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Abstract

This paper discusses the implications of learning theory for the analysis of games with a move by
Nature. One goal is to illuminate the issues that arise when modeling situations where players are
learning about the distribution of Nature’s move as well as learning about the opponents’ strategies.
A second goal is to argue that quite restrictive assumptions are necessary to justify the concept of
Nash equilibrium without a common prior as a steady state of a learning process.
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1. Introduction

This paper discusses the implications of learning theory for the analysis of games with
a move by Nature. Our premise is that equilibrium in games arises as the result of learning,
and that just what people will learn depends both on the true distribution of Nature’s move
and on what they observe when the game is played. One of our goals is to illuminate some
of the issues involved in modeling players’ learning about opponents’ strategies when the
distribution of Nature’s moves is also unknown. In this vein, we show how the relevant
equilibrium concept changes when there are many agents in the role of a single “player,”
and when Nature’s move is determined once and for all at the beginning of the game instead
of being drawn independently each period. A second and more specific goal is to investigate
the concept of Nash equilibrium without a common prior, in which players have correct and
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hence common beliefs about one another’s strategies but disagree about the distribution
over Nature’s move$.This solution is worth considering given the recent popularity of
papers that apply it, such as Banerjee and Somanathan (2001), Piketty (1995), and Spector
(2000)2 We argue that Nash equilibrium without a common prior is difficult to justify as

the long-run result of a learning process, because it takes very special assumptions for the
set of such equilibria to coincide with the set of steady states that could arise from learning.

The intuition for our concern is simple: In order for repeated observations to lead players
to learn the distribution of opponents’ strategies, the signals observed at the end of each
round of play must be sufficiently informative. Such information will tend to lead players
to also have correct and hence identical beliefs about the distribution of Nature’s moves.
While this basic argument is straightforward, our examples highlight some less obvious
points.

Our point of departure is the notion of self-confirming equilibrium, which has been used
to model the outcome of learning processes (see, e.g., references in footnotes 3, 4, and 5).
This equilibrium concept requires that each player’s strategy is optimal given the player’s
beliefs about opponents’ strategies and Nature’s moves, and that these beliefs are consistent
with the distribution of outcomes in the game that the player observes. In Section 2 we
give a formal definition that extends the notion to allow for different possible maps from
outcomes of the game to observations, in particular allowing for the case where players do
not observe the actions taken by others or their own payoffs.

When players observe the “outcome” of a round of play, meaning both the actions taken
and the realization of Nature’s move, the set of self-confirming equilibria is the same as
the set of Nash equilibria with a common prior, so any strategy profile that is not a Nash
equilibrium with a common prior cannot be a self-confirming equilibrium. When players
observe less than the outcome, more beliefs are consistent with the players’ observations,
so a Nash equilibrium without a common prior may be a self-confirming equilibrium,
but only because the set of self-confirming equilibria is then large (and therefore may
well include many outcomes that are not Nash equilibria). This leads us, in Section 3,
to explore the relationship between the set of Nash equilibria when players have given,
possibly inconsistent, beliefs about Nature on the one hand, and the set of self-confirming
equilibria with the same beliefs on the other; we use a series of examples and simple
propositions to illustrate our concern with the use of Nash equilibrium when the prior is
not common. Propositions 1-3 present cases in which these sets only coincide for the case

1 Harsanyi (1967) proposed that games of incomplete information be analyzed as games with a move by
Nature, where the move by Nature is an artificial construction (see, e.g., Dekel and Gul (1997) for a discussion).
He defined (Bayesian) Nash equilibrium in his model both for the case of a common prior and for the case where
priors are allowed to differ; this is the notion of Nash equilibrium we use herein. Our approach is motivated by
a learning model in which play is repeated. In those cases where we assume that the move by Nature is also
repeatedly drawn and its consequences observed, the interpretation of Nature’s move as an artificial construction
is not necessary, so it seems inappropriate there.

2 We do not explore these applications in detail, so in particular we do not claim that their use of Nash
equilibrium is inappropriate. We only want to argue that in the context of incorrect priors, the use of Nash
equilibrium requires more careful justification than is typically given. In fact, Spector (2000) assumes that actions
are observed while payoffs are not, noting that, while these are fairly extreme assumptions, if payoffs were
observed then the players would learn the true distribution of Nature’'s move.
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of a common prior. Proposition 4 presents a case where there are self-confirming equilibria
with correct beliefs about Nature that are not Nash even eathect prior. On the other

hand, Proposition 5 identifies a very special case where the sets of Nash and self-confirming
equilibria do coincide.

Section 4 shows how to extend the equilibrium concept used in Section 3 to games in
which there are many agents in the role of each player and agents are randomly matched
each period. This situation is of interest because it serves to motivate our assumption that
subjects ignore repeated-game considerations and try to maximize their payoff in each
play of the stage game; for the same reason, this is a commonly used design in game
theory experiments. Section 5 considers alternate specifications of the stochastic structure
of Nature’s move, explaining how they alter the definition of self-confirming equilibrium
and its properties. We begin with the case where Nature makes a once-and-for-all choice
of a single profile of types that will apply to all matches; this specification has been used
in many game-theory experiments. We then consider the case where Nature makes a once-
and-for-all choice for each agent, but where different agents in a given player role can
have different types, and we conclude with a brief discussion of alternate, more complex,
stochastic structures.

Of course, our conclusions are all based on the idea of learning as a justification for
equilibrium. In particular, if players achieve equilibrium through deliberation, then Nash
equilibrium without common priors may be sensible. However, it is not at all clear how
this would work in the presence of multiple equilibria. Moreover, the practical difficulties
in computation and the amount of information that can be required to find an equilibrium
makes this seem to us a weak justification for studying Nash equilibrium.

Our criticism of Nash equilibrium without a common prior does not mean we are
arguing for the common prior assumptipaer se. Indeed we are sympathetic to the idea
that some situations are better modeled without common priors; our concerns are with
the uncritical use of the Nash equilibrium solution concept in the absence of a common
prior. Our learning-theoretic critique is related to two other problems of Nash equilibrium
without a common prior. One is internal consistency: a Nash equilibrium when players have
different priors in general is not a Nash equilibrium when Nature is replaced with a player
who is indifferent among all her choices and who behaves exactly as did Nature, because in
a Nash equilibrium the strategy of the player replacing Nature is known. A related problem
(Dekel and Gul, 1997) is that the epistemic foundations of Nash equilibrium without a
common prior are unappealing. The epistemic foundation for Nash equilibrium relies on
a common prior about strategies, and it is not obvious why we should impose this on the
states of Nature underlying the strategic uncertainty and not on those corresponding to
other aspects of the state of Nature.

As mentioned, this paper is related to other work that uses notions similar to self-
confirming equilibrium. Jordan (1995) and Jackson and Kalai (1997) are also related.
Like us, they compare the long-run outcomes of a learning process to the equilibria of
a static stage game, and several of our findings are similar to some of theirs. One important
difference between those papers and this one is that they study Bayesian equilibrium play
of an overall “recurring game” that has a commaon prior, while we study the steady states
of nonequilibrium learning processes that need not start out with common beliefs. We say
more about the relationship between these papers in Sections 3 and 5.
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2. Themode€

We consider a static simultaneous-move game Witkayer roles. (All parameters of the
game, including the number of players, and their possible actions and types, are assumed
to be finite.) For any finite set, we let A(X) denote the space of probability distributions
overX. In the static game, Nature moves first, determining players’ types, which we denote
0; € ®;. To model cases where the types alone do not determine the realized payoffs, we
also allow Nature to pickg € ®p; we call this “Nature’s type.” Players observe their types
and then simultaneously choose actions A; as a function of their type, so that a strategy
o; for playeri is a map from her types to the spadéA;) of her mixed actions. Player
i’s utility u;(a,0) depends on the profile = (a1, ..., a;) € A of realized actions and on
the realizatior® = (6p, 61, ..., 0;) € ® of Nature’s move. When playeis utility does not
depend on Nature’s move beyord own type, i.e.u;(a,0) = u;(a, 6;), we refer to the
game as havingrivate values.

Our solution concept is motivated by thinking about a learning environment in which
the game given above is played repeatedly. We suppose that players know their own payoff
functions and the sets of possible moves of all of the players. We suppose that éhe set
contains all of the type profiles that any player thinks is possible; some of these may have
probability O under the true distribution governing Nature’s move. Players are not assumed
to know either the strategies used by other players or the distribution of Nature’s move;
they learn about these variables from their observations after each period of play. For the
time being, we also suppose that each period the types are drawn independently over time
from a fixed distributiornp. This is the simplest specification, and as we will see, it is the
one that corresponds most closely to standard models of Bayesian games. For the time
being, we also assume that there is a single agent in each player role. Sections 4 and 5
discuss the case where there is a large population of agents in each role who are matched
together to play the game.

Of course, what players might learn from repeated play depends on what they observe
at the end of each round of play. To model this, we adopt the formalism used by Battigalli
(1987) and Rubinstein and Wolinsky (1994), and suppose that after each play of the game,
players receive private signals = y; (a, #). As the notation indicates, these signals are a
deterministic function ok and6. We assume that each player observes her own private
signal y;, along with her own action and own type, so this is their only information
about Nature’s and their opponents’ moveSince the definition given above places no
restrictions on the signal functions, it is consistent with the signal being the terminal node
of an extensive-form game and so it can be applied to more than just static games with an
initial move by Nature. However, to focus on the issue of games with moves by Nature, we
will not consider an explicit extensive-form structure, and we concentrate on observation
structures arising from play of a one-shot simultaneous-move game. We will not formally

3 We consider the case in which knowledge of opponents’ play camiggrom learning by observation and
updating, and not from deduction based on opponents’ rationality, so we do not require that players know their
opponents’ utility functions or beliefs. This is also the reason we do not need to consider moves by Nature that
one player thinks that another thinks are possible, as no deductions are made, only learning from observations.
Rubinstein and Wolinsky (1994), Battigalli and Guaitoli (1997), and Dekel et al. (1999) present solution concepts
based on steady states in which players do make deductions based on rationality of the other players.
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model the dynamics of learning, but will appeal informally to the idea that a steady state of
a belief-based learning process should be a self-confirming equilifrilinus, our focus
is on how the information that players observe at the end of each round of play determines
the set of self-confirming equilibria, and how these equilibria relate to the Nash equilibria
of the game.

The key components of self-confirming (and Nash) equilibrium are each piayer
beliefs about Nature’s move, hestrategy, and herconjecture about the strategies used
by her opponents. Playéis beliefs, denoted byi’, are a point in the spaca(®) of
distributions over Nature’s move, and her strategy is a map; — A(A;). The space of
all such strategies is denoted, and the player’'s conjectures about opponents’ play are
assumedtobed ; € X_, ¥ ;, that s, a strategy profile afs opponents. The notation
Q' (- 16;) refers to the conditional distribution correspondingifaando;, while o; (a; | 6;)
denotes the probability that (6;) assigns ta;.

Definition. A strategy profiles is a self-confirming equilibrium (SCE) with conjectures
6_; and beliefsy; if for each playet,

(i) forall6; with p(6;) #0, [1;(6;) = p(6;)
and for any pai®;, a; such thati’ (6;) - o;(a; | 6;) > 0 both the following conditions are
satisfied

(i) a; e argmax Z wi(ai, ai, 0;,0_) i (0—; | 6;)6_i(a—; | 6—;),

aj

a—i,0_;
and for anyy; in the range ofy;
(il > A6 16)6-i(a—i | 6-)
{a—i.0—i: yi (@i.a—i.0;,0—1)=yi}
= > p@-i 16)0-i(ai |6-).

{a_i.0_;: yi(Gi,a_;,6;.60_;)=y;}

We say thatr is aself-confirming equilibrium if there is some collectioi’, 6_;)ic;
such that (i), (ii), and (iii) are satisfied.

4 By “belief-based learning” we mean a process in which players base their actions on their beliefs about
opponents’ play; Fudenberg and Kreps (1995) and Fudenberg and Levine (1993b) showed that the long-run
outcomes of such processes correspond to the self-confirming equilibria; they considered general extensive form
games and supposed that the signals corresponded to the terminal nodes of the game. Matsushima (1998) looks at
steady-state play in games when, instead of using a belief-based learning rule, players use a form of reinforcement
learning that leads them to choose the maximin action in bandit problems.

5 It is appropriate to have a singfe_; for each playeli in the definition because we assume that there is
a single agent in each player role. This is called the “unitary” version of self-confirming equilibria; when we
consider large populations and matching in Section 4, we allow for heterogeneous beliefs. Noteltblifs
about opponents’ play take the form of a strategy profile as opposed to a probability distribution over strategy
profiles. The complications that arise due to correlations in conjectures are discussed in Fudenberg and Kreps
(1988) and Fudenberg and Levine (1993a); we simplify by ignoring them here. Given this restriction, there is no
further loss of generality in taking beliefs to be point conjectures. Battigalli (1987) defined a similar concept to
the one above, as did Kalai and Lehrer (1993).
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Condition (i) is a consequence of the assumptions that players observe their own types
and that the types are i.i.d. over time; it will not apply in the setting considered in
Section 5, where a player’s type may be fixed once and for all. Condition (ii) says that
any action played by a type of playethat has positive probability is a best response to
her conjecture about opponents’ play and beliefs about Nature’s move. Condition (iii) says
that the distribution of signals (conditional on type) that the player expects to see equals
the actual distribution. This captures the least amount of information that we would expect
to arise as the steady state of a learning process.

Note that the set of self-confirming equilibria can in general depend on the sdét
types that players think are possible, as this set determines the domain on which the be-
liefs i; are defined. Note also that a complete belief-based learning model would specify
priors over both Nature’s probability distribution and opponents’ strategies. These priors
would be updated over time, so that the steady-state belief-conjecturgipair;) need
not be the same as priors. In the learning process, different priors can lead to a differ-
ent distribution over steady states; in our definition the set of self-confirming equilibria
corresponds to the set of possible steady states for all initial conditions of the learning
process.

We will sometimes consider the restriction of self-confirming equilibria to the case
where players’ beliefs about Nature satisfy certain restrictions. In particular, we say that a
self-confirming equilibrium has “independent beliefs” if for all playethe beliefsi’ are
a product measure. Because the domaifi‘ds all of @g x @1 x --- x @, independence
implies that playeri’s beliefs about the types of her opponents do not depend on her
own type. This restriction is most easily motivated in games where the true distribution
p is a product measure, that is, players’ types are in fact independent, as in this case
assuming independent beliefs amounts to saying that players understand this particular fact
about the structure of the game. The following game demonstrates the effect of assuming
independent beliefs.

Example 1 (Independent beliefs). Consider the following “bandit problem,” a one-person,
two-type, two-action game, with two different statesdp. The actions are labeldd and
Out; the player’s types are labeleditnid” (7)) and ‘Brave’ ( B), the “Nature’s type” states,
Oy, are labeled. andR. Both types get a payoff of O frodut. Payoffs fromln are given

in Table 1.

Notice thatln is a dominant strategy for the Brave type. Suppose the player does not
observe Nature’s move but does observe her own payoff. Suppose also that the objective
distributionp on Nature’s move assigns equal probability to the four stged.), (B, R),

(T, L), and(T, R). The Brave type hak as a dominant strategy, and Boave will go In
in every self-confirming equilibrium. Thus, since the player observes her payoff, the player
learns the distribution of Nature’s move conditionalBrave, so the only self-confirming

Table 1

Brave 1 2
Timd 2 -1
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equilibrium with independent beliefs has= p and both types playintn. However, there
is also a self-confirming equilibrium without independent beliefs whereTtimd type
staysOut because the player believes that Nature plRywhenever the player isimid,
thatisg/(R | T) = 1.

If there were only aTimid type, then clearly there would be a self-confirming
equilibrium in which the player stay®ut; this is exactly Example 5 (and similar to
Example 1) of Jackson and Kalai (1997).

We explore the consequence of independent beliefs further in Example 7 of Section 5.
This independence is one example of a situation where playera piseri information
about the joint distribution of types to restrict their beliefs. Another example is the case
where players know the conditional distribution of Nature’s type conditional on their
own. Since players learn the distribution of their own type, they will be able to deduce
the distribution of Nature’s type&p. Thus Nash equilibria will only be self-confirming if
players have correct beliefs about Nature’s type. A third example is where players know
the distribution of their opponents’ types conditional on their own, but not necessarily
that of Nature. In this case players will learn the distribution of players’ types; that is,
in any self-confirming equilibrium the marginal @f on players’ types will coincide
with the marginal ofp on players’ types. This is one of the hypotheses of Proposition 6
below.

We are interested in the relationship between the set of self-confirming equilibria and
the set of Nash equilibria. In Hash eqguilibrium, each player’s strategy must maximize
her expected payoff given correct conjectures about the play of the opponents and her
exogenous “stage-game prior” about the distributiord &f This (stage-game) prior is
denotedu’ € A(@); u = {ul,..., u'} is the profile of such priors. Whep' = ;7 for
all i andj, the game has eommon prior; in the complementary case wheré+# i/ for
somei and;j we say that the priors adiverse. The distributionp corresponds to the true
distribution of Nature’s move in the stage game, so whég- p for all playersi we say
thatthe priors are correct.

Definition. A strategy profiles is aNash equilibrium with conjectures_; and beliefsi;
if for each playet, and for any paip;, a; such thati (6;) - o; (4;) > 0

(i) a; eargmax, >-, . o uilai,a—0;, O_)A (i | 0;)6_i(a—; | 6_;), and
(i') 6_i=o0_i, il =pi.

6 Note that if players are Bayesians they will have a prior about the state of the overall learning process, and
this prior need not be the fixed’ that is taken as data in the specification of the stage game. We call the latter
objects “priors” to conform to past usage, but the language is inaccurate once we set the stage game in a repeated
learning setting; we occasionally emphasize this by referring to thestagesgame priors.
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Note that (i) has the further implication that' (¢;) > 0 implies (6;) > 0.” Note also
that the definition of Nash equilibrium, unlike that of SCE, is unrelated to the observation
structure; that is, the maps(a, ) do not appear in the definition.

When the stage-game priors are diverse, we say that the Nash equilibriudivéras
priors. Finally, to distinguish the case where the beliefs are correct, thdtisp for all i,
we say this isa Nash equilibriumwith correct priors.

The next result shows the restrictive effect that the assumption of private values has
on the extent to which allowing for diverse priors increases the set of Nash equilibrium
profiles. Later results in the paper show how the private-values assumption enables sharp
comparisons of the sets of Nash and self-confirming equilibria.

Proposition 0. The set of Nash equilibria of a two-player game with private values and
arbitrary, possibly diverse, priors depends only on the support of the priors, and equalsthe
set of Nash equilibria of the same game with common priors and the same support. That
is, if @ isthe fixed support of the distributions, the set of o that are Nash equilibria for
some 1, (2 With support @ equalsthe set of o that are Nash equilibria for some common
prior p on @.

Proof. A player’s prior about her own type does not matter to her, and so there is no harm
in modifying it to reflect her opponent’s belief. In a similar vein, neither player cares about
Nature's typedp. Thus, ifo is a Nash equilibrium where player one’s prior&a x @2 is

ut =l x pd, and two's prior isu? = u2 x 2, then it is also an equilibrium when the
priors are botu? x u3. O

The following proposition summarizes how opposite extreme assumptions on players’
observations effect the beliefs and strategy profiles in the self-confirming equilibria,
leading in particular to ruling out profiles that are Nash equilibria only with diverse priors
at one extreme, and allowing for a very large set of outcomes at the other. This leads us in
the next section to explore the extent to which intermediate assumptions on observability
can result in a closer relationship between Nash and self-confirming equilibria.

Proposition 1. If players observe Nature's move, then in any self-confirming equilibrium
the beliefs equal the objectivedistribution (i; = p). Conversely, if players observe nothing
(yi(a,0) =y for all a and ) then the set of self-confirming equilibria allows for any
beliefs 1, including &t = ., and includes all profiles of ex-ante undominated strategies.

Proof. The proof of this statement is an immediate consequence of the definitions, and is
omitted, as are some of the proofs of later statements. In this case, the conclusion follows
from condition (iii) of the definition of SCE, which requires that the beliefs and conjectures

7 This definition of Nash equilibrium allows for a player to believe that an opponent is not optimizing, since
j can assign strictly positive probability to a typeiab whichi assigns zero probability. To deal with this issue
we could state the primitives of the game as conditional probabilitiéé_; | 6;) and impose interim optimality
even for own types to which one assigns zero probability. We chose to avoid this extra complexity in the notation.
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generate the distribution of signals that the player actually sees. In particular, the first
hypothesis implies that any profite; generates a unique signal, so for each such profile

D A6 1006-i(ai|6-) =) p6i |0)o—i(ai|6-),

a_; a_;

and hencgl/ (6_; | 6;) = p(6_; | 6;) as claimed. Regarding the second claim, the strategies
are ex-ante undominated because there is only one agent in each player role, so that an
agent’s conjectures about the other players’ strategies must be the same regardless of that
agent’s action and type, and the belief about Nature must also be conditionally independent
of the action chosen given the typen

3. Therelationship between self-confirming equilibria and Nash equilibria

In this section we focus on the relationship between self-confirming equilibria and
Nash equilibria. Specifically we use a series of examples to explore the assumptions about
observability under which the set of self-confirming equilibrium profiles with befietfsat
are equal to some givem coincide with the set of Nash equilibrium profiles of the game
where players’ exogenous stage-game priors regarding Nature are this same value of
We refer to this equality of profiles by saying that the sets of Nash and self-confirming
equilibria with beliefsu coincide.

3.1. Thetension between Nash and self-confirming equilibria

As mentioned above, if players cannot observe or deduce their opponents’ actions at the
end of each period, then in general there can be self-confirming equilibria that are not Nash
equilibria. So we begin by considering the case in which players either directly observe,
or indirectly deduce from other observations, the realized actions of their opponents after
each play of the game.

Proposition 2. If either

(i) payoffsare generic (u;(a,0) #u;(a’,0") ifa+#a’ or 6 #6") and observed, or
(ii) there are privatevalues (u;(a, 9) = u;(a, 6;)) and observed actions,

then the set of strategy profiles in self-confirming equilibria coincides with the set of Nash
equilibrium profiles of the game with the correct (hence common) prior.

Proof. (i) Let 6_; = (6o, 01, ...,6i-1,0;+1,...,0;) denote a specification of the types
of Nature and of all players other than Because payoffs are observed(a, 0) #
ui((ai,a’;), (6;,6",)) impliesy;(a,0) # yi((ai,a’;), (6:,6",)). With generic payoffs the
mapu; (a, 0) is 1-1, and both the actions of other players;, and Nature’s move), can
be uniquely determined fromy;. Consequently, from condition (iii) of the definition of
SCE, the only beliefs and conjectures that are self confirming are the correct ones.
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(i) If players observe their opponents’ actions, then in a self-confirming equilibrium
players must correctly forecast the conditional distribution of opponents’ actions given
their own type. In a game with private values, a player's payoffs do not depend on
her opponents’ types, so any strategy for plaiyénat is a best response to conjectures
and beliefs consistent with the observed distribution over actions must also be a best
response to the true distributions of opponents’ actions and Nature’s move. This implies
that with private values and observed actions every self-confirming equilibrium has the
same strategies as a Nash equilibrium of the game with the correct and hence common
priors. O

Under either condition of the proposition, if the stage-game priors in a given Bayesian
game are not common, and in addition, if the set of Nash equilibria of that game differs
from the set of Nash equilibria with the correct prior (that is if the presumption of diverse
priors has any significance), then the Nash equilibria of the game with diverse priors will
not coincide with the self-confirming equilibria. This is demonstrated in Example 2 below.

Jackson and Kalai (1997), Theorem 1, prove a related result. They assume that payoffs
are “privately observable,” and that “social learning implies private learning,” and reach
the similar conclusion that Bayesian equilibria of a “recurring” game converge to Bayesian
equilibria of the stage game (with correct prio?$Jheir Example 2, of a repeated private-
values first-price sealed-bid auction with observed winning bids, is an instance of their
result, and of ours. Proposition 2(i)’'s assumption of observed payoffs implies that payoffs
are privately observed, but this is not sufficient for the result, as shown by Example 4.
The assumptions of Proposition 2(ii) also imply that payoffs are privately observed, but as
before the latter is not sufficient for our conclusion.

Example 2 (Nash equilibria that are not self-confirming equilibria). We consider a game
with a column playerC, and two row playerskR1 andR2. Nature choosek or R, with
equal probability; the column player observes Nature’s choice of R, while the two
other players do not. Thus playeR4 andR2 each have a single type, play@rhas two
types,L and R, and the se®g of Nature’s types is empty.

In this game(’s payoff depends only on her own action and type, but not on the actions
taken by the row players: specificallg;s actions are labeledandr, andC gets 1 for
choosing the same as Nature, and 0 for choosing the opposite. The row players’ payoffs

8 A game hagprivately observed payoffs if for all playersi and alla,,a_;,0_;, v (a,0) = y; ((a;, a—;),
(0;,6_;)) implies u; (a,0) = u; ((a;,a_;), 0;,6_;)). Jackson and Kalai consideecurring games in which
successive players play a stage game, and observe a public signal, but need not know the distribution of their
own type or actions played by former players in the same role. Nature picks a stage game distribution from a
fixed distribution, as in our discussion of exchangeability in Section 5.3, and players have a correct and hence
common prior about this initial move by Nature. Their condition thatial learning implies private learning
says, roughly, that whenever the distribution of past public signals permits an observer to forecast as well as if he
knew the distribution of Nature’s move, then the players’ forecasts conditional on past public signals, their own
type, and own action, are the same as if they also knew the distribution of Nature’s move. This is a condition on
the equilibrium of the overall recurring game; it is always satisfied when actions are observable and types are
independently distributed.
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Table 2
R1 1 r R2 1 r
U 3/4 3/4 U 3/4 3/4
D 1 0 D 0 1

each depend on the column player’s action and their own action, as shown in the two
matrices in Table 2.

This is a game with private values because the row players’ payoffs depend only on the
column player’s action, not her type. We will assume that actions are observed at the end of
each round of play in the learning environment, so that Proposition 2 applies. Clearly the
column player has a dominant strategy of playimghen typel andr when typer, soin a
self-confirming equilibrium, the column player playen L andr on R. Thus the column
player takes each action half of the time in a self-confirming equilibrium, and because the
row players observe this, they must pley

Now suppose thak1’s stage-game prior assigns probability 0.9 to typend 0.1 tor,
while R2’s stage-game prior is the reverse, with 0.1 probability of tipand 0.9 toR.

In a Nash equilibrium¢ plays! upon observind. andr upon observingr, and the row
players know this. Given the stage-game priors, this impliesRiiaand R2 believe that
they will face the action$ andr respectively with probability 0.9. Consequently, in this
Nash equilibrium with diverse stage-game pridt4,andR 2 will both chooseD. However,

this is not a Nash equilibrium for any common prior, and so it is not a self-confirming
equilibrium for anyp when the column player’s action is observed.

We see in this example that, when players observe actions, the self-confirming
equilibrium in which beliefs are equal to the stage-game priors is unique and is different
from the Nash equilibrium. When players observe nothing at all, the set of self-confirming
equilibria with beliefs equal to the stage-game priors includes the Nash equilibrium, but in
fact it imposes no restrictions at all on the play BRY andR2 since the row players will
not know anything about column’s choice.

One way of summarizing this example is to say that although Nash equilibrium requires
two players to agree about an opponesitategy, these players can have different forecasts
about the distribution of that opponentgstions if they have different beliefs about the
distribution of that player’'s type. In contrast, with observed actions players correctly
forecast the distribution of opponent’s actions in any self-confirming equilibrium, but they
can have different beliefs about the distribution of Nature’s move and about the opponent’s
strategy.

As we noted earlier, the set of self-confirming equilibria can depend on thé& set
of types that the players think are possible, as this set is the support of the allowed
beliefs, and (as in the second equilibrium discussed in Example 1) some beliefs about
the consequences of an action might keep a player from playing it. However, when players
know their payoffs as a function of the strategy profile, the game is one of private values,
and as in Proposition 2(ii), each player’s best response depends only on his forecast of the
distribution of his opponents’ actions. This suggests the following conclusions:
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Proposition 3. (i) When there are private values and the distribution p of Nature's
move assigns probability 1 to a single profile of types, the definition of self-confirming
equilibriumin this paper is equivalent (up to the different assumptions on the observation
structure) to the definition given in Fudenberg and Levine (1993a)for the complete-
information case, and in particular it isindependent of the set @.

(i) If in addition actions are observed each round, the set of self-confirming equilibria
reduces to the set of Nash equilibria of the complete-information game corresponding to
the realized payoff functions.

Proof. For part (i), recall that with private values, each player's set of best responses
depends only on the player’s conjecture about the play of the opponents. Thus the players’
beliefs about Nature’s move are irrelevant for whether a strategy profile is a self-confirming
equilibrium; all that matters is that each player’s strategy is a best response to the player’s
conjectures about opponents’ play, and that these conjectures are consistent with the
distribution of signals that the player observes. This is exactly the definition of self-
confirming equilibrium in Fudenberg and Levine (1993a), except that they specialize to the
case where the signal observed is the terminal node of an extensive-form game. Part (ii)
follows because, as in the proof of Proposition 1, condition (iii) of the definition of SCE
requires conjectures to be correct when actions are observed.

In Section 4, we develop a small extension of this proposition that applies to a common
design for game theory experiments.

The next two examples explore the role of observing actions in the relationship
between Nash and self-confirming equilibria in games that do not have private values.
We summarize their implications as follows.

Proposition 4. (i) Without private values, if neither types nor payoffs are observed, but
actions are (y;(a,0) = a), there can be self-confirming equilibria with correct beliefs
about Nature (/i' = p) that are not Nash even with correct priors (Example 3).

(i) Even if the set of strategy profiles in self-confirming equilibria with beliefs © = [
coincides with the set of Nash equilibria, conjectures about opponents’ play may fail to be
correct (o—; # o—;). Consequently the profile can fail to be self confirming once actions
are added to the available information (Example 4).

Example 3 (Self-confirming equilibria that are not Nash with observed actions). PlayerR

and playerC each choose eitherl or+1. PlayerR’s type is either1 (with probability

2/3) or —1 (with probability 3/3), and playerR’s payoff is her action times her type, so
playerR plays+1 when typet+1 and—1 when type—1. PlayerC’s payoff is the product

of player R’s type and the two actions, so the unique Nash equilibrium with the correct
prior has player play +1. If all that playerC observes is playeR’s action, then playe€

can have correct beliefs about Nature’s move and conjecture that figyerys+1 when

type —1 and mixes 12—-1/2 when type+1. In this case the best response is for player

to play —1. Consequently, playe&T plays—1 in this self-confirming equilibrium.
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Table 3

A B A B
A 1,1 00 A 00 11
B 00 00 B 1,1 00

Table 4

A B
A l1—¢,1—¢ ¢g5¢
B g, € 0,0

Example 4 (A game where when payoffs are observed, Nash equilibrium and self-
confirming equilibriumare equivalent iff actions are not observed). Consider a two-player
game in which Nature chooses the left or right matrix in Table 3. Neither player has private
information. Proposition 2(i) does not apply because the payoffs include ties as shown
below.

To analyze Nash equilibria, suppose that the stage game jprigtthat both players
think the left matrix is chosen with probability 2 ¢. The strategic form for this game
given the common beliefg is described in Table 4.

The unique Nash equilibrium for the specified beliefsds A).

Now suppose that in the learning environment the true probability of the left matrix
is ¢. If players observe only their payoffs, théd, A) is a self-confirming equilibrium
with beliefs (1 — ¢, ¢) and conjecture that the opponent is playiBgin this case each
player believes that playing yields 1 with probabilitys, and B yields 0. However, if
players were to also observe actions, then the Nash equiliiiiym) would no longer be
self confirming.

3.2. Examples where Nash equilibria and self-confirming equilibria do coincide

Proposition 2 shows that with private values and observed actions, the set of strategy
profiles in self-confirming equilibria coincides with the set of Nash equilibrium profiles
of the game with the correct (hence common) prior, and Example 2 shows that on these
conditions there can also be Nash equilibria with diverse priors that are not self-confirming
with respect to any beliefs. Our next example shows that the reverse conclusion can hold:
the sets of Nash equilibria and self-confirming equilibria for a given diverse prican
coincide, even when actions are observed.

Proposition 5. The Nash equilibriawith diverse priors u and the self-confirming equilibria
with beliefs i = . may coincide, whether or not players observe actions.

This is demonstrated by the following example:
Example 5 (A game where Nash equilibrium and self-confirming equilibrium coincide for

a specific diverse belief about Nature’smove). The game in Table 5 is a two-player game in
which Nature chooses the lgff) or right (r) payoffs, and neither player observes Nature’s
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Table 5
L R L R
U 11 0,0 v -1,-1 00
D 00 -1-1 D 0,0 11

move. The row player believes the left payoffs are chosen, the column player believes the
oppositet(l) = u2(r) = 1. So the unique Nash equilibrium is for the row player to play

U and the column playeR, with payoffs (0, 0). Whether or not players observe their
opponent’s actions or their own utility, this profile is self-confirming with beliefs equal to
the given stage-game priors. However, the subset of self-confirming equilibria with beliefs
in which 21 = /12 is either(U, L), (D, R), or the entire strategy space.

Note that the diverse priors in the example are significant: the set of Nash (and self-
confirming) equilibria with the diverse priors differs from the set of Nash (and self-
confirming) equilibria with a common prior. The example demonstrates this point using
ex-ante dominating strategies, in which it is irrelevant what players observe; in an example
in the appendix the players do care about their opponents’ actions, and in that example
the sets of pure-strategy Nash and self-confirming equilibria with a specific diverse prior
coincide if players observe either their own payoffs, or the opponents’ actions.

To summarize, we have seen that observing actions is neither necessary nor sufficient
for self-confirming and Nash equilibria to coincide. Moreover, a Nash equilibrium with a
diverse prior that is a self-confirming equilibrium when players observe only their payoffs
need no longer be a self-confirming equilibrium if players can observe actions as well as
payoffs. This suggests that, loosely speaking, the “best” case for Nash and self-confirming
equilibria to coincide for some diverse beligisn games with general payoff matrices is
when actions are observable and payoffs are not. Moreover, Proposition 2 shows that with
observed actions and private values, any self-confirming equilibrium is a Nash equilibrium
with the correct beliefs. On the other hand, Example 2 shows that if players observe actions
and not payoffs, they need not agree about the distribution of private types, so that Nash
equilibrium and self-confirming equilibrium can differ when there is not private values.
These sets can still differ under the additional assumption that players have common beliefs
about private types, as players also care about the correlation between Nature’s beliefs and
opponent’s induced actions. However, to rule this out by assuming that players don'’t care
about the correlation between opponents’ types and opponents’ actions leads back to the
conclusion that every self-confirming equilibrium is a Nash equilibrium with the correct
beliefs.

4. Large populations and heterogeneous beliefs

Next we focus on a class of games of special interest in learning theory and in
experimental economics: games in which players are randomly matched to play a “stage”
game. In this setting it is natural to think pfas the distribution of types for a given match,
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but we must also consider the relationship between the matching process anttdhe
which players draw their observations.

Suppose that individuals in a given player role are independently matched in each period
with opponents in other roles, and that after each match is made Nature draws types for
that match according to the distributign We know from Fudenberg and Levine (1993a)
that when there are multiple agents in each player role, there can be “heterogeneous” self-
confirming equilibria in which different agents in the same role play different strategies
and have different conjectures. Thus, when types are chosen independently over time, and
separately for each match, the appropriate definition allows the beliefs and conjectures of
the agents to vary with the strategy chosen.

Definition. A strategy profiles is aheterogeneous self-confirming equilibriumif for each
playeri there exists a finite set of strateg{e%‘: k € K} C X; such thaby; is in the convex
hull of {o*: k € K} and such that for each’ there are conjectures_; and beliefsi;
(both of which can depend arf), such that

i) p@) =),
and for any paip;, 4; such thati/ (6;) - o; (a; | ;) > 0 both the following two conditions
are satisfied:

(i) a cargmax Y wilai, a—i.6;.0-)A' Oi | 6)5-i(ai |6-p).

o
Yoa0

and for anyy; in the range ofy;

(i) > PO 100)6-i(a—i |0-)

{a_i.0_i: yi (@i,a—i,0;,0_)=y;}

= > pO_i |6)o_i(a—; | 6;).

{a—i,0-i: yi(ai,a—;,0;,0_;)=y;}

With this definition,o; corresponds to the aggregate play of the population of plégjer
each individual in the role of playéris playing one of therl.", and the individual’s belief
and conjecture depend on the strategy she plays.

Intuitively, allowing different agents in the role of playérto have different self-
confirming beliefs makes no difference when the beliefs must be correct. For this reason,
allowing for heterogeneous beliefs makes no difference when players observe actions
and types at the end of each round, nor when players observe their realized payoffs and
this information reveals the types and actions, nor when players observe their opponent’s
actions and there are private values: In all of these cases, as in Propositions 1 and 2, the
heterogeneous self-confirming equilibria coincide with the Bayesian Nash equilibria with
the correct beliefs. On the other hand, the conditions for this equivalence are not satisfied in
many situations of interest. Fudenberg and Levine (1997) show that the outcomes of some
well-known game theory experiments suggest that subjects had heterogeneous beliefs,
and Camerer and Ho's (1999) econometric analysis of belief-based learning models finds
support for heterogeneous beliefs.
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A bandit problem provides an easy way to illustrate the difference this heterogeneity
can make. Consider a simplified version of the bandit problem in Example 1, where player
one now has the single type “Timid.” Playir@ut gives this type a payoff of 0, playing
In gives 2 if Nature playd. and —1 if Nature playsr, and the distribution of Nature’s
move is such that it is optimal for the player to always play The player knows the
structure of the model but does not know the distribution of Nature’s move; the player
observes her payoff but does not directly observe Nature’s move. In this game, there is no
self-confirming equilibrium where the player randomizes, since a player wholplayith
positive probability must know the expected payoffiioBut there are heterogeneous self-
confirming equilibria where some players playand others staput: The players who
play In are playing a best response to the true distribution of Nature’s move; the players
who playOut believe that Nature playR with probability more than 23 and never see
evidence that this belief is mistaken.

Example B in the appendix shows that heterogeneity can make a difference even in
games where any SCE with unitary beliefs has beliefs that equal the true distribution.

5. Thejoint distribution of Nature’smoves over time, agents, and players

So far we have supposed that Nature makes independent drawg feach period. In
this section we consider alternative stochastic processes for the specification of types and
explore how this affects the notion of self-confirming equilibrium.

5.1. Perfect correlation: a single type profile in all matchesand all dates

One specification that is often used in experiments is for Nature to make a once-and-
for-all choice of a single profile of typesthat will apply to all matche$ In this case, even
if the profile is chosen according to some nondegenerate distribptitims distribution
is not directly relevant to the long-run outcome. Thus, the appropriate definition of self-
confirming equilibrium replaceg in condition (iii) with the degenerate distribution that
chooses with probability one. This is “appropriate” in the sense that the players learn
only about the particular draw, and the relative probability of the types that did not occur
does not influence the set of possible steady st&t€@mbining this observation with
Proposition 3, we conclude that if Nature picks the payoff functions according to a possibly
nondegenerate distribution, players know the map from actions to their own payoffs (i.e.,
private values), and actions are observed, the set of self-confirming equilibria reduces to

9 Examples include Cox et al. (2001), Chen (2000), Mitropoulos (2001), and Oechssler and Schippers (2002).

10 Battigalli and Guaitoli (1997, Section 1.4) study exclusively the unitary-beliefs version of this case where
types are drawn once and for all. They provide a version of the corresponding form of self-confirming equilibrium
and use it to analyze an example which has the same property as Example 7 below: their Proposition 1 and
discussion on p. 116 imply that in one state the players’ behavior coincides with their behavior where the state is
commonly known, whereas in another state there is a self-confirming equilibrium in which players’ behavior can
rely on the state not being commonly known. Their footnote 4 states a special case of Propbsititmw2and
their footnote 10 discusses how to modify their definition to correspond to the type-heterogeneous notion defined
at the end of this section; they do not explore the impact of this modification.
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the set of Nash equilibria of the complete-information game corresponding to the realized
payoff functions. This is the case in all the experimental papers described in foothote 9.

5.2. Fixed typesfor each agent, but diversity across agentsin the same role

Now we suppose that each agent'’s type is fixed once and for all, before any matches
have taken place, and that players are randomly matched each period, with the matching
process independent of the players’ types. Then even if the distribptifsom which
the types were drawn exhibits correlation, the matching process will lead the distribution
of types in each match to be independent, and the distribution that governs the learning
process will be the product of the realized marginal distributions on each player’s type.
The heterogeneous self-confirming equilibrium defined in Section 4 is appropriate when
Nature's move is i.i.d. over time, since a given agent eventually receives many observations
of the distribution of signals corresponding to each possibledypethe support op, but
it is not appropriate in the present case where types are fixed once and for all, as each agent
is only in the role of a single type, and there is no reason that beliefs across types should
be consistent with updating from a common pfibTherefore, instead of imposing that
restriction, we allow each typ@ to have any “interim belief7i% that is consistent with
that type’s observations. Similarly, when types are fixed, conjectures may depend on types.
The following notion of type-heterogeneous self-confirming equilibrium captures the idea
that types are fixed initially, but that players are subsequently matched with opponents
whose types have been drawn according to

Definition. A strategy profiles is atype-heterogeneous self-confirming equilibriumiif for
each player, and for eacly; andé; such thatp(6;) - o;(a; | 6;) > 0 there are conjectures
6_; and interim beliefgi’ (both of which can depend afy and#é;), such that both the
following conditions are satisfied

(i) a; cargmax, Y-, 4 wilai,a—i,60;,60-)a%©O_)6_i(a—i|6-;),
(i) for any y; in the range ofy;

> A% (0-)6-i(a—i | 6-)

{a_i.0_;i: yi(@i,a—i,0;,0_)=y;}

E > p@-i 16)0-i(ai |6-).

{a_i.0_;: yi (@i.a_;.,6;.60_i)=y;}

11 Of these, only Cox et al. told subjects about the distribution from which the fixed types were drawn; in
the relevant treatments of their experiments, subjects were told nothing at all about the payoff functions of their
opponents.

12 |f no restrictions are imposed on the prior, tray collection of interim beliefg 1% )g;e®; can be generated
from a prior u; by settingu; (6—;,6;) = n;(6;)fx; (6—;) for some marginalg:; (6;), but the interim definition
allows for each type of playerto think all types are independently distributed while also allowing different types
to have different beliefs.
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Table 6

Brave 1 2
Timd 2 -1

Table 7

Brave 2 -1
Timid -1 2

Notice that condition (i), which required correct beliefs about one’s own types, is no
longer appropriate, since each agent in a player role does not observe the distribution of
types in that player role.

In the following variant on Example 11ti whenBrave, Out whenTimid” is not a self-
confirming equilibrium, and it is not a heterogeneous self-confirming equilibrium, but it is
a type-heterogeneous self-confirming equilibrium.

Example 6 (Heterogeneous self-confirming equilibria versus type-heterogeneous self-
confirming equilibria). Consider a two-player game with two types of player 1. Player 1
can playln or Out; Out gives payoff 0, while the payoff ttn depends on player 1's type
and player 2's action as shown in Table 6. (Player 2's payoff is not shown, because we
assume that for player 2 is a dominant strategy.)

Suppose that player 1 observes her type, action, and realized payoff, but not the action
of player 2. The only self-confirming equilibrium is for both types of player 1 to pray
and this is also the only heterogeneous self-confirming equilibrium: Since for the Brave
typelnis a dominant strategy, when types are i.i.d., any undominated strategy for an agent
in the role of player 1 will cause the agent to learn that 2 playslowever, ‘Brave In,
Timid Out” is a type-heterogeneous self-confirming equilibrium, becauBmal type can
stayOut forever and never learn the true distribution of player 2’s pfay.

In the examples so far, type-heterogeneity mattered because it let different types play
different actions and maintain different beliefs. In the next example, type-heterogeneity
allows types to play the same action.

Example 7 (Independent heterogeneous self-confirming equilibria versus independent
type-heterogeneous self-confirming equilibria). Consider another variant of the one-player
game of Example 1, where the payoffs fout remain 0 and those fdn are as in Table 7.
Here both types can staQut only if they disagree about Nature’s moBrave must
believe R and Timid must believeL. Suppose in fact that types observe nothing so that

13 The difference between this example and a bandit problem such as Example 1, where player 2 is replaced
by Nature, is that player 1 can think Nature’s move is correlated with her type, but player 1's conjecture about
player 2 must correspond to a strategy for player 2, and since player 2 does not observe player 1's type, player
2's strategy cannot depend on it.
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behavior depends only on stage-game priors. If the types are drawn anew each period and
beliefs are restricted to be independent, then in any self-confirming equilikaritim|

Brave) + o (In| Timid) > o (Out | Brave) + o (Out | Timid) since the beliefs corresponding

to anyo* must lead them to plain either when they arBrave or when they ardimid

(or both). On the other hand, if types are drawn once and for all, they ca®stdgrever

(each type can have constant beliefs justifyng).

5.3. More general stochastic structures

Underlying our notion of a steady state is the idea that players repeatedly sample
from a fixed distribution that does not change over time. Suppose we consider the more
general class of exchangeable processes for types, which have a representation as a “prior”
probability distribution over (conditionally) i.i.d. processes, and for the time being suppose
there is a single agent in the role of each player. Then we can think of Nature making
a single once-and-for-all drayw from the class of i.i.d. processes, and the “appropriate
distribution” to use in the definition of a self-confirming equilibrium is thedrawn by
Nature; the fact that players “could have” faced some different distribution and that the
overall distribution wasp is not relevant in the long-run steady stéteNote that the
exchangeable model nests both the case of a single once-and-for-afl @nasivthe case
where each period® is an independent draw from Note also that the distribution from
which Nature chooseg does influence the ex-ante distribution over steady states.

Thus, we can extend the discussion of private values.

Proposition 2. Wth private values (u;(a,0) = u;(a,0;)) and observed actions
(yi(a, 0) = a), a saf-confirming equilibriumis a Nash equilibriumin a game with stage-
game priors equal to the“ realized distribution” of types, p.

One can also consider the class of ergodic processes instead of exchangeable ones. It
is natural in that case to think gf as the invariant distribution. Notice in this case that
players are not actually drawing frommeach period, rather they are drawing from time-
varying distributions which average out jo If players believe that the true process is
exchangeable, then beliefs in steady states will still satisfy the self-confirming conditions
of Section 2 with respect to this ergodic distributith.
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Appendix A

ExampleA.1. Since Example 5 involves dominant strategies, it is not very interesting from
a game-theoretic perspective. The next, more complicated, example, due to Phil Reny,
shows that dominant strategies are not required for the property thautbestrategy
Nash and self-confirming equilibria coincide if players observe actions or payoffs or both.
However, the equivalence fails for mixed-strategy equilibria.

In this game there are three states of Na®§&;, 6;" and no types. There are two
players, a row and a column player; each chooses between three gctibhss. Payoffs
in each of the states are described in Table 8.

Beliefs about and the actual distribution of Nature’s move are as in Table 9.

To analyze the game, note that if 2 play®r M it is a strict best response for 1 to play
M; if 1 plays M or B itis a strict best response for 2 to plad. Hence the relevant portion
of the game involves 2 playing or 1 playingT. Payoffs in these cases are summarized in
Table 10.

With the given stage-game priors the pure-strategy Nash equilibrigddré/) and
(T, B). The latter is not a Nash equilibrium with a common prior. If players observe
payoffs, or opponents’ actions, then there are two pure-strategy self-confirming equilibria
with beliefsu1, u2: one with the strategy profilgd/, M) and the other withT, B).

Table 8
% o oy
T M B T M B T M B
T 01 012 1-1 T 0-1 012 -11 T 01 05 11
M 50 55 1/2,5 M 50 55 1/2,0 M 50 55 50
B 00 0,5 -10 B 0,0 0,5 10 B 00 05 10
Table 9
0w 6 o
ny 1—2¢ e €
"o e 1-2¢ e
" e & 1-—2¢
Table 10
96 66/ 0’
u1(T, B,0g) = ux(T, T, 6p) = 1 -1

u1(M, B,0g) =ux(T,M,0p)= 1/2 1/2
u1(B,B.6p) =uy(T,B.6p)= -1 1

[N
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Table 11
LL L C R RR

v 10 00 11 0012 0.03, —-12
M 10 10 21 05-10 06,-11
D 00 10 11 004-13 002 2

To see that this equivalence fails for mixed strategies note first thatsimall there is a
mixed-strategy Nash equilibrium in which column plagsvith probability 1¢/ (11— 13¢)
and M with complementary probability; and row plafsand M with these probabilities.
If payoffs and opponents’ actions are observed and players play these strategies then the
players would learn Nature’s distribution, so this is not a self-confirming equilibrium.

Example A.2. This example, with payoffs as in Table 11, shows that heterogeneity can
make a difference even in games where any SCE with unitary beliefs has beliefs that equal
the true distribution.

This is a two-player game without types (equivalently, the type spacensists of a
single point). Players observe payoffs, but not their opponents’ actions.

The row player play#/ only if he believes column playlsL with probability 1, andD
only if he believes column playis with probability 1. So in a unitary SCE, row cannot play
both U and D. If and only if row playsU with sufficiently high probability will column
play R, which will be known to row (by observing payoffs), and then column cannot play
U. Similarly RR is ruled out, and botlL and L are strictly dominated, so the unique
unitary SCE is the unique NE (namely, C)). However, there is a heterogeneous self-
confirming equilibrium in which some row agents pléaybelievingLL, other row agents
play D believingL, the two kind of agents are selected to play with equal probability, and
column play<C.
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