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LEXICOGRAPHIC PROBABILITIES AND CHOICE 
UNDER UNCERTAINTY 

BY LAWRENCE BLUME, ADAM BRANDENBURGER, AND EDDIE DEKEL1 

Two properties of preferences and representations for choice under uncertainty which 
play an important role in decision theory are: (i) admissibility, the requirement that 
weakly dominated actions should not be chosen; and (ii) the existence of well defined 
conditional probabilities, that is, given any event a conditional probability which is 
concentrated on that event and which corresponds to the individual's preferences. The 
conventional Bayesian theory of choice under uncertainty, subjective expected utility 
(SEU) theory, fails to satisfy these properties-weakly dominated acts may be chosen, 
and the usual definition of conditional probabilities applies only to non-null events. This 
paper develops a non-Archimedean variant of SEU where decision makers have lexico- 
graphic beliefs; that is, there are (first-order) likely events as well as (higher-order) events 
which are infinitely less likely but not necessarily impossible. This generalization of 
preferences, from those having an SEU representation to those having a representation 
with lexicographic beliefs, can be made to satisfy admissibility and yield well defined 
conditional probabilities and at the same time to allow for "null" events. The need for a 
synthesis of expected utility with admissibility, and to provide a ranking of null events, has 
often been stressed in the decision theory literature. Furthermore, lexicographic beliefs 
are appropriate for characterizing refinements of Nash equilibrium. In this paper we 
discuss: axioms on, and behavioral properties of, individual preferences which character- 
ize lexicographic beliefs; probability-theoretic properties of the representations; and the 
relationships with other recent extensions of Bayesian SEU theory. 

KEYWORDS: Admissibility, weak dominance, conditional probabilities, lexicographic 
probabilities, non-Archimedean preferences, subjective expected utility. 

1. INTRODUCTION 

THERE ARE TWO IMPORTANT properties of preferences and representations for 
choice under uncertainty. The first is the criterion of admissibility, namely, that 
a decision maker should not select a weakly dominated action (Luce and Raiffa 
(1957, Chapter 13)). The second property is that for any event there is a 
conditional probability that is concentrated on that event and that represents 
the decision maker's conditional preferences given that event. We call such 
conditional probabilities "well defined." The importance for a complete and 
intuitive theory to provide conditional probabilities given any event has long 
been discussed in the context of probability theory2 and philosophy.3 Moreover, 
the criterion of backwards induction, which specifies that at every choice node 

1 We wish to thank Bob Anderson, Ken Arrow, Mark Bagnoli, John Geanakoplos, Ehud Kalai, 
Andreu Mas-Colell, Klaus Nehring, Martin Osborne, Ket Richter, and Bill Zame for helpful 
comments. We are especially indebted to David Kreps and three referees. Financial support from 
the Harvard Business School Division of Research, the Miller Institute for Basic Research in 
Science, and NSF Grants IRI-8608964 and SES-8808133 is gratefully acknowledged. 

2 For example de Finetti (1972, p. 82) says "there seems to be no justification ... for introducing 
the restriction P(H):* 0", where H is a conditioning event, and Blackwell and Dubins (1975, p. 
741) are concerned with when "conditional distributions... satisfy the intuitive desideratum... of 
being proper," that is, concentrated on the conditioning event. 

3 See Harper, Stalnacker, and Pearce (1981) as well as the references cited there for a discussion 
of the relationship between linguistic intuition, counterfactuals, and conditional probabilities. 
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in a decision tree choices maximize expected utility with respect to "beliefs" at 
that node, requires the use of well defined conditional probabilities in repre- 
senting conditional preferences at every node in the tree. Nonetheless, conven- 
tional subjective expected utility (SEU) theory does not satisfy these properties.4 
For both properties, the source of the problem is the same: conditional on 
events which are not expected to occur, SEU theory leads to trivial choice 
problems-all acts are indifferent. 

Obviously conventional SEU theory can be refined to satisfy admissibility and 
to determine well defined conditional probabilities by ruling out null events. But 
this method is too restrictive. For example, such preferences could not charac- 
terize pure strategy equilibria in games. In this paper we axiomatize preferences 
under uncertainty which both satisfy admissibility and yield well defined condi- 
tional probabilities, yet allow for events which are "null," although not in the 
sense of Savage (1954). We develop a non-Archimedean SEU theory starting 
from Fishburn's (1982) version of the SEU framework due to Anscombe and 
Aumann (1963). A key feature of our representation is the introduction of a 
lexicographic hierarchy of beliefs. Such beliefs can capture the idea that a die 
landing on its side is infinitely more likely than its landing on an edge, which in 
turn is infinitely more likely than its landing on a corner. These considerations 
of "unlikely" events might seem rather arcane, but are nevertheless crucial in a 
game-theoretic context, as the discussion above suggests and as is shown in the 
sequel to this paper (Blume, Brandenburger, and Dekel (1990)). In particular, a 
player in a game may be unwilling to exclude entirely from consideration any 
action of an opponent, and, moreover, which actions are unlikely is in a sense 
"endogenous" (i.e. depends on the equilibrium under consideration). 

These objectives motivate our first and main departure from the axioms of 
SEU-weakening the Archimedean axiom. After a review of SEU in Section 2, 
we present a general representation theorem for preferences with the weakened 
Archimedean axiom in Section 3. This representation allows for events which 
are "null," yet are taken into consideration by the decision maker, as well as 
events which are null in the sense of Savage. We then strengthen the state 
independence axiom to rule out Savage-null events, and in Section 4 we show 
that these preferences satisfy admissibility and determine well defined condi- 
tional probabilities. Section 5 discusses an Archimedean axiom intermediate in 
strength between the standard Archimedean axiom and the Archimedean axiom 
of Section 3. This intermediate axiom leads to a representation of choice which 
is closely related to conditional probability systems (Myerson (1986a,b)). In 
Section 6 an alternative representation of preferences, which is equivalent to 
that of Section 3, is provided using infinitesimal numbers instead of a lexico- 
graphic order of vectors. Section 7 discusses the surprisingly delicate issue of 
modelling stochastic independence with lexicographic probabilities. 

4 Some early work in statistical decision theory was concerned with the problematic relationship 
between Bayes procedures and admissible procedures. See Blackwell and Girshick (1954, Section 
5.2) and Arrow, Barankin, and Blackwell (1953). 
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It is worth emphasizing that the notion of lexicographic beliefs arises in a very 
natural fashion-as a consequence of satisfying the decision-theoretic proper- 
ties of admissibility and the existence of well defined conditional probabilities 
on all events, together with allowing for some kind of null events. Lexicographic 
models have been used to explore other issues in decision theory. An early 
example is Chipman (1960,1971a, b), who developed and applied them to 
provide an alternative to the Friedman and Savage (1948) explanation of 
gambling and insurance purchases, and to discuss portfolio choice and other 
economic applications. Fishburn (1974) provides a comprehensive survey. Kreps 
and Wilson (1982) introduced a lexicographic method of updating beliefs in 
game trees in the context of sequential equilibrium.5 Hausner (1954) and 
Richter (1971) provide the technical foundations for the work we present here. 

2. SUBJECTIVE EXPECTED UTILITY ON FINITE STATE SPACES 

There are two distinct approaches to the theory of subjective expected utility. 
In Savage's (1954) framework individuals have preferences over acts which map 
a state space into consequences. Anscombe and Aumann (1963) (as well as 
Chernoff (1954), Suppes (1956), and Pratt, Raiffa, and Schlaifer (1964)) use 
axioms which refer to objective probabilities. Although the Savage (1954) 
framework is perhaps more appealing, for reasons of tractability and because we 
will want to apply our results to finite games, we employ the Anscombe and 
Aumann framework in Section 3 to develop our non-Archimedean SEU theory. 
To facilitate subsequent comparisons, a brief review of Anscombe and Aumann's 
SEU theory follows. 

The decision maker faces a finite set of states Q and a set of (pure) 
consequences C. Let 9 denote the set of simple (i.e. finite support) probability 
distributions on consequences. The objective lotteries in 9 provide a scale for 
measuring the utilities of consequences and the subjective probabilities of 
states. The decision maker has preferences over acts, which are maps from the 
state space Q2 into 9. Thus the set of acts is the product space . The wth 
coordinate of act x is denoted x,O. The interpretation of an act x is that when it 
is chosen, the consequence for the decision maker if state a) occurs is deter- 
mined by the lottery x,. The set Q?' is a mixture space; in particular, for 
0 < a < 1 and x, y c ax, x+ (1 - a)y is the act that in state w assigns 
probability ax,(c) + (1 - a)y,(c) to each c c C. Nonempty subsets of Q are 
termed events. For any event S c 1, xs denotes the tuple (xw)w,. s. We will 
denote XD-S by x_S. A constant act maps each state into the same lottery on 
consequences: x.) =x,, for all a), )' e U. For notational simplicity we often 
write w to represent the event {w)} c Q. 

The decision maker's weak preference relation over pairs of acts is denoted 
by a . The relations of strict preference, denoted >-, and indifference, denoted 

5 The relationship between this paper and the decision-theoretic underpinnings of sequential 
equilibrium can be seen in our discussion in Section 5 of conditional probability systems. McLennan 
(1989b) uses conditional probability systems to characterize sequential equilibrium. 
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~ , are defined by: x >- y if x > y and not y a x; and x - y if x > y and y a x. 
The following axioms characterize those preference orders with (Archimedean) 
SEU representations. 

AxIOM 1 (Order): a is a complete and transitive binary relation on 9Q. 

AxIOM 2 (Objective Independence): For all x, y, z E Y and 0 < a < 1, if 
x >- (respectively --)y, then ax + (1 - a)z >- (respectively --)ay + (1 - a)z. 

AxIOM 3 (Nontriviality): There are x, y E Q such that x >- y. 

AxIOM 4 (Archimedean Property): If x >- y >- z, then there exists 0 < a < p3 < 1 
such that /3x + (1 -3)z >- y >- ax + (1 - a)z. 

A definition of null events requires the notion of conditional preferences >a 
for each S c Q2, as in Savage (1954). 

DEFINITION 2.1: x >sY if, for some z E , (Xs, Z_) a (Ys, Z_5). 

By Axioms 1 and 2 this definition is independent of the choice of z. (This can 
be seen by assuming to the contrary that: (i) (xs, z-s) a (ys, z-s); while (ii) 
(ys, ws) >- (xs, w-s). Then taking 2: 2 mixtures of (xs, w5s) with (i) and of 
(xS, z _) with (ii) and applying Axioms 1 and 2 yields a contradiction.) An event 
S is Savage-null if its conditional preference relation is "trivial." 

DEFINITION 2.2: The event S c Q2 is Savage-null if x -s y for all x, y Ec 

AXIOM 5 (Non-null State Independence): For all states a, (' E Q which are 
not Savage-null and for any two constant acts x, y E Y, x >,O y if and only if 
x >,&, y. 

The following representation theorem can be found in Anscombe and 
Aumann (1963) and Fishburn (1982, p. 111, Theorem 9.2). 

THEOREM 2.1: Axioms 1-5 hold if and only if there is an affine function 
u: Y R and a probability measure p on 1 such that, for all x, y Ec 

x >-y 4-*E p ( ) u ( XJ E p ( ) u ( y 
co E wel 

Furthermore, u is unique up to positive affine transformations, p is unique, and 
p(S) = 0 if and only if the event S is Savage-null. 

Since u is an affine function, and x,, has finite support, u(x,)= 
Ec Cu(8c)xJ(c) where 8c denotes the measure assigning probability one to c. 
In order to focus on the subjective probabilities, which are our main concern, 
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and for clarity of the equations, we write u as an affine function on 6? as above, 
rather than including this latter summation explicitly. 

COROLLARY 2.1: If the event S is not Savage-null, then for all x, y e 

x ,SY* E P(CEIS)u(xy)> Ep(wIS)(v). 
wec-S Wes 

In this corollary, which is immediate from Definition 2.1 and Theorem 2.1, 
p(o IS) is given by the usual definition of conditional probability: p(G I S) = 
p(co n S)/p(S). Corollary 2.1 applies only to events which are not Savage-null 
since conditional preferences on Savage-null events are trivial and conditional 
expected utility given any Savage-null event is not defined. To guarantee 
admissibility and well defined conditional probabilities, Savage-null events must 
be ruled out. This can be done by strengthening the non-null state indepen- 
dence axiom. 

AxIOM 5' (State Independence): For all states w, a!' ED and for any two 
constant acts x, y E 2, X >,- x y if and only ifx >,x, ,y. 

Under Axioms 1-4 and 5' the same representation as in Theorem 2.1 obtains, 
with the additional feature that p(G) > 0 for all c- e 12. The consequence is that 
all odds ratios are finite. The decision maker must trade off utility gains in any 
one state against utility gains in any other state. Our formulation of non-Archi- 
medean SEU theory avoids this. We will have states which are not Savage-null, 
and yet which are infinitely less likely than other states. 

3. LEXICOGRAPHIC PROBABILITY SYSTEMS AND NON-ARCHIMEDEAN 
SEU THEORY 

In this section we undertake the promised weakening of the Archimedean 
property (Axiom 4). The consequence of weakening this axiom is the introduc- 
tion of a new class of null events distinct from the class of Savage-null events. 
The weakened Archimedean axiom does not eliminate the Savage-null events; 
that is the consequence of strengthening state independence. Thus the decision 
theory we introduce in this section, non-Archimedean SEU theory, is strictly 
weaker than the conventional Archimedean SEU theory in that it can rational- 
ize a strictly larger set of choices. Our new axiom is a restriction of the 
Archimedean property to those triples of acts x, y, z such that x_ = y =z 
for some state c- E (2. 

AXIOM 4' (Conditional Archimedean Property): For each c E (2, if x >-, y >-, z, 
then there exists 0 < a <j8 < 1 such that 3x + (1-,t3)z >-,y >-,, ax + (1 - )z. 

As a consequence of this weakening of Axiom 4, a numerical representation 
of preferences is not always possible. (However, in Section 6 we show that a 



66 LAWRENCE BLUME, ADAM BRANDENBURGER, AND EDDIE DEKEL 

numerical representation is possible if one is willing to interpret "numerical" as 
including infinitesimals.) Here we assign to each act a vector of expected 
utilities in a Euclidean space, and order these vectors using the lexicographic 
ordering, which we denote >L.6 The expected utility vectors are calculated by 
taking expectations of a single utility function with respect to a lexicographic 
hierarchy of probability distributions. 

DEFINITION 3.1: A lexicographic probability system (LPS) is a K-tuple p = 

(p1i .... PK), for some integer K, of probability distributions on Q. 

THEOREM 3.1: Axioms 1-3, 4', and 5 hold if and only if there is an affine 
function u: R D and an LPS (P1, ... I PK) on Q such that, for all x, y Ec 

X b,-yc( E Pk(&J)U(X.)) ->L (EPk(&))U(Y.)) 
wc-n k=1 '9 Q k=1 

Furthermore, u is unique up to positive affine transformations. There is a minimal 
K less than or equal to the cardinality of n. Among LPS's of minimal length K, 
each Pk is unique up to linear combinations of P1, . . ., Pk which assign positive 
weight to Pk. Finally, Pk(S) = 0 for all k if and only if the event S is Savage-null. 

The proof of Theorem 3.1, together with proofs of all subsequent results in 
the paper, can be found in the Appendix. The restriction in the uniqueness part 
of the theorem to LPS's of minimal length is made in order to avoid redundan- 
cies such as the duplication of levels in the hierarchy. (For example, the LPS's 

(Pl P2, IPK) and (P1,P1,P2,...,PK) obviously represent the same prefer- 
ences.) Among LPS's of minimal length K, an LPS (q1,.. ., qK) will generate the 
same preferences as (P1, ... I PK) if and only if each qk = i1aip where the 
a 's are numbers such that Ek jai pi is a probability distribution on Q2 and 
ak > 0. In particular, p1 is unique. 

These preferences include K = 1, Archimedean theory, as a special case. The 
following is an example of non-Archimedean behavior allowed by Axiom 4' but 
not by Axiom 4. The decision maker will bet on the throw of a die. She has two 
levels of beliefs, represented by the probability distributions p1 and P2. The 
state space Q contains the 6 faces of the die, the 12 edges, and the 8 corners. 
Let 

J1/6 if wisaface, p {(w) 1/12 if w is an edge, 
\ 0 otherwise, - 0 otherwise. 

Consider now two bets. Bet x pays off $v if the die lands on the face labelled 1, 
and nothing otherwise. Bet y pays off $1 if the die lands on the face labelled 2 
or on any edge, and 0 otherwise. The decision maker's utility function is 
u(w) = w. With these preferences and lexicographic beliefs, x >- y whenever 
v > 1, and y >- x whenever v < 1. Notice that there is no v such that x - y. This 

6 For a, b E RK, a > Lb if and only if whenever bk > ak, there exists a j < k such that a, > b,. 
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type of behavior cannot be rationalized by Archimedean SEU theory since it 
explicitly violates Axiom 4. Each face occurs with positive first order probability, 
and each edge occurs with positive second order probability. However, the die 
landing on a corner is a Savage-null event, hence is assigned probability 0 by 
both p1 and P2. The point of the example is to demonstrate how, even though 
the die landing on an edge is not a Savage-null event, it is "infinitely less likely" 
than its landing on a face. This terminology is made precise in Sections 5 and 6. 

As we mentioned in Section 2, strengthening state independence from Axiom 
5 to Axiom 5' rules out Savage-null events. However, Section 5 shows that in the 
more general lexicographic framework not all notions of null events are ruled 
out. 

COROLLARY 3.1: Axioms 1-3, 4', and 5' hold if and only if there is an affine 
function u: - R and an LPS p = (Pl, ... I PK) on U such that, for all 
X, y Ie I 

X > y ( EPk(w)U(xC)) >L( EPk(G)U(YW)) 
n k=l @EDk= k=1 

Furthermore, u is unique up to positive affine transformations, the LPS p has the 
same uniqueness properties as in Theorem 3.1, and for each w there is a k such 
that Pk(t) > O. 

The preferences of the decision maker described above for betting on the roll 
of a die do not satisfy Axiom 5'-landing on a corner is Savage-null. But now 
suppose the decision maker has third order beliefs 

P3 @) 1/8 if s is a corner, 
P 0 otherwise. 

As before, face landings are infinitely more likely than edge landings, which in 
turn are infinitely more likely than corner landings. But now there are no 
Savage-null events. 

4. ADMISSIBILITY AND CONDITIONAL PROBABILITIES 

The notion of admissibility and the issues underlying the existence of well 
defined conditional probabilities are both related to the representation of 
conditional preferences. In this section we investigate admissibility and prove a 
result, analogous to Corollary 2.1, on the representation of conditional prefer- 
ences for non-Archimedean SEU theory. 

DEFINITION 4.1: Let u be a utility function. The preference relation a is 
admissible with respect to u if whenever u(x ) > u(y,) for all X E U, with strict 
inequality for at least one c, then x >- y. 

This definition is a statement about the behavior of a utility function repre- 
senting a, rather than a statement about conditional preferences. It is helpful 
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to contrast this definition with Theorem 4.1 below which is stated solely in terms 
of the conditional preferences. Consider therefore the following class of deci- 
sion problems. Let / be a partition of Q, and for each S in y let X(S) c 9s 
be the subset of acts in 9?s that the decision maker can choose among if S 
occurs. A strategy is then an element of X H5 s X(S) c y, and prefer- 
ences a are defined on the set of strategies. 

THEOREM 4.1: Suppose a satisfies Axioms 1 and 2. (i) For x, y E X, if x >sy 
for all SeE,- and x>-Sy for some SeE,, then x>-y. (ii) ForxeX, if x,y for 
all y E X, then x 5sz for all z such that zs E X(S). 

Theorem 4.1 (i) is often referred to as the "sure thing principle." It states that 
if an act x is conditionally (weakly) preferred to y given any information cell in 

, and is strictly preferred given some cell, then x is unconditionally strictly 
preferred to y. Taking v/ to be the finest possible partition leads to a result 
that clearly resembles admissibility, but whose hypothesis is a claim about 
conditional preferences rather than utility functions. The second part of Theo- 
rem 4.1 states that an optimal strategy must be conditionally optimal on all cells 
in ,/, and this bears a resemblance to the logic of backwards induction. The 
point of this theorem is that both properties are satisfied by Archimedean SEU 
theory. Admissibility and backwards induction are best understood not as 
conditions on the preferences, but in terms of the representation of conditional 
preferences.7 Admissibility was defined above in terms of the representation. 
Similarly, we interpret backwards induction rationality to be the restriction that 
an optimal strategy maximize conditional expected utility on each cell S E -/; 
hence well defined conditional probabilities are required. 

In this section we suppose henceforth that Axiom 5' is satisfied. The main 
purpose is to show that in the non-Archimedean framework this implies 
admissibility and the existence of LPS's which represent conditional preferences 
and which are concentrated on the conditioning event. 

THEOREM 4.2 (Admissibility): Suppose a satisfies Axioms 1-3, 4', and 5', and 
let u and p denote a utility function and an LPS which represent a. Then a is 
admissible with respect to u. 

Theorem 4.2 is an immediate consequence of Corollary 3.1. We now turn to 
the definition of conditional probabilities for lexicographic hierarchies of be- 
liefs. 

DEFINITION 4.2: Let p = (P1,..., PK) be an LPS on the state space Q2. For 
any nonempty event S, the conditional LPS given S is Ps (Pk( IS),... 

7Since the preferences determine the representation, these conditions can be stated in terms of 
the preferences alone-however as Theorems 4.1-4.3 show, it may be more insightful to think of 
these properties using the representation. 
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Pk ( IS)), where the indices k, are given by ko = 0, k, = min{k: pk(S) > 0 and 
k > k, 11 for 1 > 0, and Pk,( IS) is given by the usual definition of conditional 
probabilities. 

This notion of conditional probability is intuitively appealing-the condi- 
tional LPS is obtained by taking conditional probabilities of all Pk'S in the LPS 
p for which conditionals are defined (pk(S) > 0) and discarding the other Pk'S. 
Axiom 5' implies that at least one Pk will not be discarded so that L > 1. In 
Section 6, where probabilities are allowed to be infinitesimals, it is seen that this 
definition is equivalent to an exact analog of the usual definition of conditional 
probabilities. Clearly Definition 4.2 satisfies two of our objectives: it is an LPS 
(hence a "subjective probability" in the lexicographic framework); and it is 
concentrated on the conditioning event S. The main issue which remains to be 
verified is that these conditional probabilities represent conditional preferences, 
as is shown in Theorem 4.3, which is a non-Archimedean version of Corollary 
2.1. 

THEOREM 4.3: Suppose a satisfies Axioms 1-3, 4', and 5', and let u and p 
denote a utility function and an LPS which represent a. Then for any nonempty 
event S, the utility function u and the conditional LPS Ps -(Pk( S),I.. I, P S)) 
represent the conditional preferences as: 

X >,Sy ( E Pk,( W 
IS)UX) kL ( X. Pk,(O|S)U(O 

coeS 1= S 1= 

5. LEXICOGRAPHIC CONDITIONAL PROBABILITY SYSTEMS 

In this section we discuss in more detail the ways in which events can be null 
in lexicographic probability systems, and examine the relationship between the 
characterization of Section 3 and other recent developments (Myerson (1986a, b), 
McLennan (1989a, 1989b), Hammond (1987)). This relationship will be clarified 
by axiomatizing lexicographic conditional probability systems (not to be con- 
fused with the conditional LPS's of Definition 4.2!), using an Archimedean 
property intermediate in strength between Axioms 4 and 4'. This intermediate 
Archimedean axiom will arise naturally from an understanding of null events in 
the lexicographic framework. 

In the Archimedean framework an event S is infinitely more likely than 
another event T (in terms of probability ratios) if and only if T is Savage-null. 
Non-Archimedean theory admits a richer likelihood order on events. We will 
investigate a partial order on events, S >> T, to be read as "S is infinitely more 
likely than T." One could proceed to define such a notion in terms of the 
representation or the preferences. We adopt the latter approach, which pro- 
vides a more primitive characterization, in order to better understand the 
relationship with Savage-null events. The following characterization of Savage- 
null events (Definition 2.2) will be useful. 



70 LAWRENCE BLUME, ADAM BRANDENBURGER, AND EDDIE DEKEL 

THEOREM 5.1: Assume that a satisfies Axioms 1 and 2. An event T is 
Savage-null if and only if there exists a nonempty disjoint event S such that 

x >s(respectively -s) y 

implies 

(X_T,WT) >SUT (respectively -SUT)(Y-T, ZT) 

for all WT, ZT. 

That is, an event T is Savage-null if for some disjoint event S, when 
comparing (xs, WT) and (Ys, ZT), the consequences in the event S are determin- 
ing for both >-SUT and -S U . An intuitively weaker order on events arises 
from supposing that consequences in the event S are determining for SUT 
alone. In the remainder of this section we assume that there are no Savage-null 
events, and examine the properties of an alternative likelihood ordering on 
events. 

DEFINITION 5.1: For disjoint events S, T c ?2 with S =# 0, S >> T if 

X >sy implies (x-T,WT) >-SUT(Y-T, ZT) 

for all WTI ZT. 

THEOREM 5.2: Assume that a is represented by a utility function u and an 
LPS p = (p1,... I PK). For a pair of states &)I and &,2 c1)I>> ?to2 if and only if u 
and the LPS ((1,0 ), (0, 1)) on {(oI, to2} represent {,-1 21. 

Theorem 5.2 says that for a pair of states the order >> corresponds to the 
conditional probabilities (which represent the conditional preferences given that 
pair of states).8 More generally, for events, if S >> T then pki(TIS U T) = 0 
(where k1 = min{k: Pk(S U T) > 0)). However, the converse to this is in general 
false, so zero probabilities in the representation do not correspond to the 
ranking >>. A related difficulty with Definition 5.1 is that S > T and S'>> T 
need not imply S U S' >> T. Both these difficulties can be seen in the following 
example. Consider a state space Q2 = {Heads, Tails, Edge, Heads*} and the LPS 
p1 = (1/2, 1/2, 0), P2 = (1/2,0,1/2). Even though {Tails} >> {Edge}, {Heads} >> 
{Edge}, and p1(Edge) = 0, it is not the case that {Heads, Tails) >> {Edge} since 
x (2, O, 0) >- (1, 1, 0) y, but (2, 0, 0) -< (1, 1, 2).9 These problems result from the 
fact that the supports of p1 and P2 overlap. Hence we will now distinguish the 
subset of LPS's whose component probability measures have disjoint supports, 
and introduce the Archimedean axiom which is used in Theorem 5.3 below to 
characterize this subset. 

8 If the strict order >> is restricted to states, then the induced weak order can be characterized 
as follows: w' is not infinitely more likely than t -* min{k: Pk(W) > O} > min{k: Pk(4') > O}. This 
weak order turns out to be useful in characterizing proper equilibrium (Myerson (1978))-see the 
sequel to this paper. 

9 The numbers in these triplets are in utility payoffs. 
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DEFINITION 5.2: An LPS p = (P1, .. , PK), where the supports of the Pk'S are 
disjoint, is a lexicographic conditional probability system (LCPS). 

AxIOM 4": There is a partition {l1, ... I, H[K of Q such that: (a) for each k, if 
x k Y >- [Iz, then there exists 0 < a < 8 < 1 such that Bx + (1 -B)z >-nk y >-nk 

cax + (1- a)z; (b) H1? ?> * * HK. 

THEOREM 5.3: Axioms 1-3, 4", and 5' hold if and only if there is an affine 
function u: i R and an LCPS P = (P1,... PK) on Q such that, for all 
X, y E 

x by ( (E Pk(o)U(Xw))_ >L ( Pk()U(y))K_ 
'sEQ ~~k=l <s Q k=1 

Furthermore, u is unique up to positive affine transformations, p is unique, and for 
each k = 1,..., K, the support of Pk is H1k* 

COROLLARY 5.1: Assume that a is represented by a utility function u and an 
LCPS p = (p1l... I PK). For a disjoint nonempty pair of events S, T, 

S >> T < k' <' for all k' E {k: Pk(SIS U T) > O} 

and 1'E {1: p(TIS U T) > o}. 

Theorem 5.3 and Corollary 5.1 show that as a result of strengthening the 
Archimedean property from Axiom 4' to 4", the relation >> corresponds to zero 
probabilities in the representation, and Theorem 5.2 can be strengthened to 
hold for events as well as states. 

There is an interesting interpretation of an LCPS. The first-order belief p1 
can be thought of as a prior distribution. If the expected utilities under p1 of 
two acts are the same, then the decision maker considers the event !2 - H1, 
where by Theorem 5.3, H1 is the support of p1. The second-order belief P2 is 
then the "posterior" conditional on the event !2 - H1. More generally, higher 
order beliefs can also be thought of as conditional probability distributions. 

Return to the example of the coin toss discussed earlier. We now describe 
how the LPS (P1, P2) can be reinterpreted as an LCPS. Suppose there is a 
possibility that the coin is being tossed in a "dishonest" fashion which guaran- 
tees heads. If we denote this event by {Heads*} then the expanded state space is 
Q* = {Heads, Tails, Edge, Heads*}. The beliefs p* = (1/2, 1/2, 0, 0), p * = 

(0,0, 1/2,1/2) on f2* have nonoverlapping supports. Moreover, if the events 
{Heads} and {Heads*} are indistinguishable, then (p*,p2*) induces the same 
lexicographic probabilities over the payoff-relevant outcomes-namely, the coin 
lands on heads, tails, or the edge- as does (P1, P2). This example shows how to 
map an LPS into an LCPS on an expanded state space. A more general 
treatment is developed in Hammond (1987). However, this reinterpretation does 
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not mean that it suffices to work with LCPS's alone. If in fact {Heads} and 
{Heads*} are indistinguishable, then bets on {Heads} versus {Heads*} cannot be 
made and so the subjective probabilities (pr, p *) cannot be derived; including 
such payoff-irrelevant states contradicts our basic model which admits all 
possible acts in Q 

LCPS's provide a bridge between the work in this paper and some ideas in 
Myerson (1986a,b). Myerson also starts from the existing SEU theory, but his 
modification leads in a different direction to that pursued here. Myerson 
augments the basic preference relation a by postulating the existence of a 
distinct preference relation corresponding to each nonempty subset S of the 
state space Q2. Although interpreted as conditional preferences, these prefer- 
ences differ from as as defined by Savage (1954) (and Definition 2.1 in this 
paper). Using this preference structure, Myerson derives the notion of a 
conditional probability system (CPS). The reader is referred to Myerson (1986a, b) 
for the definition of a CPS, which can be shown to be isomorphic to an LCPS. 
An important distinction between Myerson's preference structure and ours is 
that the latter satisfies admissibility (Theorem 4.2) whereas the former does not. 
McLennan (1989b) uses CPS's to provide an existence proof, and a characteriza- 
tion, of sequential equilibrium. 

6. A "NUMERICAL" REPRESENTATION FOR NON-ARCHIMEDEAN SEU 

This section provides a "numerical" representation for the preferences de- 
scribed by Axioms 1-3, 4', and 5', where the "numbers" are elements in a 
non-Archimedean ordered field F which is a strict extension of the real number 
field R. The field F is non-Archimedean: it contains both infinite numbers 
(larger than any real number) and infinitesimal numbers (smaller than any real 
number) in addition to the reals.'0 

The basic result on the existence of utility functions states that a complete, 
transitive, and reflexive preference relation on a set X has a real-valued 
representation if and only if X contains a countable order-dense subset. 
Without this Archimedean restriction on X, a representation is still possible. A 
complete, transitive, and reflexive preference relation on any set X has a 
numerical representation taking values in a non-Archimedean ordered field 
(Richter (1971)). In this paper we have weakened the Archimedean property 
(Axiom 4) of SEU to Axiom 4'. This weakening still permits a real-valued utility 
function on consequences, but requires the subjective probability measure to be 
non-Archimedean. By analogy with the real-valued case, a non-Archimedean 
probability measure on Q2 is a function p: Q2 - F such that p(to) > 0 for each 
c El2, and E 0Qp(to) = 1. 

THEOREM 6.1: Axcioms 1-3, 4', and 5' hold if and only if there is an affine 
function u: 7-* R and an F-valued probability measure p on f2, where F is a 

10 We do not distinguish between the subfield of F which is order-isomorphic to R and R itself. 
Likewise, > will be used to denote the order on both F and 1R. 
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non-Archimedean ordered-field extension of R, such that, for all x, y E w 

X a, y E*F pf @)U uX@) > Ep(oi )U( y.). 
weI2 coefl 

Furthermore, u is unique up to positive affine transformations. If p' is another 
F-valued probability measure such that u and p' represent a, then for all co E Q, 
p(c) - p'(c) is infinitesimal. Finally, p(G) > 0 for all c e 12. 

The disadvantage of the representation of Theorem 6.1 is that its proof 
requires less familiar techniques. Its advantage is that, for most purposes, it 
really does provide a numerical representation. The probabilities of states can 
be added, multiplied, divided, and compared just like real numbers. For 
example, the usual definition of conditional probabilities applies for an F-valued 
probability measure as well: p(TJS) p(T n S)/p(S) for events S, T c U2 (Theo- 
rem 6.1 implies that p(S) # 0). By analogy with the real-valued case, it is easy to 
show that 

x> _Sy.: E p(W)u x.)> E pe )u yW) . 
'Ws 'ceS 

Dividing both sides of the inequality by p(S) shows that u and p( IS) do indeed 
represent the conditional preference relation >s. 

We have found that some results are more easily understood by employing 
the LPS's of Section 3, while others are best seen using the representation of 
this section. An example of the former is the statement of the uniqueness of the 
subjective beliefs in the representation theorems. An example of the latter is the 
issue of stochastic independence discussed in Section 7. 

The sufficiency part of Theorem 6.1 can be proved using arguments analogous 
to those when preferences are Archimedean. The necessity part can be proved 
in a number of ways, including compactness arguments from logic or by using 
ultrafilters. A sketch of the ultrafilter argument is provided in the Appendix." 

7. STOCHASTIC INDEPENDENCE AND PRODUCT MEASURES 

This section considers three possible definitions of stochastic independence. 
The first requires that the (Archimedean or non-Archimedean) probability 
measure p be a product measure; the second requires that a decision-theoretic 
stochastic independence axiom be satisfied; and the third that p be an "ap- 
proximate product measure." In the Archimedean setting, all three definitions 
are equivalent, but in the non-Archimedean case the definitions are successively 
weaker. The notion of independence implicit in refinements of Nash equilib- 
rium such as perfect equilibrium (Selten (1975)) is the first one above. The fact 
that it is not equivalent, in the non-Archimedean setting, to the stochastic 

11 Hammond (1987) has discussed LPS's that can be represented by a probability measure taking 
values in the non-Archimedean ordered field of rational functions over R. 
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independence axiom suggests that alternative (weaker) refinements may also be 
worthy of consideration.'2 

Suppose in the following that the set of states Q2 is a product space 
2l X x. N f, and for n = 1,..., N let Q-n = Hm#nf2m. An act x is said to 

be constant across fQn if for every n, Jon in fn and all cF-n in f2-n, X(Ow -f-) = 

x(Qn w-n). Assume that the preference relation a satisfies Axioms 1-3 and 5'. 
We are interested in focusing on the distinction between the Archimedean case 
in which Axiom 4 holds and the non-Archimedean case in which Axiom 4' holds. 

DEFINITION 7.1: An (Archimedean or non-Archimedean) probability measure 
p on 12 is a product measure if there are probability measures pn on QTn, for 
n=1,...,N, such that for all w =(c' W...IcON)eA2 p(w )=p'(w=')x ... x 
pN(W N) 

AXIOM 6 (Stochastic Independence): For any n = 1,... , N and every pair of 
acts x, y that are constant across Qfn, 

X > xQ{( Y nXn-nY 
` 
<;X >{o;n}XnnY. 

Roughly speaking, Axiom 6 requires that the conditional preferences 
>1{&)n} X-n and >{(5n} XQ-n (viewed as preferences on ? ) be identical for all 
co and con in fQn. Suppose the preference relation a satisfies the Archimedean 
property (Axiom 4), and let u and p denote a utility function and (Archi- 
medean) probability measure which represent the preferences. It is routine to 
show that p is a product measure if and only if stochastic independence (Axiom 
6) holds. This equivalence breaks down in the non-Archimedean setting. Any 
preference relation represented by some utility function u and non-Archi- 
medean probability measure p satisfies Axiom 6 if p is a product measure. But 
the converse is false, as the following example due to Roger Myerson (private 
communication) shows. Let Q2 = {Wo, w 1, 411 X {x2, w2, w2) where the non- 
Archimedean probability measure is as depicted in Figure 7.1 (in which E > 0 is 
an infinitesimal). Fix a utility function u. By Theorem 6.1, the probability 
measure p and utility function u determine a preference relation which satisfies 
Axioms 1-3, 4', and 5'. One can verify that the conditional preference relation 
given any row is the same and that, likewise, the conditional preference relation 
given any column is the same. Hence Axiom 6 is satisfied. However, p is not a 
product measure and, moreover, there is no measure which is a product 
measure and which represents the same preference relation. 

In the non-Archimedean case (Axiom 4' rather than Axiom 4), Axiom 6 is 
sufficient for the existence of a weaker kind of product measure-a concept 
known in nonstandard probability theory as S-independence. 

12 Such refinements may involve a sequence of correlated trembles converging to a Nash 
equilibrium-see the sequel to this paper. Related issues are discussed in Binmore (1987,1988), 
Dekel and Fudenberg (1990), Fudenberg, Kreps, and Levine (1988), and Kreps and Ramey (1987). 
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FIGURE 7.1 

DEFINITION 7.2: An (Archimedean or non-Archimedean) probability measure 
p is an approximate product measure if there are probability measures pn on 
fin, for n = 1, . . ., N, such that for all w = (t)1,..., N) e Q, p(A ) - (p 1) 
X *. Xp N(Wc)) is infinitesimal. 

Suppose the preference relation a satisfies Axiom 4', and let u and p denote 
a utility function and non-Archimedean probability measure which represent 
the preferences. It is straightforward to see that if Axiom 6 holds, then p is an 
approximate probability measure."3 However, requiring a non-Archimedean 
probability measure p to be an approximate product measure is strictly weaker 
than demanding Axiom 6 to hold, as the following example demonstrates. Let 
Q = {w1, W)} x {w2, w2} where the non-Archimedean probability measure p is as 
depicted in Figure 7.2 (in which E and 8 are positive infinitesimals with c/l 
infinite). The measure p is an approximate product measure but it is clear that, 
for any utility function u, the conditional preference relation given the top row 
differs from that given the bottom row. 

13 Equivalently, in terms of the lexicographic representation of preferences derived in Section 3, 
Axiom 6 implies that the first-level probability measure p1 of an LPS (P1,., PK) representing a is 
a product measure. 
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APPENDIX 

This Appendix contains proofs of the results in Sections 3-6. The first two lemmas are used in 
the proofs of Theorems 3.1 and 6.1. 

LEMMA A.1: Given a preference relation a on _Q satisfying Axioms 1, 2, 4', and 5', there is an 
affine function u: _-. R such that for every w E Q2, x ,R, y if and only if u(x.) > u(y.). 

PROOF: For each w, the conditional preference relation >-- satisfies the usual order, indepen- 
dence, and Archimedean axioms of von Neumann-Morgenstern expected utility theory. This follows 
from the fact that a satisfies Axioms 1, 2, and 4', respectively. Hence each a can be represented 
by an affine utility function u ,: - [0, 1]. Under Axiom 5', the conditional preference relation ><, 
is independent of w, hence every a<, can be represented by a common utility function u: 

9 [0, 1]. Q.E.D. 

The next step is to use the utility function u to scale acts in utiles: an act x E -Q is represented 
by the tuple (u(x.)) E= E [0, 1]Q. The preference relation a on ?1"Q induces a preference relation 
>* on [O, 1]Q: given a, b E [0, 1]Q, define a>*b if and only if x a y for some x, y EY with 
u(x.) = a., u(y.) = b. for each w E Q2. This definition is meaningful since by Axioms 1 and 2 it is 
independent of the particular choice of x and y. 

LEMMA A.2: The preference relation >* on [0, 1]Q satisfies the order and independence axioms. 

PROOF: This follows immediately from the fact that a satisfies Axioms 1 and 2. Q.E.D. 
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PROOF OF THEOREM 3.1: Given the preference relation a on Q construct the induced 
preference relation >* on [0, 1]QI of Lemma A.2. By a result of Hausner (1954, Theorem 5.6), there 
are K (where K is equal to or less than the cardinality of Q) affine functions Uk: [0, 1]Q R, 

k = 1. K, such that for a, b E [0, 1]f, 

a >*b (Uk(a))= K1 >L (Uk(b))k=1 

The next step is to derive subjective probabilities. By linearity, Uk(a)= E _, Uk(e')a. where e' is 
the vector with 1 in the wth position and 0's elsewhere. By nontriviality (Axiom 3), each Uk can be 
chosen to satisfy L<, E DUk(ew) > 0. So 

Vk(a) = E rk(wJ)a., where rk( ,) EUk(e=) 

is a positive affine transformation of Uk(a). For each w, r(W) > 0 since otherwise ew <* (0, . . 0), 
contradicting Axiom 3. So we can define a probability measure p1 on Q by p1 = r,. For k > 1, find 
numbers ap, i =1. k, with a1i>0, aS >0, and Ez1a=1, such that for each cl), Pk(tO) = 

= lairi((w) > 0. (Again, such a,'s exist since otherwise ew <* (0,. ..0).) The Pk'S defined in this 
way are probability measures on D.A 

To sum up, we have derived probability measures P1, . PK on n such that for a, b E [0, iYn, 

)K (K a 
__)a, >L 

( 
Pk(W)b.) 

o EQ-1 k=i ?EQ-1 k=i 

On recalling that x a y if and only if a >* b, where u(x.) = a< and u(y.) = b. for each w, the 
representation of Theorem 3.1 is established. The uniqueness properties and the "if' direction of 
Theorem 3.1 follow easily from routine arguments. Q.E.D. 

PROOF OF COROLLARY 3.1: For each cl E Q, there must be a k such that Pk(&o) > 0 since 
otherwise >-- would be trivial, contradicting the fact that under Axiom 5' there are no Savage-null 
events. Q.E.D. 

PROOF OF THEOREM 4.1: (1) It is shown that x a Sy, and x >_ T (respectively a T)Y for disjoint S 
and T implies that x >-S u T (respectively >S u T) y. A simple induction argument, which is omitted, 
would complete the proof. By Definition 2.1: x >s y implies that (X5, XT, Z-(SUT)) a 

(YS, XT Z-(S U T)); and x >_TY implies that (YS, XT, Z-(S U T)) >_ (YS, YT Z-(S U T)). By transitivity this 
implies (xs, XT z 

-(S U T)) >_ (YS, YT, Z-(S U T)), which in turn implies x >-S u TY. The same argument 
holds for weak preference, proving the assertion. 

(2) If this result is false then there is an event S e=Y and an act z such that z >x and 
z5 eX(S). But then (z5, x5) eX and (z5, x5) >-x by (1) above, so that x is not optimal. Q.E.D. 

PROOF OF THEOREM 4.2: If u(x9) > u(y.) for all w, then for every k, . ED Pk()U(X@) >U 

Ew E- Pk(&))U(Y.). Suppose u(x.,) > u(y.), and let k' be the first k such that Pk(wt) > 0. Then 
w E- D Pk(&)U(X) > E- e pk(W)U(y.), SO X > y. Q.E.D. 

PROOF OF THEOREM 4.3: The proof is analogous to that for the SEU case. Clearly x >S y if and 
only if (x5, x-5) a (y5, x-5), which in turn is true if and only if 

K 

(Z Pk()U(X.) + E-Pk(S)U(X.) 
c9E=-S c9EE-S k= I 

K 

>L ( E Pk(w)U(Y.) + E Pk(W)U(X.)) 
cOES cWeE-S k=1 

Subtracting, 
K K 

(EPk()U(XW) >L (EPk()U(Y) 1 
F EachS k=i theS k=i 

Finally, for each k, if pk(S) > O divide the k th component of both sides by pk(S). Q.E.D. 
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PROOF OF THEOREM 5.1: Only if: Should the displayed equation in Theorem 5.1 fail to hold for 
any S, then either: x >-Sy and (Y-T, ZT) >-5SUT(X_T, WT); or x -sy and (Y-T, ZT) >-SU T(X_T, WT); 
or x -s y and (X-T,WT) >-SUT(Y-T, ZT). By Theorem 4.1 this implies either z >-TW, or w >-TZ, So 
that T is not Savage-null. 

If: By Definition 2.2, if T is not Savage-null then there exist w, z such that w >-TZ, but then 
x - x while (X - T, WT) >-s U T (X - T, ZT). Q.E.D. 

PROOF OF THEOREM 5.2: In an LPS p = (P1 PK), K can be taken to be less than or equal to 
the cardinality of Q2 without loss of generality, so attention can be restricted to LPS's (Pi, P2). 
Furthermore, the uniqueness results of Theorem 3.1 imply that for any u, the LPS's ((1, 0), (0, 1)) 
and ((1, 0), (a, 1 - a)), for a < 1, represent the same preferences. Finally, if a{W 1 2 is represent- 
ed by ((,B, 1 - ,B), (y, 1 - y)) for some ,B < 1 then there exist x, y such that x >-,i y but ,Bu(x,l) + 
(1 - 1)U(XU2) <JpU(y,i) + (1 - 1)U(y,2), so that wl # W2. The "if' direction is immediate. Q.E.D. 

PROOF OF THEOREM 5.3: Since Axiom 4(a) implies Axiom 4', it follows from Corollary 3.1 that 
there is an affine function u: 60-- RI and an LPS p = (P1, . PK) such that 

X >Y (E Pk(w)u(xW)) >IL (Epk(w)U(YW)) 

") c- Q k =1 " Qk= 1 

It remains to show that p can be chosen so that the Pk's have disjoint supports. Let K1= 
min{k: pk(dl) > 0. By Axioms 4"(a) and 5', PK1(w) > 0 for all wi E1 H1. By Axiom 4"(a), the Pk'S can 
be chosen so that Pk(ld) = 0 for all k > K1. By Axiom 4(b), Pk(H2) = 0 for all k 6 K1. Next, let 
K2 > K1 be defined by K2 = min{k: Pk(l2) > 0. Continuing in this fashion shows that p can be 
chosen so that the supports of its component measures are disjoint. The uniqueness properties and 
the "if' direction follow easily from routine arguments. Q.E.D. 

PROOF OF COROLLARY 5.1: The proof follows immediately from Theorem 5.3. Q.E.D. 

PROOF OF THEOREM 6.1: Given the preference relation a on p12, construct the induced 
relation >* on [0, 1]fl of Lemma A.2. Since >* satisfies the order axiom, it follows from general 
arguments using ultrafilters (see, e.g., Richter (1971, Theorem 9)) that there is a representation for 
>* taking values in a non-Archimedean ordered field F. That is, there exists such a field F and a 
utility function U: [0, 1]0 -I F such that for a, b E [0, 1iY, 

a >* b U(a) > U(b). 

Furthermore, since >* satisfies the von Neumann-Morgenstern independence axiom, it follows 
from routine separating hyperplane arguments that for every finite set A c [0, iV2, there is an affine 
function UA: [0, 1]0 -* R representing >* on A. Consequently the ultrafilter argument can be 
extended to conclude that the utility function U may be taken to be affine. To summarize, we have 
shown that there is an affine function U: [0, 1iY -I F representing >* on [0, 1112. 

The next step is to derive subjective probabilities. By linearity, U(a) = Ew f2U(ew)aX) (where ew 
is the with unit vector). By nontriviality (Axiom 3), E., E 1U(e') > 0. So define 

V(a) = E p(w)a., where p(w) = 
U(e) 

Since V is a positive affine transforma,on of U, it also represents >*. The p(w)'s defined this way 
constitute an F-valued probability measure on Q2. On recalling that x - y if and only if a >*b, 
where u(xX,) = a,,, and u(yX,) = b,r, for each w, the representation of Theorem 6.1 is established. 

Q.E.D. 
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