliefs about the distribution of Nature’s move and about the oppo
strategy.

As we noted earlier, the set of self-confirming equilibria can depend on the sΘ

of types that the players think are possible, as this set is the support of the a
beliefs, and (as in the second equilibrium discussed in Example 1) some beliefs
the consequences of an action might keep a player from playing it. However, when p
know their payoffs as a function of the strategy profile, the game is one of private v
and as in Proposition 2(ii), each player’s best response depends only on his forecas
distribution of his opponents’ actions. This suggests the following conclusions:
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Proposition 3. (i) When there are private values and the distribution p of Nature’s
move assigns probability 1 to a single profile of types, the definition of self-confirming
equilibrium in this paper is equivalent (up to the different assumptions on the observation
structure) to the definition given in Fudenberg and Levine (1993a) for the complete-
information case, and in particular it is independent of the set Θ .

(ii) If in addition actions are observed each round, the set of self-confirming equilibria
reduces to the set of Nash equilibria of the complete-information game corresponding to
the realized payoff functions.

Proof. For part (i), recall that with private values, each player’s set of best resp
depends only on the player’s conjecture about the play of the opponents. Thus the p
beliefs about Nature’s move are irrelevant for whether a strategy profile is a self-confi
equilibrium; all that matters is that each player’s strategy is a best response to the p
conjectures about opponents’ play, and that these conjectures are consistent w
distribution of signals that the player observes. This is exactly the definition of
confirming equilibrium in Fudenberg and Levine (1993a), except that they specialize
case where the signal observed is the terminal node of an extensive-form game. P
follows because, as in the proof of Proposition 1, condition (iii) of the definition of S
requires conjectures to be correct when actions are observed.✷

In Section 4, we develop a small extension of this proposition that applies to a com
design for game theory experiments.

The next two examples explore the role of observing actions in the relatio
between Nash and self-confirming equilibria in games that do not have private v
We summarize their implications as follows.

Proposition 4. (i) Without private values, if neither types nor payoffs are observed, but
actions are (yi(a, θ) = a), there can be self-confirming equilibria with correct beliefs
about Nature (µ̂i = p) that are not Nash even with correct priors (Example 3).

(ii) Even if the set of strategy profiles in self-confirming equilibria with beliefs µ = µ̂

coincides with the set of Nash equilibria, conjectures about opponents’ play may fail to be
correct (σ̂−i �= σ−i ). Consequently the profile can fail to be self confirming once actions
are added to the available information (Example 4).

Example 3 (Self-confirming equilibria that are not Nash with observed actions). PlayerR
and playerC each choose either−1 or +1. PlayerR’s type is either+1 (with probability
2/3) or −1 (with probability 1/3), and playerR’s payoff is her action times her type, s
playerR plays+1 when type+1 and−1 when type−1. PlayerC ’s payoff is the produc
of playerR’s type and the two actions, so the unique Nash equilibrium with the co
prior has playerC play+1. If all that playerC observes is playerR’s action, then playerC
can have correct beliefs about Nature’s move and conjecture that playerR plays+1 when
type−1 and mixes 1/2–1/2 when type+1. In this case the best response is for playeC

to play−1. Consequently, playerC plays−1 in this self-confirming equilibrium.
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Table 3

A B

A 1,1 0,0
B 0,0 0,0

A B

A 0,0 1,1
B 1,1 0,0

Table 4

A B

A 1− ε,1− ε ε, ε

B ε, ε 0,0

Example 4 (A game where when payoffs are observed, Nash equilibrium and self-
confirming equilibrium are equivalent iff actions are not observed). Consider a two-playe
game in which Nature chooses the left or right matrix in Table 3. Neither player has p
information. Proposition 2(i) does not apply because the payoffs include ties as
below.

To analyze Nash equilibria, suppose that the stage game priorµ is that both players
think the left matrix is chosen with probability 1− ε. The strategic form for this gam
given the common beliefsµ is described in Table 4.

The unique Nash equilibrium for the specified beliefs is(A,A).
Now suppose that in the learning environment the true probability of the left m

is ε. If players observe only their payoffs, then(A,A) is a self-confirming equilibrium
with beliefs (1 − ε, ε) and conjecture that the opponent is playingB: in this case each
player believes that playingA yields 1 with probabilityε, andB yields 0. However, if
players were to also observe actions, then the Nash equilibrium(A,A) would no longer be
self confirming.

3.2. Examples where Nash equilibria and self-confirming equilibria do coincide

Proposition 2 shows that with private values and observed actions, the set of s
profiles in self-confirming equilibria coincides with the set of Nash equilibrium pro
of the game with the correct (hence common) prior, and Example 2 shows that on
conditions there can also be Nash equilibria with diverse priors that are not self-confi
with respect to any beliefs. Our next example shows that the reverse conclusion ca
the sets of Nash equilibria and self-confirming equilibria for a given diverse priorµ can
coincide, even when actions are observed.

Proposition 5. The Nash equilibria with diverse priors µ and the self-confirming equilibria
with beliefs µ̂ = µ may coincide, whether or not players observe actions.

This is demonstrated by the following example:

Example 5 (A game where Nash equilibrium and self-confirming equilibrium coincide for
a specific diverse belief about Nature’s move). The game in Table 5 is a two-player game
which Nature chooses the left(l) or right (r) payoffs, and neither player observes Natur
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Table 5

L R

U 1,1 0,0
D 0,0 −1,−1

L R

U −1,−1 0,0
D 0,0 1,1

move. The row player believes the left payoffs are chosen, the column player believ
opposite:µ1(l) = µ2(r) = 1. So the unique Nash equilibrium is for the row player to p
U and the column playerR, with payoffs (0,0). Whether or not players observe th
opponent’s actions or their own utility, this profile is self-confirming with beliefs equa
the given stage-game priors. However, the subset of self-confirming equilibria with b
in which µ̂1 = µ̂2 is either(U,L), (D,R), or the entire strategy space.

Note that the diverse priors in the example are significant: the set of Nash (and
confirming) equilibria with the diverse priors differs from the set of Nash (and
confirming) equilibria with a common prior. The example demonstrates this point
ex-ante dominating strategies, in which it is irrelevant what players observe; in an exa
in the appendix the players do care about their opponents’ actions, and in that ex
the sets of pure-strategy Nash and self-confirming equilibria with a specific diverse
coincide if players observe either their own payoffs, or the opponents’ actions.

To summarize, we have seen that observing actions is neither necessary nor su
for self-confirming and Nash equilibria to coincide. Moreover, a Nash equilibrium w
diverse prior that is a self-confirming equilibrium when players observe only their pa
need no longer be a self-confirming equilibrium if players can observe actions as w
payoffs. This suggests that, loosely speaking, the “best” case for Nash and self-con
equilibria to coincide for some diverse beliefsµ in games with general payoff matrices
when actions are observable and payoffs are not. Moreover, Proposition 2 shows th
observed actions and private values, any self-confirming equilibrium is a Nash equili
with the correct beliefs. On the other hand, Example 2 shows that if players observe a
and not payoffs, they need not agree about the distribution of private types, so tha
equilibrium and self-confirming equilibrium can differ when there is not private val
These sets can still differ under the additional assumption that players have common
about private types, as players also care about the correlation between Nature’s bel
opponent’s induced actions. However, to rule this out by assuming that players don
about the correlation between opponents’ types and opponents’ actions leads bac
conclusion that every self-confirming equilibrium is a Nash equilibrium with the co
beliefs.

4. Large populations and heterogeneous beliefs

Next we focus on a class of games of special interest in learning theory a
experimental economics: games in which players are randomly matched to play a “
game. In this setting it is natural to think ofp as the distribution of types for a given matc
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but we must also consider the relationship between the matching process and thep from
which players draw their observations.

Suppose that individuals in a given player role are independently matched in each
with opponents in other roles, and that after each match is made Nature draws ty
that match according to the distributionp. We know from Fudenberg and Levine (1993
that when there are multiple agents in each player role, there can be “heterogeneou
confirming equilibria in which different agents in the same role play different strate
and have different conjectures. Thus, when types are chosen independently over tim
separately for each match, the appropriate definition allows the beliefs and conject
the agents to vary with the strategy chosen.

Definition. A strategy profileσ is aheterogeneous self-confirming equilibrium if for each
playeri there exists a finite set of strategies{σk

i : k ∈ K} ⊂ Σi such thatσi is in the convex
hull of {σk

i : k ∈ K} and such that for eachσk
i there are conjectureŝσ−i and beliefsµ̂i

(both of which can depend onσk
i ), such that

(i) p(θi) = µ̂i(θi),

and for any pairθi, âi such thatµ̂i(θi) · σi(âi | θi) > 0 both the following two condition
are satisfied:

(ii) âi ∈ argmax
ai

∑

a−i ,θ−i

ui(ai, a−i , θi, θ−i )µ̂
i(θ−i | θi)σ̂−i (a−i | θ−i ),

and for anyȳi in the range ofyi

(iii )
∑

{a−i ,θ−i : yi (âi,a−i ,θi ,θ−i )=ȳi}
µ̂i(θ−i | θi)σ̂−i (a−i | θ−i )

=
∑

{a−i ,θ−i : yi (âi ,a−i ,θi ,θ−i )=ȳi}
p(θ−i | θi)σ−i (a−i | θ−i ).

With this definition,σi corresponds to the aggregate play of the population of playei ’s;
each individual in the role of playeri is playing one of theσk

i , and the individual’s belie
and conjecture depend on the strategy she plays.

Intuitively, allowing different agents in the role of playeri to have different self-
confirming beliefs makes no difference when the beliefs must be correct. For this r
allowing for heterogeneous beliefs makes no difference when players observe a
and types at the end of each round, nor when players observe their realized payo
this information reveals the types and actions, nor when players observe their oppo
actions and there are private values: In all of these cases, as in Propositions 1 an
heterogeneous self-confirming equilibria coincide with the Bayesian Nash equilibria
the correct beliefs. On the other hand, the conditions for this equivalence are not sati
many situations of interest. Fudenberg and Levine (1997) show that the outcomes o
well-known game theory experiments suggest that subjects had heterogeneous
and Camerer and Ho’s (1999) econometric analysis of belief-based learning mode
support for heterogeneous beliefs.
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A bandit problem provides an easy way to illustrate the difference this heteroge
can make. Consider a simplified version of the bandit problem in Example 1, where
one now has the single type “Timid.” PlayingOut gives this type a payoff of 0, playin
In gives 2 if Nature playsL and−1 if Nature playsR, and the distribution of Nature’
move is such that it is optimal for the player to always playIn. The player knows the
structure of the model but does not know the distribution of Nature’s move; the p
observes her payoff but does not directly observe Nature’s move. In this game, ther
self-confirming equilibrium where the player randomizes, since a player who playsIn with
positive probability must know the expected payoff toIn. But there are heterogeneous se
confirming equilibria where some players playIn and others stayOut: The players who
play In are playing a best response to the true distribution of Nature’s move; the p
who playOut believe that Nature playsR with probability more than 2/3 and never se
evidence that this belief is mistaken.

Example B in the appendix shows that heterogeneity can make a difference e
games where any SCE with unitary beliefs has beliefs that equal the true distribution

5. The joint distribution of Nature’s moves over time, agents, and players

So far we have supposed that Nature makes independent draws fromp each period. In
this section we consider alternative stochastic processes for the specification of typ
explore how this affects the notion of self-confirming equilibrium.

5.1. Perfect correlation: a single type profile in all matches and all dates

One specification that is often used in experiments is for Nature to make a onc
for-all choice of a single profile of typesθ that will apply to all matches.9 In this case, even
if the profile is chosen according to some nondegenerate distributionp, this distribution
is not directly relevant to the long-run outcome. Thus, the appropriate definition of
confirming equilibrium replacesp in condition (iii) with the degenerate distribution th
choosesθ̂ with probability one. This is “appropriate” in the sense that the players l
only about the particular draw, and the relative probability of the types that did not
does not influence the set of possible steady states.10 Combining this observation wit
Proposition 3, we conclude that if Nature picks the payoff functions according to a po
nondegenerate distribution, players know the map from actions to their own payoff
private values), and actions are observed, the set of self-confirming equilibria redu

9 Examples include Cox et al. (2001), Chen (2000), Mitropoulos (2001), and Oechssler and Schippers
10 Battigalli and Guaitoli (1997, Section 1.4) study exclusively the unitary-beliefs version of this case

types are drawn once and for all. They provide a version of the corresponding form of self-confirming equi
and use it to analyze an example which has the same property as Example 7 below: their Propositio
discussion on p. 116 imply that in one state the players’ behavior coincides with their behavior where the
commonly known, whereas in another state there is a self-confirming equilibrium in which players’ behav
rely on the state not being commonly known. Their footnote 4 states a special case of Proposition 2′ below, and
their footnote 10 discusses how to modify their definition to correspond to the type-heterogeneous notion
at the end of this section; they do not explore the impact of this modification.
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the set of Nash equilibria of the complete-information game corresponding to the re
payoff functions. This is the case in all the experimental papers described in footnot11

5.2. Fixed types for each agent, but diversity across agents in the same role

Now we suppose that each agent’s type is fixed once and for all, before any m
have taken place, and that players are randomly matched each period, with the m
process independent of the players’ types. Then even if the distributionp from which
the types were drawn exhibits correlation, the matching process will lead the distrib
of types in each match to be independent, and the distribution that governs the le
process will be the product of the realized marginal distributions on each player’s
The heterogeneous self-confirming equilibrium defined in Section 4 is appropriate
Nature’s move is i.i.d. over time, since a given agent eventually receives many observ
of the distribution of signals corresponding to each possible typeθi in the support ofp, but
it is not appropriate in the present case where types are fixed once and for all, as eac
is only in the role of a single type, and there is no reason that beliefs across types
be consistent with updating from a common prior.12 Therefore, instead of imposing th
restriction, we allow each typeθi to have any “interim belief”µ̃θi that is consistent with
that type’s observations. Similarly, when types are fixed, conjectures may depend on
The following notion of type-heterogeneous self-confirming equilibrium captures the
that types are fixed initially, but that players are subsequently matched with oppo
whose types have been drawn according top.

Definition. A strategy profileσ is a type-heterogeneous self-confirming equilibrium if for
each playeri, and for eacĥai andθi such thatp(θi) · σi(âi | θi) > 0 there are conjecture
σ̂−i and interim beliefsµ̃θi (both of which can depend on̂ai andθi), such that both the
following conditions are satisfied

(ii) âi ∈ argmaxai
∑

a−i ,θ−i
ui(ai, a−i , θi, θ−i )µ̃

θi (θ−i )σ̂−i (a−i | θ−i ),
(iii) for any ȳi in the range ofyi

∑

{a−i ,θ−i : yi (âi,a−i ,θi ,θ−i )=ȳi}
µ̃θi (θ−i )σ̂−i (a−i | θ−i )

=
∑

{a−i ,θ−i : yi (âi ,a−i ,θi ,θ−i )=ȳi}
p(θ−i | θi)σ−i (a−i | θ−i ).

11 Of these, only Cox et al. told subjects about the distribution from which the fixed types were dra
the relevant treatments of their experiments, subjects were told nothing at all about the payoff functions
opponents.

12 If no restrictions are imposed on the prior, thenany collection of interim beliefs(µ̃θi )θi∈Θi
can be generate

from a priorµi by settingµi(θ−i , θi ) = µi(θi )µ̃i (θ−i ) for some marginalsµi(θi ), but the interim definition
allows for each type of playeri to think all types are independently distributed while also allowing different ty
to have different beliefs.
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Table 6

L R

Brave 1 2
Timid 2 −1

Table 7

L R

Brave 2 −1
Timid −1 2

Notice that condition (i), which required correct beliefs about one’s own types,
longer appropriate, since each agent in a player role does not observe the distribu
types in that player role.

In the following variant on Example 1 “In whenBrave, Out whenTimid” is not a self-
confirming equilibrium, and it is not a heterogeneous self-confirming equilibrium, bu
a type-heterogeneous self-confirming equilibrium.

Example 6 (Heterogeneous self-confirming equilibria versus type-heterogeneous self-
confirming equilibria). Consider a two-player game with two types of player 1. Play
can playIn or Out; Out gives payoff 0, while the payoff toIn depends on player 1’s typ
and player 2’s action as shown in Table 6. (Player 2’s payoff is not shown, becau
assume that for player 2L is a dominant strategy.)

Suppose that player 1 observes her type, action, and realized payoff, but not the
of player 2. The only self-confirming equilibrium is for both types of player 1 to playIn,
and this is also the only heterogeneous self-confirming equilibrium: Since for the
typeIn is a dominant strategy, when types are i.i.d., any undominated strategy for an
in the role of player 1 will cause the agent to learn that 2 playsL. However, “Brave In,
Timid Out” is a type-heterogeneous self-confirming equilibrium, because aTimid type can
stayOut forever and never learn the true distribution of player 2’s play.13

In the examples so far, type-heterogeneity mattered because it let different type
different actions and maintain different beliefs. In the next example, type-heterog
allows types to play the same action.

Example 7 (Independent heterogeneous self-confirming equilibria versus independent
type-heterogeneous self-confirming equilibria). Consider another variant of the one-play
game of Example 1, where the payoffs forOut remain 0 and those forIn are as in Table 7

Here both types can stayOut only if they disagree about Nature’s move:Brave must
believeR andTimid must believeL. Suppose in fact that types observe nothing so

13 The difference between this example and a bandit problem such as Example 1, where player 2 is
by Nature, is that player 1 can think Nature’s move is correlated with her type, but player 1’s conjecture
player 2 must correspond to a strategy for player 2, and since player 2 does not observe player 1’s typ
2’s strategy cannot depend on it.
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behavior depends only on stage-game priors. If the types are drawn anew each per
beliefs are restricted to be independent, then in any self-confirming equilibriumσ(In |
Brave)+ σ(In | Timid) � σ(Out | Brave)+ σ(Out | Timid) since the beliefs correspondin
to anyσk must lead them to playIn either when they areBrave or when they areTimid
(or both). On the other hand, if types are drawn once and for all, they can stayOut forever
(each type can have constant beliefs justifyingOut).

5.3. More general stochastic structures

Underlying our notion of a steady state is the idea that players repeatedly s
from a fixed distribution that does not change over time. Suppose we consider the
general class of exchangeable processes for types, which have a representation as
probability distribution over (conditionally) i.i.d. processes, and for the time being sup
there is a single agent in the role of each player. Then we can think of Nature m
a single once-and-for-all draŵp from the class of i.i.d. processes, and the “appropr
distribution” to use in the definition of a self-confirming equilibrium is thep̂ drawn by
Nature; the fact that players “could have” faced some different distribution and tha
overall distribution wasp is not relevant in the long-run steady state.14 Note that the
exchangeable model nests both the case of a single once-and-for-all drawθ̂ and the case
where each period’sθ is an independent draw fromp. Note also that the distribution from
which Nature chooseŝp does influence the ex-ante distribution over steady states.

Thus, we can extend the discussion of private values.

Proposition 2′. With private values (ui(a, θ) = ui(a, θi)) and observed actions
(yi(a, θ)= a), a self-confirming equilibrium is a Nash equilibrium in a game with stage-
game priors equal to the “realized distribution” of types, p̂.

One can also consider the class of ergodic processes instead of exchangeable
is natural in that case to think ofp as the invariant distribution. Notice in this case t
players are not actually drawing fromp each period, rather they are drawing from tim
varying distributions which average out top. If players believe that the true process
exchangeable, then beliefs in steady states will still satisfy the self-confirming cond
of Section 2 with respect to this ergodic distribution.15
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Appendix A

Example A.1. Since Example 5 involves dominant strategies, it is not very interesting
a game-theoretic perspective. The next, more complicated, example, due to Phil
shows that dominant strategies are not required for the property that thepure-strategy
Nash and self-confirming equilibria coincide if players observe actions or payoffs or
However, the equivalence fails for mixed-strategy equilibria.

In this game there are three states of Natureθ ′
0, θ

′′
0 , θ

′′′
0 and no types. There are tw

players, a row and a column player; each chooses between three actionsT , M, B. Payoffs
in each of the states are described in Table 8.

Beliefs about and the actual distribution of Nature’s move are as in Table 9.
To analyze the game, note that if 2 playsT or M it is a strict best response for 1 to pla

M; if 1 playsM orB it is a strict best response for 2 to playM. Hence the relevant portio
of the game involves 2 playingB or 1 playingT . Payoffs in these cases are summarize
Table 10.

With the given stage-game priors the pure-strategy Nash equilibria are(M,M) and
(T ,B). The latter is not a Nash equilibrium with a common prior. If players obs
payoffs, or opponents’ actions, then there are two pure-strategy self-confirming equ
with beliefsµ1,µ2: one with the strategy profiles(M,M) and the other with(T ,B).

Table 8

θ ′
0

T M B

T 0,1 0,1/2 1,−1
M 5,0 5,5 1/2,5
B 0,0 0,5 −1,0

θ ′′
0

T M B

T 0,−1 0,1/2 −1,1
M 5,0 5,5 1/2,0
B 0,0 0,5 1,0

θ ′′′
0

T M B

T 0,1 0,5 1,1
M 5,0 5,5 5,0
B 0,0 0,5 1,0

Table 9

θ ′
0 θ ′′

0 θ ′′′
0

µ1 1− 2ε ε ε

µ2 ε 1− 2ε ε

µ ε ε 1− 2ε

Table 10

θ ′
0 θ ′′

0 θ ′

u1(T ,B, θ0)= u2(T ,T , θ0) = 1 −1 1
u1(M,B, θ0) = u2(T ,M,θ0)= 1/2 1/2 5
u1(B,B, θ0)= u2(T ,B, θ0)= −1 1 1
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Table 11

LL L C R RR

U 1,0 0,0 1,1 0.01,2 0.03,−12
M 1,0 1,0 2,1 0.5,−10 0.6,−11
D 0,0 1,0 1,1 0.04,−13 0.02,2

To see that this equivalence fails for mixed strategies note first that forε small there is a
mixed-strategy Nash equilibrium in which column playsB with probability 10/(11−13ε)
andM with complementary probability; and row playsT andM with these probabilities
If payoffs and opponents’ actions are observed and players play these strategies t
players would learn Nature’s distribution, so this is not a self-confirming equilibrium.

Example A.2. This example, with payoffs as in Table 11, shows that heterogeneity
make a difference even in games where any SCE with unitary beliefs has beliefs tha
the true distribution.

This is a two-player game without types (equivalently, the type spaceΘ consists of a
single point). Players observe payoffs, but not their opponents’ actions.

The row player playsU only if he believes column playsLL with probability 1, andD
only if he believes column playsL with probability 1. So in a unitary SCE, row cannot pl
bothU andD. If and only if row playsU with sufficiently high probability will column
playR, which will be known to row (by observing payoffs), and then column cannot
U . Similarly RR is ruled out, and bothLL andL are strictly dominated, so the uniqu
unitary SCE is the unique NE (namely(M,C)). However, there is a heterogeneous s
confirming equilibrium in which some row agents playU believingLL, other row agents
playD believingL, the two kind of agents are selected to play with equal probability,
column playsC.
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