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Abstract

Foundations for iterated admissibility (i.e., the iterated removal of weakly dominated strategies) need 
to confront a fundamental challenge. On the one hand, admissibility requires that a player consider every 
strategy of their opponents possible. On the other hand, reasoning that the opponents are rational requires 
ruling out certain strategies. Brandenburger, Friedenberg, Keisler’s (BFK, Econometrica, 2008) foundations 
for iterated admissibility address this challenge with two ingredients: lexicographic beliefs and the concept 
of “assumption.” However, BFK restrict attention to lexicographic beliefs whose supports are essentially 
disjoint. This restriction does not have a compelling behavioral rationale, or a clear intuitive interpretation. 
At the same time, it plays a crucial role in BFK’s foundations for iterated admissibility—specifically, in 
their analysis of assumption. We provide an alternate characterization of assumption, which applies to all 
lexicographic beliefs. We also characterize two variants of assumption, based on two extensions of ‘weak 
dominance’ to infinite state spaces. These notions of assumption coincide with BFK’s notion when the 
state space is finite and lexicographic beliefs have disjoint support; but they are different in more general 
settings. Leveraging these characterization results, we show that disjoint supports do not play a role in the 
foundations for iterated admissibility.
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1. Introduction

Lexicographic beliefs (henceforth �-beliefs) have become a relatively standard tool, both for 
studying refinements and for providing epistemic characterizations of solution concepts.1 The 
appeal of �-beliefs is that they can be used to address a tension between being certain that an 
opponent is rational and having full-support beliefs about opponents’ actions. To clarify, suppose 
that, if Bob is rational, he will not play specific actions. Can Ann be certain that Bob is rational, 
and at the same time be cautious and assign non-zero probability to all of Bob’s actions? The 
answer is no if Ann has standard probabilistic beliefs. Suppose instead that Ann has �-beliefs. 
That is, she has a vector (μ0, . . . ,μn−1) of probabilities over the relevant space of uncertainty, 
Sb (Bob’s strategy space) and uses them lexicographically to determine her preferences over her 
own strategies: Ann first ranks her strategies using μ0; if that leads to more than one best reply 
for Ann, she uses μ1 to rank them, and so on. If the union of the supports of the probabilities μi

is all of Sb, then Ann’s beliefs have, in a sense, full support. At the same time, Ann can still be 
confident in Bob’s rationality, for example in the sense that the primary hypothesis μ0 assigns 
positive probability only to strategies of Bob that are rational.

There are two notions of �-beliefs that have been studied and used in the literature: lexi-
cographic conditional probability systems (henceforth LCPSs) in which, loosely speaking, the 
supports of the different beliefs (i.e., the μi ’s) are disjoint, and the more general class of lex-
icographic probability systems (LPSs) in which this disjointedness condition is not imposed. 
In particular, LCPSs are used by Brandenburger et al. (2008, henceforth, BFK) to provide an 
epistemic characterization of iterated admissibility—thereby answering a long-standing open 
question.2

However, there are reasons not to find the restriction to LCPSs appealing. First, while Blume 
et al. (1991b) provide an axiom that characterizes LCPSs within the class of LPSs, their axiom 
has a flavor of reverse-engineering: it says no more than the probabilities in the LPS have disjoint 
support; it offers no further normative or other appeal. Indeed, the interpretation of LPSs is quite 
natural and intuitive. The probability μ0 is the player’s primary hypothesis, in the sense that she 
is (almost fully) confident in it. The probability μ1 is her secondary hypothesis: she is willing to 
entertain it as an alternative, but considers it “infinitely” less plausible than μ0; and so on. There 
is no reason that primary and secondary hypotheses must have disjoint supports. For instance, 
one may be confident that a coin is fair, but entertain the secondary hypothesis that it is biased 
towards falling on heads.3 Second, the marginal of an LCPS need not be an LCPS. For example, 
suppose that two players are playing the game in Fig. 1, where the pairs of actions A, B for 

1 See, for example, Blume et al. (1991a), Brandenburger (1992), Stahl (1995), Mailath et al. (1997), Rajan (1998), 
Asheim (2002), Govindan and Klumpp (2003), Brandenburger et al. (2008), Keisler and Lee (2010), Lee (2016), Yang
(2015), and Catonini and De Vito (2014) amongst many others.

2 To be more precise: BFK provide an epistemic characterization of m rounds of deleting inadmissible strategies, for 
any finite m. Their epistemic conditions involve finite-order reasoning. However, they show an “impossibility result” for 
common reasoning—that is, common reasoning is impossible in their model.

3 Of course one may instead have the secondary hypothesis that the coin will fall on an edge, which would have disjoint 
support, but that does not seem like the only story one could tell.
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A B C
A −1, 1 1, −1 −2, 3
B 1, −1 −1, 1 −4, −4
C 3, −2 −4, −4 −4, −4

Fig. 1. The marginal of an LCPS may not be an LCPS.

each constitute a zero-sum matching pennies game, (A,C) and (C,A) give (−2,3) and (3,−2)

respectively and anything else gives (−4,−4). Consider the �-belief over this game where μ0
is that the players are playing the equilibrium of the matching pennies game while μ1 is that 
they are playing the Pareto superior outcome that requires correlation of (A,C) and (C,A) with 
probability one half each. The beliefs on the joint action space are clearly an LCPS, but the 
marginal on one player’s actions has the first belief being that A and B are equally likely while 
the second belief is that A and C are equally likely, which is clearly not an LCPS. Thus, if one 
takes a small-worlds approach in which the beliefs we use to study a particular game are the 
marginals of some belief on a larger space, then the beliefs in the game need not be an LCPS 
(even if one requires that the overall belief be an LCPS). For these reasons we find LPSs more 
suitable for the study of refinements than LCPSs.

This raises the question of whether BFK’s characterization of iterated admissibility (IA) re-
quires the use of LCPSs. We show that it does not: There is an analogue of BFK’s characterization 
of IA for the more general notion of LPSs.4 As we will discuss below, this result is important for 
evaluating the epistemic foundations of IA. Showing the result requires two steps.

First, BFK define what it means for one player to “be certain” that another is rational. A key 
feature of their approach is that they do so in terms of the player’s preferences. This decision-
theoretic approach is analogous to that taken in Morris (1997) and, more recently, Asheim and 
Søvik (2005). One advantage is that such preference-based definitions can be evaluated on their 
own merits, independently of the (arbitrary) choice of a particular representation.

BFK introduce the notion of “assumption.” An event E is assumed if it is “infinitely more 
likely” than its complement. They formalize assumption as a requirement on preferences. When 
the state space is finite and beliefs have full support, the requirement can be stated as:

(*) whenever a player prefers an act x to an act y conditional on E (loosely speaking, if 
she were to be informed of E), she also prefers x to y unconditionally (i.e., without this 
information).5

In the usual case where the player has one level of beliefs, this corresponds exactly to probability-
1 belief. (See Section 3.1 for precise statements.) BFK show that, with LCPS beliefs, condition 
(*) is (essentially) equivalent to the following:

there is a belief level j such that:
(BFK-i) for all i ≤ j we have μi (E) = 1 and

(BFK-ii) for all i > j we have μi (E) = 0.

However, the equivalence between the preference-based condition (*) and its �-belief coun-
terpart, conditions (BFK-i) and (BFK-ii), only holds if the player’s beliefs are represented by 

4 In fact, we show that each of BFK’s three main results all hold for the more general notion of LPSs.
5 We emphasize that, as in Savage, there is no real “information” in our static setting; this is just suggestive language.



958 E. Dekel et al. / Journal of Economic Theory 163 (2016) 955–985
an LCPS. We illustrate this in Examples 3.1–3.2, which also show that the problem lies with 
condition (BFK-ii) above.

Therefore, to state an analogue of BFK’s epistemic conditions with unrestricted beliefs, it is 
necessary to first characterize condition (*) for general LPSs. Our main result, Theorem 3.2, does 
just that. It provides the precise weakening of condition (BFK-ii) required for the equivalence. 
The key idea is that condition (BFK-ii) implies:

(†) the payoffs at states in E “do not matter” as far as the probabilities of level greater than 
j are concerned; that is, the ranking of acts by probabilities above j are unaffected by the 
payoffs at states in E.

However, there is another way in which (†) can hold: if, for k > j , the restriction of μk to E is a 
linear combination of the lower-level probabilities μ0, . . . , μj . With LCPSs, we need not worry 
about this possibility, since the supports of μ0, . . . , μj , μk must be disjoint. But if we drop the 
disjointness requirement, we need to allow for this possibility.

Second, BFK provide an epistemic characterization of IA (and self-admissible sets, or SASs; 
see Definition 6.4), using the LCPS formulation of assumption, i.e., conditions (BFK-i) and 
(BFK-ii). We show that, when players’ beliefs are represented by unrestricted LPSs, the very 
same epistemic conditions continue to characterize IA (and SASs), provided we use our LPS 
formulation of assumption.6

Note that we allow players to hold a larger set of beliefs than do BFK. This immediately 
implies that more strategies are consistent with rationality, as there are more beliefs to justify a 
given strategy. However, as BFK point out, allowing more beliefs may lead to fewer strategies 
being consistent with rationality and mutual assumption thereof. (This is because assumption is 
non-monotonic, i.e., a set can be assumed even though a larger set is not assumed.) Despite these 
two opposing forces, our analysis still gives an epistemic characterization of SASs (Theorem 6.1) 
and IA (Theorem 6.2). It also retains BFK’s so-called impossibility theorem (Theorem 6.3).

Our result addresses a tension in BFK’s analysis. In particular, a key ingredient in their epis-
temic characterization of IA is a “completeness” requirement: the analysis takes place in a type 
structure that represents every possible belief about the opponent’s strategies and beliefs. But, be-
cause they restrict attention to LCPSs, BFK’s completeness requirement is that the type structure 
represents every possible LCPS belief. However, since the marginal of an LCPS need not be an 
LCPS, players can have first-order beliefs (about the strategies played) which are not LCPSs. In 
fact, BFK show that, for the purposes of providing an epistemic characterization of IA, the type 
structure must include first-order beliefs that are non-LCPSs. This leads to a tension: On the one 
hand, BFK’s analysis insists on LCPS beliefs on the full space of uncertainty; on the other hand, 
their analysis requires inclusion of non-LCPS beliefs on the first-order space of uncertainty (i.e., 
on the strategies of the opponent). Our Theorem 6.2 resolves this tension by considering type 
structures that represent all possible LPS beliefs—not just LCPS beliefs.

The preceding informal discussion imposed two implicit restrictions—that the state space was 
finite and that beliefs have full support. However, BFK’s epistemic conditions for iterated admis-
sibility requires a “complete type structure,” which induces an uncountable state space. (See 
Section 6.) Thus, when we turn to the formal analysis, it is important to consider uncountable 

6 The proofs of these epistemic results follow BFK closely; the only significant modification is in establishing measur-
ability. See the Appendix.
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state spaces. This requires care: Condition (*) defines assumption for a finite state space and 
full-support beliefs. As BFK observe, for uncountable state spaces, it is no longer a suitable defi-
nition of assumption, even if there are full-support beliefs. (Correspondingly, conditions (BFK-i) 
and (BFK-ii) do not characterize assumption on uncountable state spaces, even for full-support 
LCPSs. See BFK’s Supplemental Appendix S.1, where they discuss this point.) Because our 
analysis accommodates arbitrary (uncountable) state spaces and we do not require full-support 
beliefs, we will need to follow BFK in modifying Condition (*).7

Return to the introductory case, in which the state space is finite and beliefs are represented 
by full-support LCPSs. There, condition (*) has an alternative, equivalent, formulation:

(**) whenever an act x weakly dominates y on E (i.e., x is at least as good as y in every state 
in E, and strictly better at some state in E), the player prefers x to y unconditionally.

Condition (**) was proposed by Asheim and Dufwenberg (2003).8 It can be seen as a variant 
of assumption. Asheim and Søvik (2005) established the aforementioned equivalence between 
conditions (*) and (**). However, these conditions are not equivalent for LPSs, even if the state 
space is finite (Example 4.2).

This raises the question of whether (**) can be used to provide an epistemic characterization 
of IA. A central challenge in addressing the question is extending (**) to arbitrary state spaces—
specifically, extending the notion of weak dominance to arbitrary state spaces. We consider two 
such extensions; see Section 4.1 for details. We provide an LPS-based characterization of these 
versions of assumption (Theorem 4.1). We show that either variant can be used to provide an 
epistemic characterization of IA (Theorem 6.2). Moreover, BFK’s impossibility theorem is re-
tained under both variants (Theorem 6.3).

Section 2 introduces the framework. Section 3 reviews the definition of assumption and BFK’s 
characterization for LCPSs (Section 3.1), motivates the modifications needed for LPSs (Sec-
tion 3.2), and provides the behavioral characterization thereof (Section 3.3). Section 4 provides 
two definitions of weak dominance for arbitrary state spaces (Section 4.1), uses them to extend 
(**) (Section 4.2), and provides the characterizations thereof (Section 4.3). Section 5 provides 
the proofs of the characterization theorems. Section 6 applies these results to the epistemic char-
acterizations of iterated admissibility and SASs. Section 7 discusses the closely related work of 
Lee (2013) and Lee (2016). The Appendix provides proofs not included in the body.

2. Preliminaries

Let (�, S) be a Polish space, where S is the Borel σ -algebra on �. We call the elements of S
“Borel sets” or “events.” Write P(�) for the set of probability measures on � and endow P(�)

with the topology of weak convergence, so that it is also a Polish space.
Denote by ≥L the lexicographic order on Rn. That is, given vectors u = (u0, . . . , un−1) and 

v = (v0, . . . , vn−1) in Rn, u ≥L v if and only if uj < vj implies uk > vk for some k < j .
A lexicographic probability system (LPS) on � will be some σ = (μ0, . . . , μn−1) where 

each μi ∈ P(�). Call an LPS σ = (μ0, . . . , μn−1) a lexicographic conditional probability 
system (LCPS) if there are Borel sets U0, . . . , Un−1 such that, for all i, μi(Ui) = 1 and μj(Ui) =

7 We thank an anonymous referee for suggesting that we drop the full-support requirement.
8 We thank an anonymous referee for suggesting studying (**) in the context of BFK’s epistemic analysis.
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0 for j �= i.9 Notice that, if � is finite, this simply requires that the measures μ0, . . . , μn−1 have 
disjoint supports. An LPS σ = (μ0, . . . , μn) has full support if 

⋃n−1
i=0 suppμi = �.

Let A be the set of all measurable functions from � to [0, 1]. A particular function x ∈ A is 
an act. For c ∈ [0, 1], write −→c for the constant act associated with c, i.e. −→c (�) = {c}. Given acts 
x, z ∈A and a Borel subset E in �, write (xE, z�\E) for the act y ∈ A with

y(ω) =
{

x(ω) if ω ∈ E

z(ω) if ω ∈ �\E.

When � = {ω0, ω1, . . . , ωK}, write (x0, x1, . . . , xK) for an act x with x(ωk) = xk . In this case, 
we also write μ = (μ(ω0), μ(ω1), . . . , μ(ωK)) for some μ ∈P(�).

Given an LPS σ = (μ0, . . . , μn−1) on �, define a preference relation �σ on A where x �σ y

if and only if⎛
⎝∫

�

x(ω)dμi(ω)

⎞
⎠

n−1

i=0

≥L

⎛
⎝∫

�

y(ω)dμi(ω)

⎞
⎠

n−1

i=0

.

Write �σ for the associated strict preference relation. Given a Borel set E, define the condi-
tional preference given E in the usual way, i.e., x �σ

E y if for some act z ∈ A, (xE, z�\E) �σ

(yE, z�\E). (Since �σ satisfies independence, the choice of the act z does not affect the condi-
tional preference relation.) Write �σ

E for the associated strict preference relation and ∼σ
E for the 

associated indifference relation.
An event E is �σ -null if x ∼σ y, for all x, y ∈ A that coincide on �\E (i.e., with x(ω) =

y(ω) for all ω ∈ �\E). Equivalently, E is �σ -null if x ∼σ
E y for all x, y ∈A.

Remark 2.1. Fix some LPS σ = (μ0, . . . , μn−1). A Borel set E is �σ -null if and only if μi(E) =
0 for all i.

Proof. If μi(E) = 0 for each i, then x ∼σ
E y. Conversely, if μi(E) > 0 for some i, then 

−→
1 �σ

E−→
0 . �

3. BFK-assumption

3.1. Definition and LCPS-based characterization

BFK define assumption in terms of the preference relation �σ associated with an LCPS σ ; 
their definition equally applies to the case where σ is an LPS. The informal idea is that an event E

is assumed if states in E “determine” strict preference.

Definition 3.1 (BFK, Definition A.3). Say a set E is BFK-assumed under �σ if E is Borel and 
the following hold:

Non-Triviality: for each open set U , if E ∩ U �= ∅, then E ∩ U is not �σ –null.

9 This terminology is due to Blume et al. (1991b), who define LCPSs for finite state spaces. The present definition is 
Definition 4.1 in BFK.
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Strict Determination: for all x, y ∈ A, x �σ
E y implies x �σ y.

Non-Triviality states that every “part” of E is relevant, in the sense that it can potentially 
determine strict preference. Strict Determination states that, if x is strictly preferred to y condi-
tional on E, then x is also unconditionally strictly preferred to y (regardless of the outcomes x
and y may deliver outside of E). Observe that Non-Triviality ensures that Strict Determination 
does not hold vacuously. When the state space is finite, Non-Triviality holds if the LPS has full 
support.

BFK provide the following characterization for LCPSs.

Theorem 3.1 (BFK, Proposition A.2 and Lemma B.1). Fix an LCPS σ . A set E ⊆ � is BFK-
assumed under �σ if and only if it is Borel and there exists j ∈ {0, . . . , n − 1} such that

(i) μi(E) = 1 for all i ≤ j ,
(ii) μi(E) = 0 for all i > j , and

(iii) E ⊆ ⋃
i≤j suppμi .

The remainder of this section discusses how to modify Conditions (i)–(iii) in order to obtain 
an analog of Theorem 3.1, i.e., a characterization of BFK-assumption for LPSs. As discussed 
in the Introduction, an alternative is to modify the notion of BFK-assumption. We discuss this 
approach in Section 4.

3.2. From LCPSs to LPSs

We next explore the extent to which Theorem 3.1 holds for arbitrary LPSs. One direction 
of this theorem holds for all LPSs: If there is some j that satisfies conditions (i)–(iii), then �σ

BFK-assumes E. This holds even if σ does not have disjoint supports. However, the conditions 
in Theorem 3.1 are not necessary for an event E to be BFK-assumed. In particular, we now argue 
that the problem arises from Condition (ii).

Example 3.1 illustrates that, for LPSs, conditions (i) and (iii) do not suffice for BFK-
assumption. The remaining examples and observations in this subsection illustrate that, for LPSs, 
BFK-assumption implies that Conditions (i) and (iii) must hold for some j , but (ii) may fail for 
any such j . Thus (i) and (iii) are necessary but not sufficient. Since (i), (ii), and (iii) are jointly 
sufficient, we are led to weaken (ii). (With this in mind the reader interested in getting to the 
results can skip to Subsection 3.3.)

In this subsection we focus on finite state spaces, which is enough to illustrate these issues. 
For LCPSs on finite state spaces Condition (ii) is redundant: if (iii) holds for some j then so 
does (ii). Hence, for LCPSs, Condition (ii) only plays a role in infinite state spaces—that is, for 
LCPSs on finite state spaces (i) and (iii) are equivalent to BFK-assumption. Hence, for LCPSs, 
(ii) might be seen as a technicality. However, for LPSs, its weakening plays a substantive role 
even for finite state spaces.

We now provide an outline of the remainder of this subsection. Example 3.1 shows that (i) and 
(iii) are not sufficient for BFK-assumption; the next example (3.2) and observation (3.1) concern 
a case where (i) and (iii) hold for j = 0, and in particular illustrate that if E is BFK-assumed 
then μ0(E) = 1. This is essentially Lemma 5.1, the first step in the proof of our main result. The 
final example (3.3) and observation (3.2) illustrate more generally that (i) and (iii) must hold for 
some j < n − 1, mirroring Lemmas 5.2 and 5.5.
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Example 3.1. Let � = {ω0, ω1, ω2} and consider the LPS σ = (μ0, μ1, μ2) such that μ0 =
( 1

2 , 12 , 0), μ1 = (0, 0, 1), and μ2 = (0, 1, 0). Observe that σ has full support, so no state is 
�σ -null. Furthermore, σ is not an LCPS.

The event E = {ω0, ω1} is not BFK-assumed under �σ . Given acts x = (0, 1, 0) and y =
(1, 0, 1), x �σ

E y and y �σ x. This contradicts Strict Determination.
Nevertheless, Conditions (i) and (iii) do hold for j = 0, because μ0(E) = 1 and supp μ0 = E. 

Of course, Condition (ii) must fail for j = 0, and indeed it does: μ2(E) > 0.

Notice that, if � is finite, σ has full support, and E � �, then Condition (i) can only hold 
for some j < n − 1. (If j = n − 1 then, by (i), � = ⋃n−1

i=0 suppμi ⊆ E, a contradiction.) So, if 
Conditions (i)–(iii) are to hold for some j , it must be the case that j < n − 1. However, we now 
provide examples where BFK-assumption holds but Condition (ii) only holds for j = n − 1.10

So, as discussed, to obtain a characterization of BFK-assumption for all LPSs, we will relax 
Condition (ii).

Example 3.2. Take � = {ω0, ω1} and E = {ω0}. Consider an LPS σ = (μ0, μ1) with μ0 =
(1, 0) and μ1 = ( 1

2 , 12 ). If x �σ{ω0} y, then x(ω0) > y(ω0), and so x �σ y. It follows that E is 
BFK-assumed under �σ . Note that Condition (i) holds only for j = 0, Condition (ii) holds only 
for j = 1, and Condition (iii) holds for both j = 0, 1. Thus, there is no single j for which all 
three conditions hold. So one direction of BFK’s characterization fails. �
Observation 3.1. There is a natural generalization of Example 3.2, which is essentially the 
proof of Lemma 5.1. As above, take � = {ω0, ω1} and E = {ω0}. Then, for any LPS σ =
(μ0, . . . , μn−1) on �, if the event E is BFK-assumed under �σ , then μ0(E) = 1. To prove this 
fact, suppose that E is BFK-assumed under �σ , but μ0(E) < 1. By Non-Triviality, E = {ω0}
is not �σ -null, so by Remark 2.1, μi(E) > 0 for some i = 0, . . . , n − 1. Let x = (x0, 0), with 
x0 > 0; let y = (0, 1). Then x �σ

E y, but, since μ0({ω1}) > 0, for x0 sufficiently small, y �σ x. 
This yields a contradiction.

To sum up, if E is BFK-assumed under �σ , Conditions (i) and (iii) hold for j = 0. How-
ever, Example 3.2 illustrated that Condition (ii) may fail to hold for j = 0; indeed it may only 
hold—and trivially hold—for j = n − 1. �

In Example 3.2, BFK-assumption implies that Conditions (i) and (iii) hold for j = 0. The 
next example illustrates that, with more than two states, Conditions (i) and (iii) need not hold for 
j = 0. However, these conditions will hold for some j > 0.

Example 3.3. Let � = {ω0, ω1, ω2} and E = {ω0, ω1}. Consider the LPS σ = (μ0, μ1, μ2) such 
that μ0 = (1, 0, 0), μ1 = ( 1

2 , 12 , 0) and μ2 = (0, 12 , 12 ). We claim that �σ BFK-assumes E. Non-
Triviality holds because � is finite and σ has full support. For Strict Determination, suppose 
x �σ

E y. It must be the case that x(ω0) ≥ y(ω0); if not, y �σ
E x. Hence there are two possibilities: 

either (i) x(ω0) > y(ω0), or (ii) x(ω0) = y(ω0) and x(ω1) > y(ω1); if not, y �σ
E x. In either 

case, x �σ y, so �σ BFK-assumes E. Notice that Conditions (i) and (iii) do not hold for j = 0, 
but do hold for j = 1. On the other hand, Condition (ii) holds only for j = 2. �
10 Regardless of the event E, conditions (ii) and (iii) always hold trivially for j = n − 1. For any non-null E, (ii) holds 
as well.
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We now extend this example to illustrate that BFK-assumption implies that (i) and (iii) must 
hold for some j .

Observation 3.2. Consider the following generalization of Example 3.3. Again, � = {ω0, ω1, ω2}
and E = {ω0, ω1}. We show that, for any full-support LPS σ = (μ0, . . . , μn−1) on �, if the event 
E is BFK-assumed under �σ , then Conditions (i) and (iii) hold for some j .

To prove this claim, note first that the argument given in Observation 3.1 implies that 
μ0(E) = 1. Furthermore, since E is BFK-assumed, Non-Triviality holds and implies that 
μi({ω0}) > 0 for some i = 0, . . . , n − 1, and similarly μ�({ω1}) > 0 for some (possibly dif-
ferent) �. We now argue that, if the support of μ0 does not contain E—i.e., Condition (iii) fails 
for j = 0—then μ1(E) = 1. For simplicity, let μ0({ω0}) = 1. Now suppose that μ1(E) < 1. Con-
sider acts x, y such that x(ω0) = y(ω0) = 0, x(ω1) > 0 = y(ω1), and x(ω2) = 0 < 1 = y(ω2). 
Then x �σ

E y; however, 
∫
�

xdμ0 = x(ω0) = y(ω0) =
∫
�

ydμ0 but, for x(ω1) sufficiently small, ∫
�

xdμ1 <
∫
�

ydμ1, and so y �σ x. This violates Strict Determination. Hence, μ1(E) = 1. If 
μ1({ω1}) > 0, then E is contained in the union of the supports of μ0 and μ1, so Conditions (i)
and (iii) both hold for j = 1. Otherwise, we can repeat the argument to conclude that μ2(E) = 1. 
And so on. Since, as noted, Non-Triviality implies that μ�({ω1}) > 0 for some �, we will eventu-
ally reach a j such that E is contained in 

⋃j

i=0 suppμi . For this j , Conditions (i) and (iii) both 
hold. �

To sum up, in Example 3.2, an event was assumed, but Condition (ii) failed. On the other 
hand, Example 3.1 illustrates that Condition (ii) cannot simply be dropped. This leads us to 
weaken Condition (ii) in order to characterize BFK-assumption.

3.3. LPS-based characterization

We provide our characterization of BFK-assumption for general LPSs. (The characterization 
refers to an LPS σ and not the preference relation �σ .)

Definition 3.2. Fix an LPS σ = (μ0, . . . , μn−1). Say a set E ⊆ � is BFK-assumed under σ at 
level j if E is Borel and

(i) μi(E) = 1 for all i ≤ j ,
(ii*) for each k > j , there exists (αk

0, . . . , αk
j ) ∈ Rj+1 so that, for each Borel F ⊆ E, μk(F ) =∑j

i=0 αk
i μi(F ),

(iii) E ⊆ ⋃
i≤j suppμi .

Say a set E ⊆ � is BFK-assumed under σ if it is BFK-assumed under σ at some level j .

Conditions (i) and (iii) in Definition 3.2 are Conditions (i) and (iii) in Theorem 3.1; Condi-
tion (ii*) is the required weakening of Condition (ii) therein.

Observe that Condition (ii) in Theorem 3.1 implies Condition (ii*) by taking (αk
0, . . . , αk

j ) =
(0, . . . , 0). Second, when σ is an LCPS, Condition (ii*) implies (ii); hence, for LCPSs, these con-
ditions are equivalent. To see this, suppose that (ii) fails. Then there is k > j such that μk(E) > 0. 
Since σ is an LCPS, there is a Borel Uk such that μk(Uk) = 1 and μi(Uk) = 0 for all i �= k. 
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Therefore, F ≡ E ∩ Uk ⊆ E is Borel and μk(F ) = μk(E) > 0. Moreover, μi(F ) ≤ μi(Uk) = 0
for all i �= k, so (ii*) fails.

Theorem 3.2. Fix an LPS σ . A set E ⊆ � is BFK-assumed under �σ if and only it is BFK-
assumed under σ .

To understand the intuition, it will be useful to recall the following fact from Blume et 
al. (1991b, Theorem 3.1): Fix an LPS σ = (μ0, . . . , μn−1). If μi is a linear combination of 
(μ0, . . . , μi−1), then σ ′ = (μ0, . . . , μi−1, μi+1, . . . , μn−1) represents the same lexicographic 
preferences, i.e., �σ =�σ ′

. That is, μi is irrelevant for determining preference.
A similar idea applies to conditional preferences. Fix an LPS σ = (μ0, . . . , μn−1) and con-

sider the conditional preference �σ
E . Recall, x �σ

E y if and only if (xE, z�\E) �σ (yE, z�\E). 
Thus, if the restriction of μi to (Borel sets in) E is a linear combination of the restrictions of 
μ0, . . . , μi−1 to (Borel sets in) E, then the measure does not affect the ranking of x �σ

E y, i.e., 
�σ

E=�σ ′
E where σ ′ = (μ0, . . . , μi−1, μi+1, . . . , μn−1). This is precisely the content of Condi-

tion (ii*). Specifically, Condition (ii*) requires that, when i > j , the measure μi is irrelevant for 
determining the conditional preference given E.

We next apply this result to Examples 3.1 and 3.3.

Example 3.4 (Example 3.1, Continued). Here, E = {ω0, ω1} is not BFK-assumed under �σ . 
Conditions (i) and (iii) hold only for j = 0. However, Condition (ii*) fails for j = 0: since 
μ0(ω0) = μ0(ω1) = 1

2 and μ1(ω0) = μ1(ω1) = 0, there are no α2
0 , α2

1 such that μ2(ω0) = 0 =
α2

0μ0(ω0) + α2
1μ1(ω0) and μ2(ω1) = 1 = α2

0μ0(ω1) + α2
1μ1(ω1). �

Example 3.5 (Example 3.3, Continued). Here, �σ BFK-assumes E = {ω0, ω1} and Condi-
tions (i) and (iii) hold (only) for j = 1. To see that Condition (ii*) also holds for j = 1, take 
(α2

0, α2
1) = (− 1

2 , 1) and notice that μ2(F ) = − 1
2μ0(F ) + μ1(F ) for all F ⊆ {ω0, ω1}.

Notice that this example also demonstrates that, in Definition 3.2 we cannot replace linear 
combinations with convex combinations. There is no α2

0, α
2
1 ≥ 0, so that μ2(F ) = α2

0μ0(F ) +
α2

1μ1(F ) for all F ⊆ {ω0, ω1}. �
There is no redundancy in our characterization result. Example 3.4 illustrates that Condi-

tions (i) and (iii) alone do not imply BFK-assumption. Conditions (i) and (ii*) alone are also not 
sufficient. BFK’s Supplemental Appendix S.1 shows that, when � is uncountable, a full-support 
LCPS σ may satisfy these conditions for some event E even though the preference relation �σ

does not assume E. Obviously, (ii*) and (iii) alone do not imply BFK-assumption either: consider 
a one-level LPS with full support on a finite � and any E � �.

4. Alternative notions of assumption

4.1. Weak dominance on infinite state spaces

Asheim and Søvik (2005) restrict attention to full support LCPSs on a finite state space and 
provide an alternate preference-based characterization of assumption. Their alternate charac-
terization is based on what Asheim and Dufwenberg (2003) term “full belief.” The basic idea 
is condition (**) in the Introduction: whenever an act x weakly dominates y on E, the player 
prefers x to y unconditionally. To adapt this approach to arbitrary (i.e., uncountable) state spaces, 
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we must specify what it means for x to weakly dominate y on E. We consider two possible def-
initions.

Definition 4.1. Say x P-weakly dominates y on E if

(a) x(ω) ≥ y(ω) for all ω ∈ E, and
(b) there exists some Borel F ⊆ E not �σ -null so that x(ω) > y(ω) for all ω ∈ F .

Definition 4.2. Say x T-weakly dominates y on E if

(a) x(ω) ≥ y(ω) for all ω ∈ E, and
(b) there exists some open set U such that U ∩ E �= ∅ and x(ω) > y(ω) for all ω ∈ U ∩ E.

If x P-weakly dominates y on E, we write x PWDσ
E y; if x T-weakly dominates y on E, we 

write x TWDE y.
In both definitions, condition (b) requires strict preference on a subset of E that is “signif-

icant.” P-weak dominance employs a Preference-based notion of significance, while T-weak 
dominance instead invokes a Topological notion. These two definitions coincide with the usual 
notion of weak dominance on finite state spaces.

Observation 4.1. Let � be finite and consider E ⊆ � and acts x, y ∈A.

• x T-weakly dominates y on E if and only if x weakly dominates y on E.
• If the support of σ contains E (in particular, if σ has full support), then x P-weakly domi-

nates y on E if and only if x weakly dominates y on E.

To see this, recall that, if the state space is finite, every point is open. This immediately gives 
the first statement. Moreover, if every point of E is in the support of σ , then every such point is 
not �σ -null, and the second statement follows.

Definitions 4.1 and 4.2 do not coincide, as the next example shows.

Example 4.1. Let � = [0, 1] and E = [0, 1), and consider the LCPS σ = (μ0, μ1, μ2), where μ0

is the uniform measure on [0, 1], μ1 is the Dirac measure on ω = 1, and μ2 is the Dirac measure 
on ω = 0.

Consider the acts x, y ∈ A such that x(0) = 1, x(ω) = 0 for all ω ∈ (0, 1], y(1) = 1, and 
y(ω) = 0 for all ω ∈ [0, 1). Then x P-weakly dominates y on E: the event F = {0} ⊂ [0, 1) = E

is not �σ -null and x(0) > y(0). However, x does not T-weakly dominate y, because for any open 
set U such that U ∩ E �= ∅, there is ω ∈ U ∩ E such that x(ω) = y(ω) = 0.

P-weak dominance has a natural behavioral interpretation: x must be strictly better than y
on a set F that is subjectively meaningful to the player. By way of contrast, T-weak dominance 
requires that x be strictly better than y on a topologically non-trivial set. On the other hand, we 
shall see that T-weak dominance leads to a version of assumption that admits a simpler charac-
terization in terms of LPSs.
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Table 1
Different notions of assumption.

General Case

Finite �

LCPSs

BFK-
assumption

⇒ (Obs. 4.2)
� (Ex. 4.2)

⇒ (Obs. 4.2)
� (Ex. 4.2)

⇔ (Prop. 4.1)

PWD-
assumption

⇒ (Obs. 4.3)
� (Ex. 4.3)

⇔ (Obs. 4.1)

⇒ (Obs. 4.3)
� (Ex. 4.3)

TWD-
assumption

4.2. Weak-dominance assumption

We can now extend Asheim and Dufwenberg (2003)’s full belief to uncountable state spaces.

Definition 4.3. Say a set E is P-weak dominance assumed (PWD-assumed) under �σ if E is 
Borel, and Non-Triviality as well as the following hold:

PWD Determination: for all x, y ∈A, x PWDσ
E y implies x �σ y.

Definition 4.4. Say a set E is T-weak-dominance assumed (TWD-assumed) under �σ if E is 
Borel, and Non-Triviality as well as the following hold:

TWD Determination: for all x, y ∈A, x TWDE y implies x �σ y.

We view BFK-assumption, PWD-assumption, and TWD-assumption as different manifesta-
tions of the same intuitive idea. With this in mind, we use the term assumption when we discuss 
properties that hold for, or are implied by all three notions. The remainder of this subsection 
discusses the precise relationship among these three notions. It is summarized in Table 1.

Observation 4.2. If E is BFK-assumed, it is also PWD-assumed. This follows because, if 
x PWDσ

E y, then surely x �σ
E y; hence, if Strict Determination holds for E, PWD Determina-

tion holds as well.

However, the converse need not hold, as the following example demonstrates.

Example 4.2 (Example 3.1, continued). Recall that the event E is not BFK-assumed under �σ . 
However, E is PWD-assumed under �σ . Non-triviality holds because � is finite and σ has full 
support. Suppose that x PWDσ

E y. Then x(ω0) ≥ y(ω0) and x(ω1) ≥ y(ω1), with at least one 
strict inequality. In either case x �σ y. Thus, PWD Determination holds.

Despite this difference, BFK-assumption and PWD-assumption coincide for LCPSs

Proposition 4.1. Fix an LCPS σ . An event E is BFK-assumed under �σ if and only if it is 
PWD-assumed under �σ .
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This result follows from Theorems 3.2 and 4.1. It extends a result by Asheim and Søvik
(2005) from finite to infinite state spaces. Since BFK restrict attention to LCPSs, this equivalence 
implies that their epistemic analyses and results have an alternate preference-based interpretation 
that builds upon PWD-assumption.11

Now turn to PWD- and TWD-assumption.

Observation 4.3. If E is PWD-assumed, then it is TWD-assumed. To see this, note that, if 
Non-Triviality holds, then x TWDE y implies x PWDσ

E y. (Let U be an open set such that U ∩
E �= ∅ and x(ω) > y(ω) for all ω ∈ U ∩ E, and observe that, by Non-Triviality, U ∩ E is not 
�σ -null.) Therefore, PWD Determination implies TWD Determination under Non-Triviality.

However, the converse need not hold, even for LCPS beliefs.

Example 4.3 (Continuation of Example 4.1). Recall that σ is an LCPS. We saw that x PWDσ
E y; 

however, x ≺σ y, so PWD Determination fails. We now show that, nonetheless, E satisfies TWD 
Determination. Consider arbitrary acts x, y ∈ A such that x TWDE y. Then there is an open U
such that U ∩ E �= ∅ and x(ω) > y(ω) for all ω ∈ U ∩ E. Since U is open and E = [0, 1), there 
is ε > 0 and an ω ∈ U ∩ E such that V ≡ (ω, ω + ε) ⊆ U ∩ E. Since V is open and V ∩ E �=
∅, by Non-Triviality and Remark 2.1, μi(V ) > 0 for some i = 0, 1, 2; but since V ⊆ (0, 1), 
i = 0. Finally, since V ⊆ U ∩ E, x(ω) > y(ω) for all ω ∈ V . This implies that 

∫
�
(x − y)dμ0 =∫

E
(x − y)dμ0 ≥ ∫

V
(x − y)dμ0 > 0, so x �σ y. Thus, TWD Determination holds.

Nonetheless, when the state space is finite, PWD-assumption and TWD-assumption coincide. 
To see this, recall from Observation 4.1 that T-weak dominance on E coincides with P-weak 
dominance on E, provided that the support of the LPS contains E. The key is that, when Non-
Triviality holds for E, the support of the LPS must contain E. Thus, under Non-Triviality, PWD-
and TWD-Determination coincide and so PWD- and TWD-assumption coincide. However, Ex-
ample 4.2 shows that, even with a finite state space, BFK-assumption is stronger than both.

By Proposition 4.1, the same Example shows that, even for LCPSs, BFK-assumption and 
TWD-assumption need not coincide in uncountable state spaces.

4.3. LPS-based characterizations

We provide characterizations of PWD-assumption and TWD-assumption in terms of LPSs.

Definition 4.5. Fix an LPS σ = (μ0, . . . , μn−1). A set E ⊆ � is PWD-assumed under σ at 
level j if it is Borel and

(i) μi(E) = 1 for all i ≤ j ,
(ii**) for each k > j and each Borel F ⊆ E, if μk(F ) > 0, then there exists i ≤ j with 

μi(F ) > 0.
(iii) E ⊆ ⋃

i≤j suppμi .

A set E ⊆ � is PWD-assumed under σ if it is PWD-assumed under σ at some level j .

11 We thank an anonymous referee for proposing this conjecture.
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Like Condition (ii*), Condition (ii**) is an irrelevance requirement (cf. p. 964). However, the 
former dictates that the measures μk , for k > j do not affect conditional preferences over any pair 
of acts. On the other hand, Condition (ii**) is an irrelevance requirement that only directly ap-
plies to specific pairs of “betting” acts. In particular, fix some Borel F ⊆ E and (winning-losing) 
prizes w, � ∈ [0, 1] such that w > �. Consider the act (−→w F , 

−→
� �\F ) and the constant act 

−→
� . Con-

dition (ii**) requires that the ranking of these two acts is completely determined by the measures 
μ0, . . . , μj . To see this, suppose first that μi(F ) > 0 for some i ≤ j : then (−→w F , 

−→
� �\F ) �σ −→

� . 
Suppose that instead μi(F ) = 0 for all i ≤ j : then the Condition requires that also μk(F ) = 0
for k > j , and so (−→w F , 

−→
� �\F ) ∼σ −→

� . Therefore, the measures μj+1, . . . , μn−1 are irrelevant 

for determining the ranking of (−→w F , 
−→
� �\F ) vs. 

−→
� . However, they may well be relevant for the 

ranking of other acts.

Definition 4.6. Fix an LPS σ = (μ0, . . . , μn−1). A set E ⊆ � is TWD-assumed under σ at 
level j if E is Borel and

(i) μi(E) = 1 for all i ≤ j ,
(iii) E ⊆ ⋃

i≤j suppμi .

A set E ⊆ � is TWD-assumed under σ if it is TWD-assumed under σ at some level j .

Definition 4.6 does not have an analog to Conditions (ii), (ii*), or (ii**). However, Condi-
tions (i) and (iii) imply the following property:

(ii***) for each k > j and each open U , if μk(U ∩ E) > 0, then there exists i ≤ j with μi(U ∩
E) > 0.

Thus, the difference between TWD-assumption and PWD-assumption under σ hinges on 
whether the set F ⊆ E is Borel or relatively open. Indeed, the interpretation of (ii**) as an 
irrelevance property applies to (ii***) as well, but it is restricted to sets F that are relatively 
open, rather than just Borel.

Condition (ii*) immediately implies Condition (ii**), which trivially implies Condition (ii***).
Our characterization results, Theorems 3.2 and 4.1, together with Examples 3.2, 4.2 and 4.3, 
show that the converse implications do not hold. That said, when σ is an LCPS, Conditions (ii*)
and (ii**) are equivalent, and stronger than (ii***). The equivalence is established in the proof 
of Proposition 4.1. The fact that (ii*) and (ii**) are stronger than (ii***) follows from our char-
acterization results and Example 4.3. Also, Conditions (ii**) and (ii***) coincide when the state 
space is finite. This follows from Theorem 4.1 because in this case TWD- and PWD-assumption 
coincide.

Theorem 4.1. Fix an LPS σ .

(A) A set E ⊆ � is PWD-assumed under �σ if and only it is PWD-assumed under σ .
(B) A set E ⊆ � is TWD-assumed under �σ if and only it is TWD-assumed under σ .

There is no redundancy in Theorem 4.1. In Example 4.1, the event E is not PWD-assumed, 
even though it is immediate to verify that Conditions (i) and (iii) hold for j = 0. Conditions (i)
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and (ii**) are also not sufficient for PWD-assumption. Since PWD- and BFK-assumption coin-
cide for LCPSs, our discussion at the end of Subsection 3.3 applies.

5. Proof of Theorems 3.2 and 4.1, and Proposition 4.1

We first prove that the LPS-based definitions are sufficient: if E is BFK-assumed (resp. 
PWD-assumed, TWD-assumed) under σ , then it is BFK-assumed (resp. PWD-assumed, TWD-
assumed) under �σ . We need two preliminary results.

Remark 5.1. Fix some LPS σ = (μ0, . . . , μn−1) and a Borel set E. There is some i with μi(E) >
0 if and only if there are x, y ∈A with x �σ

E y.

Remark 5.1 is a corollary of Remark 2.1.

Remark 5.2. Fix some LPS σ = (μ0, . . . , μn−1) and a Borel E ⊆ �. Suppose that Conditions (i)
and (iii) hold for some j . Then, for each open set U with E ∩ U �= ∅, μi(U) = μi(E ∩ U) > 0
for some i ≤ j .

Proof. Fix some open set U with E ∩ U �= ∅. By Condition (iii), for each ω ∈ E ∩ U , there is 
some i ≤ j with ω ∈ suppμi . Since U is an open neighborhood of ω, μi(U) > 0. By Condi-
tion (i), μi(E ∩ U) = μi(U) > 0. �
Proof of Theorems 3.2 and 4.1, Sufficiency. If E is TWD-assumed under σ at level j (a fortiori, 
if it is PDW-assumed or BFK-assumed), then Non-triviality holds. This follows from Remark 5.2
and Remark 5.1. We show that, if E is TWD-assumed (resp. PWD-assumed, BFK-assumed) 
under σ , then TWD Determination (resp. PWD Determination, Strict Determination) holds.

The arguments for TWD and PWD Determination are similar; we present them concurrently. 
Consider acts x, y ∈A such that x(ω) ≥ y(ω) for all ω ∈ E, and suppose further that there exists 
a nonempty set F ⊆ E such that x(ω) > y(ω) for all ω ∈ F . If E is TWD-assumed (a fortiori, if 
it is PWD-assumed) under σ at level j , then Condition (i) holds, and implies that∫

xdμi =
∫
E

xdμi ≥
∫
E

ydμi =
∫

ydμi

for all i ≤ j .
If E is TWD-assumed and ∅ �= F = U ∩E for some open U , then by Remark 5.2, there exists 

some i ≤ j such that μi(U ∩ E) > 0. If instead E is PWD-assumed and F is Borel and not 
�σ -null, then by Remark 5.1 there exists some i such that μi(F ) > 0; moreover, by (ii**), we 
can take i ≤ j . Therefore, in either case, there is i ≤ j such that∫

xdμi =
∫
E

xdμi >

∫
E

ydμi =
∫

ydμi,

and so x �σ y. This establishes TWD Determination and, respectively, PWD Determination.
Finally, suppose that E is BFK-assumed under σ . Consider acts x, y ∈ A such that x �σ

E y. 
Then, there exists some k = 0, . . . , n − 1 so that

(a)
∫

(x − y)dμi = 0 for all i ≤ k − 1 and

E
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(b)
∫
E
(x − y)dμk > 0.

It suffices to show that k ≤ j ; if so, then by Condition (i), it follows that x �σ y.
Suppose, contra hypothesis, k > j . Then, by Condition (ii*), there exists (αk

0, . . . , αk
j ) ∈ Rj+1

so that∫
E

(x − y)dμk =
j∑

i=0

αk
i

∫
E

(x − y)dμi = 0,

where the second equality follows from (a). But this contradicts (b). �
We now turn to the proof of necessity: if E is TWD-assumed (resp. PWD-assumed, BFK-

assumed) under �σ , then it is TWD-assumed (resp. PWD-assumed, BFK-assumed) under σ .
First, we show that, if E is TWD-assumed under �σ , Condition (i) must hold for j = 0. 

A fortiori, this conclusion holds if E is PWD-assumed or BFK-assumed under �σ . Second, we 
show that, if E is TWD-assumed, PWD-assumed, or BFK-assumed under �σ , then there exists 
a j such that Condition (i) holds, and in addition the measures μj+1, . . . , μn−1 are ‘redundant’ 
in the appropriate sense. (Refer to the discussion on pages 964 and 968.) Third, we show that the 
weakest notion of redundancy—that implied by TWD-assumption—implies Condition (iii).

Several of these steps mirror the observations and examples above. The first is analogous to 
Observation 3.1.

Lemma 5.1. Fix an LPS σ = (μ0, . . . , μn−1). If E is TWD-assumed under �σ , then μ0(E) = 1.

Proof. Suppose that E is TWD-assumed under �σ . By contradiction, suppose that μ0(E) < 1. 
Consider acts x and y so that x(ω) = ε ∈ (0, μ0(�\E)) for all ω ∈ �, y(ω) = 0 for all ω ∈ E, 
and y(ω) = 1 for all ω /∈ E. Since x(ω) > y(ω) for all ω ∈ E = � ∩E, and � is open, x TWDE y. 
But, ∫

�

ydμ0 = μ0(�\E) > ε =
∫
�

xdμ0,

contradicting TWD Determination. Thus, μ0(E) = 1. �
The next two Lemmas state that assumption implies Condition (i) holds for some j =

0, . . . , n − 1. Furthermore, the Lemmas show that, if an event E is TWD-assumed, PWD-
assumed, or BFK-assumed under �σ , the measures μj+1, . . . , μn−1 satisfy suitable redundancy 
properties.

The cases of TWD-assumption and PWD-assumption can be handled concurrently.

Lemma 5.2. Fix an LPS σ and an event E that is TWD-assumed or PWD-assumed under �σ . 
Then, there exists some j so that

(i) μi(E) = 1 for all i ≤ j .

Furthermore, if E is TWD-assumed under �σ , then
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(ii***) for each k > j and each open U , if μk(U ∩ E) > 0, then there exists i ≤ j so that 
μi(U ∩ E) > 0;

and if E is PWD-assumed under �σ , then

(ii**) for each k > j and each F ⊆ E Borel, if μk(F ) > 0, then there exists i ≤ j so that 
μi(F ) > 0.

Proof. By Lemma 5.1, Condition (i) holds for j = 0. Let j be the largest number satisfying 
Condition (i). We will show that, if j does not also satisfy Condition (ii***) (resp. (ii**)), then 
E is not TWD-assumed (resp. PWD-assumed) under �σ .

If j = n −1, then Conditions (ii***) and (ii**) hold vacuously. Thus, suppose j < n −1. Since 
j is the largest number satisfying Condition (i), we have μj+1(�\E) > 0. Fix a Borel F ⊆ E and 
consider acts x and y satisfying the following: x(ω) = ε ∈ (0, μj+1(�\E)) for ω ∈ F , x(ω) = 0
if ω /∈ F , y(ω) = 0 if ω ∈ E and y(ω) = 1 if ω /∈ E.

We now consider two cases. First, suppose that E is TWD-assumed, and there exists an open 
U such that F = U ∩E and μk(U ∩E) > 0 for some k ≥ j + 1. Then U ∩E �= ∅, so x TWDE y, 
and TWD Determination implies that x �σ y.

Second, suppose that E is PWD-assumed, and μk(F ) > 0 for some k ≥ j +1. By Remark 2.1, 
F is not �σ -null. Then x PWDσ

E y and so, by PWD Determination, x �σ y.
To sum up, in either case x �σ y and μk(F ) > 0 for some k ≥ j + 1. Suppose that μi(F ) = 0

for all i ≤ j . Then μi(E\F) = 1 for all i ≤ j , so∫
�

xdμi =
∫
E

xdμi = 0 =
∫
E

ydμi =
∫
�

ydμi,

for all i ≤ j . Moreover, since x �σ y,

μj+1(F )ε =
∫
�

xdμj+1 ≥
∫
�

ydμj+1 = μj+1(�\E).

But this contradicts the fact that μj+1(�\E) > ε > 0 and μj+1(F ) ≤ 1. Therefore, there must 
be i ≤ j such that μi(F ) > 0. Hence, if E is TWD-assumed (resp. PWD-assumed) under �σ , 
Condition (ii***) (resp. (ii**)) holds. �

If U is open, then U ∩ E is Borel; thus, Condition (ii**) implies Condition (ii***).
Now consider BFK-assumption. We break up the argument into two Lemmas.

Lemma 5.3. Fix an LPS σ = (μ0, . . . , μn−1). If E ⊆ � is BFK-assumed under �σ , then there is 
some j = 0, . . . , n − 1 such that

(i) μi(E) = 1 for all i ≤ j , and
(�) if 

∫
E
(x − y)dμi = 0 for all i ≤ j , then 

∫
E
(x − y)dμi = 0 for all i = 0, . . . , n − 1.

Proof. Fix an LPS σ = (μ0, . . . , μn−1) on � such that E is BFK-assumed under �σ . By 
Lemma 5.1 and the fact that BFK-assumption implies TWD-assumption, μ0(E) = 1. Let k =
max{� = 0, . . . , n − 1 : μi(E) = 1 for all i ≤ �}. If k = n − 1 then condition (�) holds trivially. 
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Suppose instead that k < n − 1 and condition (�) fails. Then there are acts x, y and a number 
l = k + 1, . . . , n − 1 such that

• ∫
E
(x − y)dμi = 0 for all i ≤ l − 1, and

• ∫
E
(x − y)dμl > 0.

We will use these acts and the fact that μk+1(E) < 1, to construct acts x̂ and ẑ such that x̂ �σ
E ẑ

and ẑ �σ x̂. This contradicts Strict Determination.
For each ρ ∈ (0, 1), let z[ρ] be the act with z[ρ](ω) = ρx(ω) + (1 − ρ)y(ω) for all ω ∈ �. 

Note that for any i = 0, . . . , n − 1,∫
E

(x − z[ρ])dμi = (1 − ρ)

∫
E

(x − y)dμi.

So, for each ρ ∈ (0, 1),

• ∫
E
(x − z[ρ])dμi = 0 for all i ≤ l − 1, and

• ∫
E
(x − z[ρ])dμl > 0.

It follows that, for each ρ ∈ (0, 1), x �σ
E z[ρ].

Construct acts x̂ = (xE, 
−→
0 �\E) and ẑ[ρ] = (z[ρ]E, 

−→
1 �\E). Certainly, for each ρ ∈ (0, 1), 

x̂ �σ
E ẑ[ρ]. Moreover, since μi(E) = 1 for all i ≤ k, it follows that, for each ρ ∈ (0, 1) and each 

i ≤ k, 
∫
�
(ẑ[ρ] − x̂)dμi = 0. Next note that, for each ρ ∈ (0, 1),∫

�

(ẑ[ρ] − x̂)dμk+1 = (1 − ρ)

∫
E

(y − x)dμk+1 + μk+1(�\E).

Since μk+1(�\E) > 0, there exists ρ∗ ∈ (0, 1) large enough so 
∫
�
(ẑ[ρ∗] − x̂)dμk+1 > 0 and so 

ẑ[ρ∗] �σ x̂. �
Lemma 5.4. Fix an LPS σ = (μ0, . . . , μn−1). Suppose that E ⊆ � is Borel and, for some j =
0, . . . , n − 1,

(�) 
∫
E
(x − y)dμi = 0 for all i ≤ j =⇒ ∫

E
(x − y)dμi = 0 for all i = 0, . . . , n − 1.

Then,

(ii*) for each k > j , there exists (αk
0, . . . , αk

j ) ∈ Rj+1 so that, for each Borel F ⊆ E, μk(F ) =∑j

i=0 αk
i μi(F ).

Proof. Take j so that condition (�) holds. Fix some k > j . We will show that there exists 
(αk

0, . . . , αk
j ) ∈ Rj+1 so that, for any Borel F ⊆ E, μk(F ) = ∑j

i=0 αk
i μi(F ).

Let B denote the vector space of bounded Borel-measurable functions b : � → R. For each 
i = 1, . . . , j, k, define linear functionals T1, . . . , Tj , Tk on B by Ti(b) = ∫

E
bdμi . By condi-

tion (�), if x, y ∈A with Ti(x − y) = 0 for all i ≤ j , then Tk(x − y) = 0. Now, note that B is the 
set of all functions of the form γ (x −y) for γ ∈ R++ and x, y ∈A. So, for each b ∈ B, Ti(b) = 0
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for all i ≤ j implies that Tk(b) = 0. Hence, by the Theorem of the Alternative (see Aliprantis and 
Border, 2007, Corollary 5.92), there exists (αk

0, . . . , αk
j ) ∈ Rj+1 with Tk = ∑j

i=0 αk
i Ti .

For any F ⊆ E Borel, it follows that

μk(F ) =
∫
E

(
−→
1 F ,

−→
0 �\F )dμk =

j∑
i=0

αk
i

∫
E

(
−→
1 F ,

−→
0 �\F )dμi =

j∑
i=0

αk
i μi(F ),

as desired. �
Finally, we show that, under Non-Triviality, Condition (ii***) implies Condition (iii) in Defi-

nition 4.6.

Lemma 5.5. Fix an LPS σ = (μ0, . . . , μn−1) and a Borel E ⊆ � for which Non-Triviality holds 
under �σ . If Condition (ii***) holds for some j , then E ⊆ ⋃

i≤j suppμi , i.e., Condition (iii)
holds.

Proof. Let U = �\(⋃i≤j suppμi) and observe that U is open. Suppose, contra hypothesis, that 
E ∩ U �= ∅. Then, by Non-Triviality, E ∩ U is not �σ -null. By Remark 2.1, there exists k such 
that μk(E ∩U) > 0. By the definition of U , for any � with μ�(E ∩U) > 0, � > j . So there exists 
k > j with μk(E ∩ U) > 0. But, μi(E ∩ U) = 0 for all i ≤ j , which contradicts the fact that 
Condition (ii***) must hold. �
Proof of Theorems 3.2 and 4.1, Necessity. Fix an LPS σ = (μ0, . . . , μn−1) and a Borel 
E ⊆ �. Lemmas 5.2 and 5.5 show that, if E is TWD-assumed under �σ , then it is TWD-
assumed under σ . Having established necessity for TWD-assumption, we turn to PWD- and 
BFK-assumption. First recall (see page 968) that if (ii*) or (ii**) hold for some j , then (ii***)
holds for that j . Therefore Lemmas 5.2 and 5.5 also show that, if E is PWD-assumed under �σ , 
then it is PWD-assumed under σ . Finally, Lemmas 5.3, 5.4, 5.5 show that, if E is BFK-assumed 
under �σ , then it is BFK-assumed under σ . �

Theorems 3.2 and 4.1 readily imply Proposition 4.1, i.e., the equivalence of BFK-assumption 
and PWD-assumption for LCPSs.

Proof of Proposition 4.1. By Theorems 3.2 and 4.1, it is enough to show that Conditions (ii**)
and (ii*) are equivalent. We argued on page 968 that (ii) in Theorem 3.1 implies (ii*), which 
implies (ii**). Thus, it is enough to show that (ii**) implies (ii). To see this, suppose that (ii)
fails. Then there is k > j such that μk(E) > 0. Since σ is an LCPS, there is a Borel Uk such 
that μk(Uk) = 1 and μi(Uk) = 0 for all i �= k. Therefore, E ∩ Uk is Borel and μk(E ∩ Uk) > 0. 
Moreover, μi(E ∩ Uk) ≤ μi(Uk) = 0 for all i �= k, so (ii**) fails. �
6. Application: SAS and IA

This section applies the LPS-based characterizations of assumption to BFK’s game-theoretic 
analysis. We consider type structures where types map to arbitrary LPSs, rather than LCPSs. 
We formalize (lexicographic) rationality, assumption of rationality, etc., for the three variants of 
assumption. We show that, independent of the variant of assumption, self-admissible sets capture 
the behavioral implications of rationality and common assumption of rationality across all type 
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structure. Moreover, independent of the variant of assumption, iterated admissibility captures the 
behavioral implications of rationality and mth-order assumption of rationality, in a complete type 
structure.

As in BFK, we restrict attention to two-player games. Fix a game 〈Sa, Sb, πa, πb〉 where Sa

(resp. Sb) is a finite strategy set for Ann (resp. Bob) and πa (resp. πb) is a payoff function.

6.1. Solution concepts

The following definitions are standard.

Definition 6.1. Fix Ya × Yb ⊆ Sa × Sb . A strategy sa ∈ Ya is weakly dominated with respect to
Ya × Yb if there exists μa ∈P(Sa), with μa(Ya) = 1, such that πa(μa, sb) ≥ πa(sa, sb) for every 
sb ∈ Yb , and πa(μa, sb) > πa(sa, sb) for some sb ∈ Yb . Otherwise, say sa is admissible with 
respect to Ya × Yb . If sa is admissible with respect to Sa × Sb, simply say that sa is admissible.

Definition 6.2. Set S0
a = Sa and S0

b = Sb . Define inductively

Sm+1
a = {sa ∈ Sm

a : sa is admissible with respect to Sm
a × Sm

b };
and, likewise, define Sm+1

b . A strategy sa ∈ Sm
a is called m-admissible. A strategy sa ∈ ⋂∞

m=0 Sm
a

is called iteratively admissible (IA).

The following definitions are due to BFK.

Definition 6.3. Say ra supports sa if there exists some μa ∈ P (Sa) with ra ∈ suppμa and 
πa (μa, sb) = πa (sa, sb) for all sb ∈ Sb . Write su (sa) for the set of ra ∈ Sa that support sa .

Definition 6.4. Fix Qa × Qb ⊆ Sa × Sb . The set Qa × Qb is a self-admissible set (SAS) if:

(a) each sa ∈ Qa is admissible,
(b) each sa ∈ Qa is admissible with respect to Sa × Qb ,
(c) for any sa ∈ Qa , if ra ∈ su (sa) then ra ∈ Qa ,

and likewise for each sb ∈ Qb .

6.2. Epistemic analysis

For each n ∈ N, write Nn(�) for the set of LPSs of length n, σ = (μ0, . . . , μn−1), and write 
N (�) = ⋃

n∈NNn(�) for the set of LPS. Write N+(�) for the set of σ ∈ N that have full 
support. Define a metric on N (�) as follows: The distance between two sequences of measures 
(μ0, . . . , μn−1) and (ν0, . . . , νn−1) of the same length is the maximum of the Prohorov distances 
between μi and νi for all i < n. The distance between two sequences of measures of different 
lengths is 1. With this, N (�) is a Polish space and, by Corollary C.1 in BFK, N+(�) is Borel.

Definition 6.5. An (Sa, Sb)-based type structure is a structure

〈Sa,Sb, Ta, Tb, λa, λb〉,
where Ta and Tb are nonempty Polish type spaces, and λa : Ta → N (Sb × Tb) and λb : Tb →
N (Sa × Ta) are Borel measurable belief maps.
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Type structures are a basic representation of interactive LPS-based beliefs. Definition 6.5
differs from BFK’s Definition 7.1 in that it does not require that types be mapped to LCPSs (or 
limits of LCPSs). A type structure induces a set of states, i.e., Sa × Ta × Sb × Tb .

In the remainder of this subsection, we fix a (Sa, Sb)-based type structure 〈Sa, Sb, Ta, Tb, λa,

λb〉. All definitions have counterparts with a and b reversed.

Definition 6.6. A strategy sa is optimal under σ = (μ0, . . . , μn−1) if σ ∈ N (Sb × Tb) and(
πa(sa,marg Sb

μi(sb))
)n−1
i=0

≥L
(
πa(ra,marg Sb

μi(sb))
)n−1
i=0

for all ra ∈ Sa .

Here, marg Sb
μi denotes the marginal on Sb of the measure μi . In words, Ann will prefer 

strategy sa to strategy ra if the associated sequence of expected payoffs under sa is lexicograph-
ically greater than the sequence under ra . (If σ is a length-one LPS (μ0), we will sometimes say 
that sa is optimal under the measure μ0 if it is optimal under (μ0).)

We now formalize the epistemic conditions of interest as restrictions on strategy-type pairs.

Definition 6.7. A strategy-type pair (sa, ta) ∈ Sa × Ta is rational if λa (ta) is a full-support LPS 
and sa is optimal under λa(ta).

Next, for E ⊆ Sb × Tb , set

AX
a (E) = {ta ∈ Ta : E is X-assumed under λa(ta)}, for X ∈ {BFK,PWD,TWD}.

In words, ABFK
a (E) is the set of types ta ∈ Ta such that the associated LPSs λa (ta) BFK-assumes 

the event E ⊆ Sb ×Tb . Likewise, APWD
a (E) and ATWD

a (E) are the sets of types that PWD-assume 
and, respectively, TWD-assume E. We frequently refer to properties that hold for several variants 
of assumption. For brevity, we use X to denote these variants, as in the equation above. Hence-
forth, we drop explicit reference to the fact that X is an element of the set {BFK, PWD, TWD}; 
this fact should be taken as implicit (as in the next observation). Note, if E ⊆ Sb × Tb is not 
Borel, then AX

a (E) = ∅.
For finite m and any X, define the sets RX,m

a as follows. Let RX,1
a be the set of all rational 

(sa, ta) ∈ Sa × Ta . Inductively, set

RX,m+1
a = RX,m

a ∩ [Sa × AX
a (R

X,m
b )].

If (sa, ta, sb, tb) ∈ R
X,m+1
a × R

X,m+1
b , say there is rationality and mth-order X-assumption of 

rationality at this state. If (sa, ta, sb, tb) ∈ ⋂∞
m=1 R

X,m
a × ⋂∞

m=1 R
X,m
b , say there is rationality 

and common X-assumption of rationality (RCAXR) at this state.
Recall that BFK-assumption implies PWD-assumption which, in turn, implies TWD-

assumption. In light of this, one might conjecture that, for any given type structure and any 
given m, RBFK,m

a ×R
BFK,m
b ⊆ R

PWD,m
a ×R

PWD,m
b ⊆ R

TWD,m
a ×R

TWD,m
b . (And, if so, this would 

allow us to simplify proofs, taking BFK-assumption as a lower bound on behavior and TWD-
assumption as an upper bound of behavior.) However, this is not the case because assumption—in 
all its forms—is not monotonic: we can have E ⊆ F , and E assumed, even though F is not as-
sumed (see BFK, p. 323). Nonetheless, we will show two behavioral equivalence results; so, at 
some level, the differences between these variants of assumption will not be material for observed 
behavior.
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Because there is no ranking of rationality and mth-order assumption of rationality across the 
variants of assumption, we will need to establish the results separately, for each variant of as-
sumption. However, the arguments take a similar structure to one another and all follow the line 
of argument in BFK (Theorems 8.1–10.1). In the Appendix, we discuss the required modifica-
tions.

6.3. Self-admissible sets

We begin by showing that SASs characterize RCAXR, independent of the choice of X ∈
{BFK, PWD, TWD}.

Theorem 6.1.

(1) For every type structure, proj Sa

⋂
m R

X,m
a × proj Sb

⋂
m R

X,m
b is an SAS.

(2) For every SAS Qa × Qb , there exists a type structure such that proj Sa

⋂
m R

X,m
a ×

proj Sb

⋂
m R

X,m
b = Qa × Qb .

Part (2) is essentially Theorem 8.1(ii) in BFK. They show this by constructing a finite, LCPS-
based type structure which is, a fortiori, an LPS-based type structure. In such a type structure, all 
three notions of assumption coincide.12 Part (1) is an analogue of Theorem 8.1(i) in BFK. In con-
trast to BFK, we allow for arbitrary LPS-based type structures and employ our characterizations 
of assumption. As noted, in the Appendix we indicate how to adapt BFK’s proofs.

Within a given type structure, RCAXR may have different—and potentially incompatible—
behavioral implications for different admissibility concepts. That is, within a given type struc-
ture, the sets proj Sa

⋂
m R

X,m
a × proj Sb

⋂
m R

X,m
b may be disjoint for any pair of distinct X ∈

{BFK, PWD, TWD}. Nevertheless, Theorem 6.1 states that, if we quantify across all type struc-
tures, then RCAXR has the same behavioral implications for all X. For instance, suppose that for 
a given type structure, Qa × Qb ⊆ Sa × Sb is the projection on the strategy set of RCABFKR; 
then Theorem 6.1 says that, there exists a (potentially different) type structure so that Qa × Qb

is also the projection of RCATWDR in the different type structure. Thus, if the analyst can only 
observe behavior, then RCABFKR, RCAPWDR, and RCATWDR are indistinguishable. However, 
if the analyst also has information about both behavior and hierarchies of beliefs, then the three 
epistemic conditions are distinguishable.

6.4. Iterated admissibility

BFK’s foundations for iterated admissibility focus on type structures that satisfy a particular 
property, known as completeness. Write range λa for the range of the function λa .

Definition 6.8. A type structure is complete if N+ (Sb × Tb) � range λa and N+ (Sa × Ta) �

range λb .

A complete type structure is one that is sufficiently rich: For every possible full-support LPS-
based belief a player can hold, there is a type of the player that holds that belief. Moreover, there 

12 This is implied by Observation 4.1 and Proposition 4.1.
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is (at least) some type of the player that has an LPS-based belief without full support.13 Section 
2.4 in BFK illustrates why, from the perspective of providing foundations for iterated admissi-
bility, it is important to include types without full support (i.e., why it is important to require that 
λa and λb be a strict superset of N+(Sb × Tb) and N+(Sa × Ta)).

Again, within a given complete type structure, the sets RX,m
a may well be different for different 

values of X. Nonetheless, Theorem 6.2 shows that they are all characterize m rounds of iterated 
admissibility.

Theorem 6.2. Fix a complete type structure. For each m,

proj Sa
RX,m

a × proj Sb
R

X,m
b = Sm

a × Sm
b .

Theorem 6.2 is an analogue of Theorem 9.1 in BFK. It states that, in a complete type structure, 
the strategies consistent with rationality and mth order BFK-assumption (resp. PWD-assumption, 
TWD-assumption) of rationality are precisely the ones that survive m rounds of iterated admis-
sibility. Unlike BFK’s result, Theorem 6.2 allows for an LPS-based notion of a complete type 
structure. It employs our characterizations of assumption to prove this result.

Finally, BFK show a negative result on the impossibility of RCAR in a complete type struc-
ture. Again, an analogous result holds in our setting. Say that player a is not indifferent if there 
exist sa, ra ∈ Sa and sb ∈ Sb such that πa(ra, sb) �= πa(sa, sb).

Theorem 6.3. Fix a complete type structure (Sa, Sb, Ta, Tb, λa, λb) where λa and λb are contin-
uous. If player a is not indifferent then, for any X, there is no state at which there is RCAXR.

Theorem 6.3 is an analogue of Theorem 10.1 in BFK. The result shows that BFK’s impossi-
bility of RCAR does not hinge on mutual singularity, or the choice between BFK-assumption, 
PWD-assumption, or TWD-assumption.

7. Discussion: related literature

In contemporaneous work, Lee (2013) extends the results of BFK to LPSs. His elegant 
approach is different from but complementary to ours. His starting point is that the same lex-
icographic preference relation may be represented by more than one LPS. (See Blume et al., 
1991b, page 66). He shows that a lexicographic preference relation � assumes an event E if 
and only if Conditions (i)–(iii) in Theorem 3.1 hold for some LPS σ for which �σ =�. That is, 
instead of providing conditions that a given LPS must satisfy for the corresponding preference 
relation to assume an event E, he provides conditions that must be satisfied by at least one of the 
many LPSs that represent the same preferences.

Theorem 7.1. (See Lee, 2013.) Fix an LPS σ . A set E ⊆ � is BFK-assumed under �σ if and 
only if there is some LPS ρ satisfying Conditions (i)–(iii) in Theorem 3.1 such that �σ=�ρ .

Lee’s result can also be derived from our Theorem 3.2. In fact, Lee (2015) gives a self-
contained proof using our characterization of assumption.

13 A type structure that is complete in the sense of BFK is complete according to this definition; the converse does not 
hold.
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Appendix A. Theorems 6.1–6.3

The proofs of Theorems 8.1 and 9.1 in BFK rely on three results concerning the properties 
that hold in LCPS-based type structures. (See Lemma D.1, Property 6.3, and Lemma C.4 in 
BFK.) The statement and proofs of these results rely on BFK’s characterization of assumption 
for LCPSs. (Proposition 4.1 implies that the same characterization holds for PWD-assumption.) 
We have seen that the characterization does not apply to BFK-assumption and PWD-assumption 
with arbitrary LPSs, and to TWD-assumption. To address this, we state and prove analogous 
properties in our setting. (See Lemmas A.1, A.2, and A.3.)

Lemma A.1. Let λa(ta) = (μ0, . . . , μn−1) be a full-support LPS. Suppose ta TWD-assumes E ⊆
Sb × Tb. Then, there exist some j so that⋃

i≤j

supp marg Sb
μi = proj Sb

E.

Note that if Sb × Tb is finite and λa(ta) = (μ0, . . . , μn−1) TWD-assumes (a fortiori, PWD-
assumes or BFK-assumes) E at level j , then E = ⋃

i≤j suppμi . If Sb × Tb is infinite, the same 
may not hold. Lemma A.1 shows that, if � = Sb × Tb is infinite, a similar statement holds if we 
consider the marginal LPS (marg Sb

μ0, . . . , marg Sb
μn−1) and, correspondingly, the projection 

of E on Sb.

Lemma A.2. Fix a full-support LPS σ ∈ N+(Sb × Tb). If σ X-assumes RX,1
b , RX,2

b , . . ., then it 
X-assumes 

⋂
m R

X,m
b .

Lemma A.2 will be a consequence of a conjunction property of X-assumption.

Lemma A.3. The sets RX,m
a and RX,m

b are Borel.

To prove part (1) of Theorem 6.1, it is enough to replace Lemma D.1 and Property 6.3 in 
BFK’s proof with Lemma A.1 and Lemma A.2. To prove part (2) simply repeat BFK’s proof, 
observing that BFK-assumption implies both PWD-assumption and TWD-assumption. (Obser-
vations 4.2–4.3.)

To prove Theorem 6.2, two changes to BFK’s proof are needed. First, replace Lemma D.1 and 
Lemma C.4 in BFK with Lemma A.1 and Lemma A.3. Second, modify the proof of Lemma E.3 
in BFK, for the case where m ≥ 2: Skip the construction that ensures that μi(U) = 0 for all i. 
(That particular construction does not work for arbitrary LPSs. Fortunately, it is not needed in 
our setting.)

We now prove Lemmas A.1, A.2, and A.3.

Proof of Lemma A.1. Suppose ta TWD-assumes E ⊆ Sb × Tb at level j . If sb ∈ proj Sb
E, then 

there exists i ≤ j such that μi({sb} × Tb) > 0. (See Remark 5.2.) It follows that, if sb ∈ proj Sb
E, 

sb ∈ supp marg Sb
μi . Conversely, if sb /∈ proj Sb

E, then E∩({sb} ×Tb) = ∅. Since each μi(E) = 1
for i ≤ j , it follows that μi({sb} × Tb) = 0 for i ≤ j , i.e., sb /∈ ⋃

i≤j supp marg Sb
μi . �

Lemma A.4. Fix Borel sets E1, E2, . . ., with Em+1 ⊆ Em. If a full-support LPS σ = (μ0, . . . ,
μn−1) X-assumes each of E1, E2, . . ., then it X-assumes 

⋂
Em.
m
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Proof. For each m = 1, 2, . . ., there exists some j [m] ∈ {0, . . . , n − 1} so that σ X-assumes Em

at level j [m]. Let j = min{j [m] : m ≥ 0}. Let M be some m with j = j [M]. We show that ⋂
m Em is X-assumed under σ at level j = j [M].
For Condition (i), note that, for each i ≤ j , μi(Em) = 1 for all m. So, by continuity, 

μi(
⋂

m Em) = 1. For Condition (iii), note that 
⋂

m Em ⊆ EM ⊆ ⋃
i≤j suppμi . Hence, 

⋂
m Em is 

TWD-assumed at level j . Now suppose that X ∈ {BFK,PWD}. For Condition (ii*) (resp. (ii**)), 
note that each Borel F ⊆ ⋂

m Em is also a subset of EM . Thus, Condition (ii*) (resp. (ii**)) 
applied to 

⋂
m Em follows from Condition (ii*) (resp. (ii**)) applied to EM . �

Proof of Lemma A.2. Immediate from Lemma A.4. �
We now turn to the proof of Lemma A.3. We will break the proof into several Lemmas. The 

first Lemma is standard (and so the proof is omitted).

Lemma A.5. Fix some strategy sa ∈ Sa .

(1) The set of μ ∈P(Sb) so that sa is optimal under μ is closed.
(2) The set of μ ∈P(Sb) so that sa is strictly optimal under μ is open.

Lemma A.6. The sets RX,1
a and RX,1

b are Borel.

Proof. For each sa ∈ Sa , define O[sa, n] to be

O[sa, n] = {σ ∈ Nn(Sb × Tb) : sa is optimal under σ }.
Note, that

RX,1
a =

⋃
sa∈Sa

⋃
n∈N0

[
{sa} ×

(
(λa)

−1(O[sa, n]) ∩ (λa)
−1(N+

n (Sb × Tb))
)]

.

Since λa is measurable and N+
n (Sb × Tb) is Borel (Corollary C.1 in BFK), it suffices to show 

that each O[sa, n] is measurable.
Write O[sa] for the set of μ ∈ P(Sb) under which sa is optimal, Os[sa] for the set of μ ∈

P(Sb) under which sa is strictly optimal, and Ow[sa] = O[sa]\Os[sa]. By Lemma A.5, Ow[sa], 
Os[sa], and O[sa] are Borel. Note that

O[sa, n] = (Os[sa] ×Nn−1(Sb × Tb)) ∪ (Ow[sa] × Os[sa] ×Nn−2(Sb × Tb)) ∪ · · ·
∪ (Ow[sa] × Ow[sa] × · · · × O[sa]),

so that O[sa, n] is Borel. �
Given a Borel set E ⊆ �, write SE for the set of F ⊆ E that are Borel. Of course, SE ⊆ S . 

Moreover, SE is the Borel σ -algebra on E. (See Aliprantis and Border, 2007, Lemma 4.20.)

Lemma A.7. Fix n ∈N0 and j = 0, . . . , n − 1. If E ∈ S , then

{σ ∈ Nn(�) : E is X-assumed under σ at level j},
is Borel.

A Corollary of Lemma A.7 is:
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Corollary 7.1. If E ∈ S , then {σ ∈N (�) : E is X-assumed under σ } is Borel.

To show Lemma A.7, define the sets

A[1, j,E] =
j⋂

i=0

{σ ∈Nn(�) : μi(E) = 1}

and

A[3, j,E] = {σ ∈Nn(�) : E ⊆
⋃
i≤j

suppμi}.

Repeating the arguments in the proof of Brandenburger et al. (2008) Lemma C.3, for each j , the 
sets A[1, j, E] and A[3, j, E] are Borel. Now observe that

{σ ∈ N (�) : E is TWD-assumed under σ } =
n−1⋃
j=0

(A[1, j,E] ∩ A[3, j,E]) .

This establishes Lemma A.7 for TWD-assumption.
To establish Lemma A.7 for BFK- and PWD-assumption, we will need to define sets 

A[BFK, j, E] and A[PWD, j, E]. For j = 0, . . . , n − 2, let

A[BFK, j,E] =
n−1⋂

k=j+1

⋃
αk∈Rj+1

⋂
F∈SE

{σ ∈ Nn(�) : μk(F ) =
j∑

i=0

αk
i μi(F )}

and

A[PWD, j,E]

=
⋂

F∈S:F⊆E

n−1⋂
k=j+1

{σ = (μ0, . . . ,μn−1) ∈ Nn : μk(F ) > 0 ⇒ ∃i ≤ j, μi(F ) > 0}.

Let A[BFK, n − 1, E] = A[PWD, n − 1, E] =Nn(�).14 Observe that, for X ∈ {BFK, PWD}

{σ ∈ N (�) : E is X-assumed under σ } =
n−1⋃
j=0

(A[1, j,E] ∩ A[X, j ] ∩ A[3, j,E]) .

Thus, to show Lemma A.7 for BFK- and PWD-assumption, it suffices to show that the sets 
A[BFK, j, E] and A[PWD, j, E] are Borel. This is immediate for j = n − 1. So we focus on the 
case of j = 0, . . . , n − 2.

Lemma A.8. Fix a Borel E ⊆ �. There exists a countable algebra FE on E that generates SE .

Proof. Since E is a subset of a second countable space, it is second countable. Thus, there 
exists a countable subbase {U1, U2, . . .} that generates SE . Let FE be the algebra generated by 
{U1, U2, . . .}. By Rao and Rao, (1983, Corollary 1.1.14), FE is countable. Moreover, it generates 
SE . �

In what follows, we write FE for a countable algebra on E that generates SE .

14 For A[X, n − 1, E] is independent of E. But, for j = 0, . . . , n − 2, A[X, j, E] depends on E.
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Lemma A.9. Fix an LPS σ = (μ0, . . . , μn−1). Fix also some j = 0, . . . , n − 2 and k > j . Then, 
the following are equivalent:

(1) There exists α ∈ Rj+1 with μk(F ) = ∑j

i=0 αiμi(F ) for all F ∈ SE .
(2) There exists an integer M ≥ 1 such that, for all integers m ≥ 1, there exists βm =

(βm
0 , . . . , βm

j ) ∈ Qj+1 ∩ [−M, M]j+1 with |μk(F ) − ∑j

i=0 βm
i μi(F )| ≤ 1

m
for all F ∈ SE .

(3) There exists an integer M ≥ 1 such that, for all integers m ≥ 1, there exists βm =
(βm

0 , . . . , βm
j ) ∈ Qj+1 ∩ [−M, M]j+1 with |μk(F ) − ∑j

i=0 βm
i μi(F )| ≤ 1

m
for all F ∈ FE .

Proof. Suppose part (1) holds. If 
∑j

i=0 μi(E) = 0, then μk(F ) = ∑j

i=0 αk
i μi(F ) = 0 for every 

F ⊆ E Borel. In this case, take M = 1 and β = (0, . . . , 0) ∈ Qj+1 ∩ [−1, 1]j+1.
Thus, we focus on the case where 

∑j

i=0 μi(E) > 0. In this case, for each m ≥ 1, we can 
choose εm ∈ (0, 1

m
∑j

i=0 μi(E)
] and βm ∈ Qj+1 such that maxi |βm

i − αi | ≤ εm. By construction, 

βm → α, and so the sequence (βm)m is bounded. This implies that there exists M ≥ 0 such that 
βm ∈ [−M, M]j+1 for all m. Moreover, for each m ≥ 1 and each F ⊆ E Borel,∣∣∣∣∣∣μk(F ) −

j∑
i=0

βm
i μi(F )

∣∣∣∣∣∣ =
∣∣∣∣∣∣

j∑
i=0

αiμi(F ) −
j∑

i=0

βm
i μi(F )

∣∣∣∣∣∣
=

∣∣∣∣∣∣
j∑

i=0

(αi − βm
i )μi(F )

∣∣∣∣∣∣
≤ |αi − βm

i |
j∑

i=0

μi(F )

≤ εm

j∑
i=0

μi(E)

≤ 1

m
.

This establishes part (2), which in turn establishes part (3).
Next, suppose part (3) holds, i.e., there exist an integer M ≥ 1 and a sequence (βm)m such 

that, for every m ≥ 1, βm ∈ Qj+1 ∩ [−M, M]j+1 and |μk(F ) − ∑j

i=0 βm
i μi(F )| ≤ 1

m
for all 

F ∈FE . Let M be the collection of all F ∈ SE for which |μk(F ) − ∑j

i=0 βm
i μi(F )| ≤ 1

m
holds 

for all m ≥ 1. We will show that SE ⊆M, thereby establishing part (2).
By Lemma A.8, SE is the σ -algebra generated by FE . So, by the Monotone Class Lemma 

(Aliprantis and Border, 2007, Lemma 4.13), SE is the smallest monotone class containing FE . 
As such, to show SE ⊆M, it suffices to show that M is a monotone class containing FE .

The fact that M contains FE follows from part (3). To see that M is a monotone class, 
consider a monotonically increasing (resp. decreasing) sequence (F n) of elements of M. Then 
F ≡ ⋃

n Fn (resp. F ≡ ⋂
n Fn) are Borel and, by continuity of the measures μ0, . . . , μj , μk , 

limn→∞ μi(F
n) = μi(F ) for i = 0, . . . , j, k. Therefore, limn→∞ |μk(F

n) −∑j

i=0 βm
i μi(F

n)| =
|μk(F ) −∑j

i=0 βm
i μi(F )|, and so |μk(F ) −∑j

i=0 βm
i μi(F )| ≤ 1

m
. Thus, M is a monotone class 

containing FE .
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Finally, suppose part (2) holds. Since βm ∈ Qj+1 ∩ [−M, M]j+1, there exists a convergent 
subsequence (βm(�))�; let β = (β0, . . . , βj ) be its limit. By construction, for each m(�) ≥ 1 and 
each F ∈ SE |μk(F ) − ∑j

i=0 β
m(�)
i μi(F )| ≤ 1

m(�)
. It follows that, for each F ∈ SE , |μk(F ) −∑j

i=0 βiμi(F )| = 0. This establishes (1). �
Lemma A.10. Fix some n ∈N0 and some j = 0, . . . , n −2. If E ∈ S , then A[BFK, j, E] is Borel.

Proof. It suffices to show that the set

Ak[BFK, j,E] :=
⋃

αk∈Rj+1

⋂
F∈SE

{σ ∈ Nn(�) : μk(F ) =
j∑

i=0

αk
i μi(F )}

is Borel. Note, by Lemma A.9, Ak[BFK, j, E] = Y k where

Y k :=
⋃

M∈N

⋂
m∈N

⋃
α∈Qj+1∩[−M,M]j+1

⋂
F∈FE

{σ ∈Nn(�) : |μk(F ) −
j∑

i=0

αiμi(F )| ≤ 1

m
}.

Note that, in the definition of Y k , each of the unions and intersections are taken over count-
able sets. (Use Lemma A.8 to conclude that FE is countable.) Thus, to show that the set 
Ak[BFK, j, E] is Borel, it suffices to show that, for each M ≥ 1, α ∈ Qj+1 ∩ [−M, M]j+1, 
m ∈ N, and F ∈ FE the set

{σ ∈ Nn(�) : |μk(F ) −
j∑

i=0

αiμi(F )| ≤ 1

m
}

is Borel. To show this set is Borel, it suffices to show that the map F : Nn(�) → R defined by

F(μ0, . . . ,μn) = |μk(F ) −
j∑

i=0

αiμi(F )|

is measurable.
Note that F is measurable if and only if G is measurable, where

G(μ0, . . . ,μn) = μk(F ) −
j∑

i=0

αiμi(F ).

(See Aliprantis and Border, 2007, Theorem 4.27.) Define maps gi : Nn(�) → R where 
gi(μ0, . . . , μn) = μi(F ). For each i, gi is measurable. (See Aliprantis and Border, 2007, 
Lemma 15.16.) With this G = gk − ∑j

i=0 αigi is measurable (Aliprantis and Border, 2007, The-
orem 4.27), as desired. �

Fix some n ∈N0 and j = 0, . . . , n − 2. For any k > j and Borel F ∈ S , define

Ak[PWD, j,E](F ) = {σ = (μ0, . . . ,μn−1) ∈ Nn : μk(F ) > 0 ⇒ ∃i ≤ j, μi(F ) > 0}.
Then, set

Ak[PWD, j,E] ≡
⋂

Ak[PWD, j,E](F )
F∈S:F⊆E
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and observe that A[PWD, j, E] = ⋂n−1
k=j+1 Ak[PWD, j, E].

Lemma A.11. Fix some n ∈N0 and j = 0, . . . , n − 2.

(i) For any k > j and Borel F ∈ S , Ak[PWD, j, E](F ) is Borel.
(ii) If E ∈ S , then Ak[PWD, j, E] is Borel.

(iii) If E ∈ S , then A[PWD, j, E] is Borel.

Before we prove Lemma A.11, it will be convenient to introduce a background lemma. Ob-
serve that, since � is second-countable, its topology admits a countable base O. Let C = {� \O :
O ∈O}. Then C is countable, and every closed set C is an intersection of elements of C.

Lemma A.12. If F ∈ S , then μ(F) = sup{μ(C) : C ∈ C}.

Proof. Since � is Polish, every Borel measure on � is regular (Aliprantis and Border (2007), 
Theorem 12.7) and hence inner regular (Aliprantis and Border (2007), Definition 12.2 and 
Lemma 12.3): that is, for every Borel F ∈ S , μ(F) = sup{μ(C) : C ⊆ F, C closed }. Since any 
closed set is an intersection of elements of C, this is equivalent to μ(F) = sup{μ(C) : C ∈ C}. �
Proof of Lemma A.11. Let F ∈ S and define

Pi(F ) = {(μ0, . . . ,μn−1) ∈Nn : μi(F ) > 0} and

Zi(F ) = {(μ0, . . . ,μn−1) ∈Nn : μi(F ) = 0}
for each i = 0, . . . , n − 1. By Lemma 15.16 in Aliprantis and Border (2007), the sets Pi(F ) and 
Zi(F ) are Borel.

Fix k > j . Observe that σ = (μ0, . . . , μn−1) ∈ Ak[PWD, j, E](F ) if either μk(F ) = 0, or 
μi(F ) > 0 for some i ≤ j . Therefore,

Ak[PWD, j,E](F ) = Zk(F ) ∪
⎛
⎝ j⋃

i=0

Pi(F )

⎞
⎠ .

This is a finite union of Borel sets, and so it is Borel. This establishes part (i).
To complete the proof, it suffices to show part (ii). (Part (iii) follows immediately from 

part (iii).) Set

Ãk[PWD, j ] =
⋂

C∈C:C⊆E

Ak[PWD, j,E](C).

First observe that, by part (i) and the fact that C is countable, Ãk[PWD, j ] is Borel. Thus, it 
suffices to show that Ãk[PWD, j ] = Ak[PWD, j, E].

Observe that C ⊂ S and so Ak[PWD, j, E] ⊆ Ãk[PWD, j ]. We show Ãk[PWD, j ] ⊆
Ak[PWD, j, E]: Fix some σ = (μ0, . . . , μn−1) ∈ Ãk[PWD, j ]. Consider a Borel F ∈ S . Sup-
pose that μk(F ) > 0. By Lemma A.12, there is C ∈ C such that μk(C) > 0 and C ⊆ F ⊆ E. 
Since σ ∈ Ak[PWD, j, E](C), there is i ≤ j such that μi(C) > 0. Hence μi(F ) > 0. Thus 
σ ∈ Ak[PWD, j, E]. �
Proof of Lemma A.7. Immediate from the earlier argument and Lemmas A.10–A.11. �



984 E. Dekel et al. / Journal of Economic Theory 163 (2016) 955–985
Finally, we conclude with Theorem 6.3. The proof of Theorem 10.1 in BFK relies on Prop-
erty 6.2 and Lemmas F.1 and F.2 therein. Property 6.2 holds for all LPSs (repeat the proof in 
BFK). The proofs of the two Lemmas begin by fixing a type ta which maps to a full-support 
LCPS. BFK then use this type to construct a continuum of related types ua that satisfy certain 
properties. Although in our setting types may correspond to general LPSs, we can still find a type 
ta that maps to a (full-support) LCPS. In that case, the proof of Lemma F.1 follows verbatim. 
Likewise, the proof of Lemma F.2 applies verbatim for BFK-assumption and PWD-assumption, 
since the concepts coincide for LCPSs (Proposition 4.1).15

Because TWD-assumption does not coincide with BFK-assumption for LCPSs, we must pro-
vide a separate proof of Lemma F.2 for arbitrary LPSs. The key step is to replace Lemma E.2 
with an analogue for LPSs. With that, we can repeat the argument in BFK (modulo making the 
correction discussed in Footnote 15). Parts (i) and (ii) of Lemma E.2 follow immediately for 
arbitrary LPSs. Part (iv) follows immediately from Part (iii). Thus, it suffices to show part (iii) 
for arbitrary LPSs and TWD-assumption. We conclude with that argument.

Say two LPSs on Sb × Tb , viz. σ and ρ, are equivalent if σ = (μ0, . . . , μn−1), ρ =
(ν0, . . . , νn−1) and for each i, (a) marg Sb

μi = marg Sb
νi and (b) μi and νi have the same null 

sets. The following is the analogue of Lemma E.2(iii) for TWD-assumption:

Lemma A.13. If σ = (μ0, . . . , μn−1) and ρ = (ν0, . . . , νn−1) are equivalent and σ TWD-
assumes a Borel set E ⊆ Sb × Tb , the ρ TWD-assumes E.

Proof. Since σ TWD-assumes E, there exists some j = 0, . . . , n − 1 so that conditions (i)
and (iii) hold. Since, for each i, μi and νi have the same null sets, it follows that μi((Sb ×
Tb)\E) = νi((Sb × Tb)\E) = 0 for i ≤ j ; thus, νi(E) = 1 for all i ≤ j . We next show that 
E ⊆ ⋃

i≤j suppνi .
Suppose not, i.e., E is not contained in 

⋃
i≤j suppνi . Then U = (Sb × Tb)\ 

⋃
i≤j suppνi

is an open set with E ∩ U �= ∅. Observe that E ∩ U ⊆ ⋃
i≤j suppμi . So, for each (sb, tb) ∈

(E ∩ U), there exists i ≤ j with (sb, tb) ∈ suppμi . Since U is an open neighborhood of (sb, tb), 
μi(U) > 0. And since μi(E) = 1, μi(E ∩ U) > 0. But then since μi and νi have the same null 
sets, νi(E ∩ U) > 0, contradicting the definition of U . �
References

Aliprantis, C.D., Border, K.C., 2007. Infinite Dimensional Analysis: A Hitchhiker’s Guide. Springer Verlag.
Asheim, Geir B., 2002. Proper rationalizability in lexicographic beliefs. Int. J. Game Theory 30 (4), 453–478.
Asheim, Geir B., Dufwenberg, Martin, 2003. Admissibility and common belief. Games Econ. Behav. 42 (2), 208–234.
Asheim, Geir B., Søvik, Ylva, 2005. Preference-based belief operators. Math. Soc. Sci. 50 (1), 61–82.
Blume, L., Brandenburger, A., Dekel, E., 1991a. Lexicographic probabilities and equilibrium refinements. Econometrica, 

81–98.
Blume, L., Brandenburger, A., Dekel, E., 1991b. Lexicographic probabilities and choice under uncertainty. Economet-

rica 59 (1), 61–79.
Brandenburger, A., 1992. Lexicographic probabilities and iterated admissibility. In: Dasgupta, P., Gale, D., Hart, O., 

Maskin, E. (Eds.), Analysis of Markets and Games. MIT Press.

15 That said, there is a correctable error in BFK’s proof of Lemma F.2. The first paragraph must be amended to say 
the following: There exists some type ta with λa(ta) = (μ0, . . . , μn−1) and a finite set U ⊆ Rm−1

b
\Rm

b
so that Rm

b

is assumed at level 0, proj Sb
U = proj Sb

Rm−1
b

, and μi(E) = 0 for all i < m. The ability to choose U is crucial for 
establishing the base case, but not important for the inductive step.

http://refhub.elsevier.com/S0022-0531(16)00037-5/bib616C697072616E74697332303037696461s1
http://refhub.elsevier.com/S0022-0531(16)00037-5/bib61736865696D3230303270726F706572s1
http://refhub.elsevier.com/S0022-0531(16)00037-5/bib61736865696D3230303361646D6973736962696C697479s1
http://refhub.elsevier.com/S0022-0531(16)00037-5/bib61736865696D32303035707265666572656E6365s1
http://refhub.elsevier.com/S0022-0531(16)00037-5/bib626C756D65313939316C657869636F6772617068696367616D65s1
http://refhub.elsevier.com/S0022-0531(16)00037-5/bib626C756D65313939316C657869636F6772617068696367616D65s1
http://refhub.elsevier.com/S0022-0531(16)00037-5/bib626C756D65313939316C657869636F67726170686963s1
http://refhub.elsevier.com/S0022-0531(16)00037-5/bib626C756D65313939316C657869636F67726170686963s1
http://refhub.elsevier.com/S0022-0531(16)00037-5/bib6272616E64656E627572676572313939326C706961s1
http://refhub.elsevier.com/S0022-0531(16)00037-5/bib6272616E64656E627572676572313939326C706961s1


E. Dekel et al. / Journal of Economic Theory 163 (2016) 955–985 985
Brandenburger, A., Friedenberg, A., Keisler, H.J., 2008. Admissibility in games. Econometrica 76 (2), 307.
Catonini, E., De Vito, N., 2014. Common Assumption of Cautious Rationality and Iterated Admissibility.
Govindan, Srihari, Klumpp, Tilman, 2003. Perfect equilibrium and lexicographic beliefs. Int. J. Game Theory 31 (2), 

229–243.
Keisler, H.J., Lee, B.S., 2010. Common Assumption of Rationality.
Lee, Byung Soo, 2013. Conditional Beliefs and Higher-Order Preferences.
Lee, Byung Soo, 2015. Strict Determination Is Mutual Singularity.
Lee, Byung Soo, 2016. Admissibility and assumption. J. Econ. Theory 163, 42–72.
Mailath, George J., Samuelson, Larry, Swinkels, Jeroen M., 1997. How proper is sequential equilibrium?. Games Econ. 

Behav. 18 (2), 193–218.
Morris, Stephen, 1997. Alternative definitions of knowledge. In: Epistemic Logic and the Theory of Games and Deci-

sions. Springer, pp. 217–233.
Rajan, U., 1998. Trembles in the Bayesian foundations of solution concepts of games. J. Econ. Theory 82 (1), 248–266.
Rao, KPS Bhaskara, Rao, M Bhaskara, 1983. Theory of Charges: A Study of Finitely Additive Measures, vol. 109.
Stahl, D.O., 1995. Lexicographic rationalizability and iterated admissibility. Econ. Lett. 47 (2), 155–159.
Yang, C., 2015. Weak assumption and iterated admissibility. J. Econ. Theory 158 Part A, 87–101.

http://refhub.elsevier.com/S0022-0531(16)00037-5/bib6272616E64656E627572676572323030386167s1
http://refhub.elsevier.com/S0022-0531(16)00037-5/bib6361746F6E696E69636F6D6D6F6Es1
http://refhub.elsevier.com/S0022-0531(16)00037-5/bib676F76696E64616E3230303370657266656374s1
http://refhub.elsevier.com/S0022-0531(16)00037-5/bib676F76696E64616E3230303370657266656374s1
http://refhub.elsevier.com/S0022-0531(16)00037-5/bib6B6569736C65726C656532303130s1
http://refhub.elsevier.com/S0022-0531(16)00037-5/bib6C65657370616365s1
http://refhub.elsevier.com/S0022-0531(16)00037-5/bib6C656573747269637464657465726D696E6174696F6Es1
http://refhub.elsevier.com/S0022-0531(16)00037-5/bib6C6565636F6E646974696F6E616Cs1
http://refhub.elsevier.com/S0022-0531(16)00037-5/bib6D61696C6174683139393770726F706572s1
http://refhub.elsevier.com/S0022-0531(16)00037-5/bib6D61696C6174683139393770726F706572s1
http://refhub.elsevier.com/S0022-0531(16)00037-5/bib6D6F7272697331393937616C7465726E6174697665s1
http://refhub.elsevier.com/S0022-0531(16)00037-5/bib6D6F7272697331393937616C7465726E6174697665s1
http://refhub.elsevier.com/S0022-0531(16)00037-5/bib72616A616E313939387472656D626C6573s1
http://refhub.elsevier.com/S0022-0531(16)00037-5/bib72616F313938337468656F7279s1
http://refhub.elsevier.com/S0022-0531(16)00037-5/bib737461686C313939356C657869636F67726170686963s1
http://refhub.elsevier.com/S0022-0531(16)00037-5/bib79616E677765616Bs1

	Lexicographic beliefs and assumption
	1 Introduction
	2 Preliminaries
	3 BFK-assumption
	3.1 Deﬁnition and LCPS-based characterization
	3.2 From LCPSs to LPSs
	3.3 LPS-based characterization

	4 Alternative notions of assumption
	4.1 Weak dominance on inﬁnite state spaces
	4.2 Weak-dominance assumption
	4.3 LPS-based characterizations

	5 Proof of Theorems 3.2 and 4.1, and Proposition 4.1
	6 Application: SAS and IA
	6.1 Solution concepts
	6.2 Epistemic analysis
	6.3 Self-admissible sets
	6.4 Iterated admissibility

	7 Discussion: related literature
	Appendix A Theorems 6.1-6.3
	References


