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1. INTRODUCTION

Recent papers have examined dynamic models of learning and of evalu-
tion.! The dynamic processes in these models usually include two ingredi-
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ents. First, the process incorporates some aspects of rationality or opti-
mality, such as the assumption in evolutionary models that better
strategies become more prevalent. Second, it is often assumed that there
is an exogenous random force, such as mutation, leading players to change
their strategies. Usually the rate of change is assumed to be small, and
almost all of the research considers only the case where the rate of change
approaches zero.

In this paper we use an evolutionary model to examine how the outcome
of the dynamic process depends on the rate of change. In particular we
examine how the long-run growth rate of the population depends on the
mutation rate. Insofar as evolutionary forces select among mutation rates,
our analysis sheds light on what rates of change might evolve.?

It is important to clarify that we use the notion of evolution in two
distinct ways. First, we explicitly modei an evolutionary process in which
more successful strategies become more prevalent. Second, we informally
argue that evolution would select mutation rates that lead to a higher
growth rate. While we do not explicitly model this latter selection process,
we do discuss in Section 6 the extent to which an explicit model would
support our conclusions.

Our primary goal is to understand the forces that determine whether
one rate of mutation does better—in terms of yielding a higher growth
rate for the population—than another. It is intuitive that a small rate of
mutation does better than a larger mutation rate in stationary environ-
ments. This is because any positive rate of mutation, no matter how small,
will introduce the optimal strategy; and after a long enough time the
dynamics of evolution will lead to almost all of the population playing
this best strategy. Then, in the long run, mutations will only have costs
and no benefits: a higher rate of mutation will just mean that there are more
mutations away from the optimal strategy. In changing environments,
however, a higher mutation rate can be beneficial, even in the long run:
mutations can give a jump start to a strategy that suddenly becomes good
due to the environment changing. More precisely, mutations are beneficial
after periods in which few people played the best strategy; so they can
be helpful after each time that the environment changes.

The preceding discussion suggests that higher rates of mutation are
better when the environment changes rapidly. This idea can be explored
in several ways. One might ask whether the rate of mutation that maxi-
mizes the population’s growth rate is increasing in the rate of fluctuation
of the environment. More specifically, one could ask if the mutation rate

? Fudenberg and Levine (1990) endogenize the rate of experimentation in a model where
players optimally choose how much to experiment and what to play. By contrast, most of
the research that is concerned with how play evolves over time has used modeis where
players are not fully rational optimizers. Our work suggests what mutation rates will arise
endogenously in a non-optimizing framework.
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that maximizes the population’s growth rate goes to zero as the rate of
change of the environment goes to zero. Both these questions focus on
global changes: assuming that evolutionary forces select the globally opti-
mum mutation rate, will the mutation rate decrease when the environment
fluctuates less? Will it disappear when the environment fluctuates arbi-
trarily slowly? We show that the answer to this global type of question
is yes: quite generally the mutation rate that maximizes the growth rate
converges to zero when the rate of change of the environment converges
to zero; and in a special case we can prove that the optimal mutation rate
is increasing in the rate of environmental change.’

Even if evolutionary forces select among mutation rates, they need not
succeed in selecting the global optimum. Therefore we also explore local
selection pressures, and address two questions. First, are there local
maxima which are not global maxima? Second, if for a given rate of change
of the environment and a given mutation rate it is beneficial to increase
the mutation rate slightly, is it therefore beneficial to increase the mutation
rate when the environment changes more rapidly? The answer to these
local-selection questions is not so clear cut. In one special case the intuition
above is validated: if it is beneficial to slightly increase the mutation rate
for a given rate of environmental change, then a fortiori it is beneficial
when the environment changes more rapidly. Similarly, in this special
case, the only local maximum is the global maximum. However, in general,
the intuition is incomplete. Loosely speaking, if the mutation rate is so
smali that the ‘‘best’ strategies do not become prevalent soon enough
before the environment changes again, then it is best to do without the
mutation altogether. More precisely, when the mutation rate is small then
a change to a strategy that is currently optimal will last so long that there
will be another change in the environment and the strategy will no lorger
be optimal.* Indeed, our main result is that, in general, for any rate of
change of the environment, if the mutation rate is small enough, then it
is better to decrease it further. That is, zero mutations is a local maximizer
of the growth rate of the population. As is well known, local maximizers
may well be selected by evolutionary forces, so this identifies a force that
will favor zero mutation rates.’

% In the general case we think the second result is still true, but we have not proven this.

4 A related intuition is that without mutation evolutionary forces would select a strategy
that is best in the “‘average’ environment. So for small mutation rates, one should focus
on the average environment; and since the average environment is (by definition) not chzng-
ing, the previous intuition that smaller mutation rates are better in fixed environments is
applicable.

5 The fact that there is a local maximum at zero can also be used to show that for given
rates of mutation and of environmental change it may be good to slightly increase the
mutation rate, while for a more rapidly changing environment it is best to slightly decrease
the mutation rate.
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1.1. A Sketch of the Model and Results

In our model each player faces a single-person choice problem, so the
fitness of a strategy does not depend on other players’ chocies. But we
assume a changing environment which means that the strategies’ fitness,
i.e., the structure of payoffs, is changing over time, Excluding the effects of
mutation, the proportion of players choosing a particular strategy evolves
according to the replicator dynamics. This means that the number of
players choosing a particular strategy in the next period is the number
today multiplied by that strategy’s fitness/payoff today. However, before
playing, each player might mutate and switch to another strategy. For a
given specification of payoffs and how they change over time, and a given
rate of mutation, this dynamic process generates a long-run rate of growth
for the population. We examine the long-run growth rate as a function of
the mutation rate and the rate of change of the environment. We consider
two ways in which the environment changes over time: in one there is a
deterministic cycle between two environments; in the second the two
environments follow a Markov process.®

The stochastic model raises an interesting issue concerning how to
evaluate when one mutation rate is better than another. One might expect
that the mutation rate which will be selected is the one with the highest
growth rate of the expected population. Alternatively, in comparing two
mutation rates, perhaps the one which is more likely to have higher growth
will be selected. This second approach seems likely to suffer from the
drawback that there might not be one mutation rate that is most likely to
have a higher growth rate when compared to any other mutation rate. It
turns out that this is not a problem and we can find a mutation rate that
dominates any other mutation rate with probability 1. To contrast the two
measures, assume that we want to compare two different mutation rates,
both of which are represented in one population. Since the individuals
with different mutation rates will go through the same environmental
changes, if one mutation rate does better than the other with probability
one, then almost surely the proportion of the population with the better
mutation rate will converge to one. Thus, if we were to explicitly model
selection of mutation rates, the mutation rate that has probability one of
dominating would be selected. Therefore, the probability-of-domination
comparison seems more interesting. The growth rate of the expected
population size seems relevant only if there are many different islands
with both mutation rates represented on each, and in each island the
environment is changing independently. Then, the proportion of the popu-
lation that has the mutation rate that yields higher growth of the expected

® We discuss in the paper, and show in the Appendix, that for the deterministic mode!
our results hold for any finite number of strategies and environments.



580 BEN-PORATH, DEKEL, AND RUSTICHINI

population will, with probability one, converge to 1 when we add up the
populations on all the islands.

The paper is organized as follows. In Section 2 we introduce the model
by considering a fixed environment, and we obtain the natural preliminary
result that in such a model the growth rate is decreasing in the mutation
rate.” We then present the more interesting model where the environment
is changing. In Section 3 we consider the knife-edge case where non-best
strategies are wiped out immediately since this case is easier to analyze
and helps demonstrate the issues that come up in the stochastic model.
We show that in this case the mutation rate that maximizes the growth
rate is strictly greater than zero and is larger when the rate of change of
the environment increases. More precisely, in the deterministic-cycles
model the optimal mutation rate is 1/n where n is the length of a cycle.
The same result obtains in the stochastic model when we compare muta-
tion rates according to the probability of domination: with probability 1
the mutation rate 1/n has a higher growth rate than any other mutation
rate, where » is the expected length of time in an environment. In both
models it is also the case that there are no local maxima other than the
global maxima. The growth rate of the expected population size, however,
turns out to be a decreasing function of the mutation rate. Thus comparing
mutation rates using the probability-of-domination measure seems more
attractive a priori, as argued above, and yields the same results as the
deterministic cyclic model.

The main part of the paper, Section 4, contains the analysis of a changing
environment when non-best strategies can survive. For the deterministic
model we first show that the globally maximizing mutation rate is strictly
greater than zero and it converges to zero as the cycle length converges
to infinity. Our main result is that there is always a local maximum at
zero. Though we have been unable to analytically confirm these results
for the stochastic model (when we compare mutation rates according to
the probability of one having a higher growth rate than another), we have
confirmed them using simulations.®

In Section 5 we discuss several issues concerning the robustness and
the interpretation of our model.

Naturally, there is a literature in biology that relates to this paper.
Kimura (1960, 1967) was one of the first to examine which mutation rate
would be optimal when the environment is changing. He did not explicitly

7 See also Robson (1993, Theorem 2) who has shown that zero mutations is a global
maximizer when the environment is constant.

¥ We can show that in the stochastic model, if we compare mutation rates according to
the growth rate of the expected population, then—as in the previous model—zero is a loczlly
maximizing growth rate. While this result agrees with the deterministic model it still seems
less interesting on a priori grounds, hence it is not presented in the paper.
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consider a mutator gene, and in this respect our paper is similar to his
work; the literature since Kimura’'s work has examined the implications
of explicitly modeling genes that control the mutation rate. In asexual
models of reproduction Leigh (1970) and Maynard Smith (1978) explicitly
introduced mutator genes and their conclusions are the same as Kimura's.
These three papers conclude that in asexual populations the optimal muta-
tion rate will be selected and will equal 1/n, the rate of change of the
environment. Thus our question, model, and some of our results are
similar to their work. Nevertheless, our main result—that in general zero
mutations are a local maximizer of the growth rate, and hence may be
selected—has not been noted. In addition the significant distinction be-
tween the growth rate of the expected population and the probability of
dominance has not been discussed. Most of the literature after Kimura
seems to have focused on sexual models, and has identified a *‘reduction
principle.’’® Roughly speaking, this literature argues that when the mutator
gene is separate from the strategy gene, the mutation rate that will evolve
is zero. We provide a qualitatively different justification for a reduction
principle: since a zero mutation rate is a local maximizer, it could be the
outcome of evolutionary forces.

2. THE MoODEL

We begin with the case of a fixed environment. This case serves as a
useful benchmark, and helps develop some of the intuition which is used
below in the discussion of the more interesting case where the environment
is not fixed. The exogenous parameters of the model are

E,
s a
s, b,

where E| is the environment, a > b > 0 are the payoffs, and s; are the
strategies.'® The dynamic process is based on the replicator dynamics:
Each person is characterized by a strategy choice; the number of children
of each person is given by that person’s payoffs (often called fitness

9 See Twomey and Feldman's (1990) introduction for a survey of such work, including
Karlin and McGregor (1974), Holsinger and Feldman (1983), Liberman and Feldman (1986),
and other papers that reach similar conclusions for rates of recombination and of migration.

10 For simplicity we assume that there are only two strategies, and it will be clear that all
the results for the case of a fixed environment hold for any finite number of strategies; we
discuss the case of infinitely many strategies in Footnote 13.
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payoffs); all non-mutant children follow their parent’s strategy, while a
certain proportion of children mutate and switch to the other strategy.
We consider a population all of whose individuals have the same mutation
rate, u € [0, 4], and ask how the long-run rate of growth depends on u."!
Let x,(¢) denote the size of the population playing s; in period . Then the
replicator dynamics are

x(r+ 1)y = (x(t+ 1), x,e + 1))

= ((1 — w)ax,(t) + pbxy(t), pax,(t) + (1 — w)bxy(t)).

Let x(t) be the total population in period ¢, x(z) = x,(t) + x,(t). The rate
of growth in period ¢ is denoted by vy, = X(t + 1)/x(¢), and the long-run
rate of growth is then lim,_,, v,."? (Henceforth we write lim, y, for lim,
v,. Of course, y, depends on the starting point x(0) and the mutation rate
w; we do not include these arguments for notational simplicity.) We focus
on how the long-run growth rate depends on w, and write y(u) = lim, vy, .

LEMMA 2.1. For all 0 < p < 4, lim, y, exists and is independent of
the initial condition x(0). Therefore y: (0, 3) — N is a well-defined function.

Proof. This and all other proofs that are not presented in the body of
the paper are in the Appendix.

In the knife-edge case where u = 0, the long-run growth rate depends
on x(0). In particular, lim, y, = a if x,(0) > 0, and lim, , = b if x,(0) = 0.
To see this note that if no one is playing s, at the beginning and if the
mutation rate is zero, then no one will ever play s,. Therefore, in any
period ¢, the per-period growth rate, y,, is . On the other hand, if anyone
is playing s, at time zero, then the proportion playing s, will converge
over time to {. This is because the portion of the population playing s, is
growing at the rate g, which is larger than the rate of growth of those
playing s,. Since in the limit the proportion playing s, is 1, the rate of
growth in the limit is a. We define v(0) = 4, and then y: [0, ) — } is
well-defined.

LEMMA 2.2 The growth rate y(w) is an analytic function.

It is helpful to understand when a higher mutation rate leads to a higher
growth rate. One intuitive argument is that increasing u should help after
a period in which the best strategy is played by a small portion of the

"' Mutation rates larger than 4 are unnatural, and in any case the interesting results concsrn
small mutation rates.

12 One might alternatively want to define the long-run growth rate by considering the limit
of the average growth rate: lim,_[X(7)/X(0)]". Clearly when the limits exist they coincide.
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population, and it should hurt after a period in which the best strategy
was played by many people. To see this, consider a fictitious stage after
reproduction has occurred but before mutations occur. If at that stage the
majority of people play the best strategy, then mutations will cause more
people to stop playing the best strategy than it will cause people to begin
playing it. Thus, once most of the population is playing the best strategy,
increased mutation decreases growth. This suggests that y(w) is strictly
decreasing.”

PropPoSITION 2.3, Forall 0 = p < §, v'(u) < 0.

As discussed in the Introduction, the nature of the dependence of the
growth rate on the mutation rate tells us how the mutation rate might
evolve, if the mutation rate itself were subjected to evolutionary forces.
Proposition 2.3 implies that if the environment were fixed then the muta-
tion rate would tend to zero. This intuitive idea has also arisen in the
biological literature regarding the evolution of sexual reproduction. An
early theory explaining why sexual reproduction evolved was that, relative
to asexual reproduction, it increases variability. But, in line with Proposi-
tion 2.3, more recently it has been noted that the variability caused by
sexual reproduction only ‘‘scrambles up {our] perfectly good genome.” 4
Biologists now explain that variability helps by keeping the species one
step ahead of parasites that are constantly changing: ‘‘Pathogens ... can
reproduce . .. in seconds and mutate many times . . . [Glenetic variability
gives us hosts at least a fighting chance. . . .’ " This change in the environ-
ment that is faced by hosts is endogenous; it is a consequence of changes
by the parasites who are also subject to evolutionary forces. While we
do not model such endogenous changing, our analysis below can be seen
as a preliminary step toward a complete game-theoretic treatment of this
interaction, since it examines how different mutation rates fare against a
given rate of change of the environment. We now present a model appro-

3 If there were an infinite number of strategies then one might expect that even in a fixed
environment there would not be a maximum at zero mutations. {Therefore, as we see below,
one might expect that in the case of a changing environment, there would not be a local
maximum at zero.) The intuition is that it might be best to keep on searching for a better
strategy. However, this is not the case, and in fact the maximum at zero is robust. First,
if there exists a best strategy, it is not hard to see that there will be a maximum at zero.
Similarly, if the reproduction rates (payoffs) are bounded and continuous, then the growth
rate will be decreasing in the mutation rate. (For any pair of mutation rates. there will be
a point in time at which most of the population will be playing a strategy which is almost
best. If the almost best is close enough to the best, then the potential gain from mutations
into better strategies is small, while the cost of shifting into worse strategies is large.) Finally,
if the payoffs are not bounded then it is not clear how to define the growth rate.

1* Richard Michod, quoted in Gutin (1992, p. 36).

15 Gutin (1992, p. 38).
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priate for examining the idea that variability, or a high rate of mutation,
is good when the environment, and hence the best response to the environ-
ment, is changing.

For simplicity, the model and results are presented assuming two envi-
ronments and two strategies. All our results extend to any finite number
of strategies and environments; the general case is presented in the Ap-
pendix.

El EZ
$ a c
hY,) b d

The two environments are denoted by E, and E,, and the two strategies
are s; and s5,. For the problem to be distinct from the fixed-environment
case we assume a > b >0and d > ¢ > 0. So, fori = 1, 2, 5, is best in
E;. We consider the generic case where ac # bd and assume w.l.o.g.
ac > bd. (The relevance of this assumption becomes clear later.) When
the environment is E,;, the population evolves as before; and in E, the
dynamics are (x,(t + 1), x,(t + 1)) = ((1 — wex (1) + pdx(2), pex, (1) +
(1 — wdx (1))

The remaining feature of the model that needs to be described is how
the environment is determined. We assume a deterministic cycle of length
2n: Starting in E| the environment switches back and forth every n periods
between E, and E,.

We can define the per-period growth rate y, = x(¢ + 1)/x(t) as before,
and of course it depends on w and on n. However, during a cycle we
would expect different growth rates, e.g., if the population adapts to new
environments slowly then the growth immediately after the environment
shifts may be less than the growth immediately before the shift, so y, neced
not converge. The long-run growth rate is defined instead by taking the
per-period geometric average of the growth rate over a cycle, That is, we
consider the limit of how much the population grows during 2n periods
and take the 2n root of this limit.

v, n) = lim [X2nk + 1))/XQ2nk)]"?".
hk—x

LEMMA 2.4. v(u, n) is well defined for $ > p > 0, that is, the limit
exists and it is independent of the initial state x(0). Moreover, for any n,
v(-, n) is analytic w.r.t. p.

LEMMA 2.5. The long-run growth rate is the same when averaging
over any 2n consecutive periods: y(u, n) = lim,_[x(2ntk + 1) + i)/
@2nk + i foralli=0,1,...,2n — 1. Moreover, the long-run growth
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rate equals the limit of the average growth rate: y(u, n) = lim,,,
(X)X O],

To clarify the calculation of the long-run growth rate consider the simple
knife-edge case where u = 0 and x,(0) = 0. Then lim,_[Xx(2n(k + 1) +
i)/Xx(2nk + )" = (bd)"?, since all the population will be playing s, ; and
out of the 2n periods of a cycle there will be n periods with growth rate
b (when the environment is E,) and n periods with growth rate d (during
E,).

3. CHANGING ENVIRONMENTS: RESULTS WHEN NON-OPTIMAL
STRATEGIES ARE EXTINGUISHED

Before analyzing the general model described above, we start with a
special case where b = ¢ = 0. In this case, a non-optimal strategy is
extinguished immediately. This knife-edge case is easier to solve analyti-
cally, and therefore serves as a useful step toward the general model. In
this case the intuition that mutations are better when the environment
fluctuates more rapidly is confirmed quite generally.

PropOSITION 3.1.  The long-run growth rate y(u, n) is strictly quasi-
concave in p for any n, and the unique maximum is at u* = 1/n.

Proof. The proof is a simple calculation. Starting from (x,(0), x,(0)),
at the beginning of period n, the population will be (x,(n), x,(n)) = (a"(1 —
w)'x,(0), a”(1 — w)"'ux(0)). (Note that x,(0) is irrelevant since individuals
choosing s, do not reproduce in any period where the environment is £,.)
The environment then changes and n periods later, at the beginning of
period 2n, the environment will change again. At that point we have
x,(2n) = a"d"(1 — u)** *u’x,(0). Thus the per-period growth rate is given
by y(u, n) = (ad)"*(1 — w)!"""w!’", and then y(:, n) for any n is increasing
(decreasing) in w if w < (>)1/n. QED

Thus, if the mutation rate is selected by any hill-climbing process, it
will reach the optimal rate; and the optimal rate is increasing at the rate
of change of the environment.'®

A natural question to raise is whether this conclusion also holds in a
stochastic model. Instead of going through n periods of each environment,
it seems more plausible that the environment is determined randomly, but
with a high likelihood of persistence. The most interesting analog to the

' While the models are different, this conclusion is essentially the same as the result of
Maynard Smith (1978), which he attributes to Leigh (1970), who in turn followed Kimura
(1960, 1967).
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cycling model seems to be a Markov chain, where the expected length of
time in a particular environment is #, so that in each period 7 there is a
probability 1/n of switching to a new environment. That is P(E'"" =
E|E'=E) = l/n,i=1,2;i# j. For this model we restrict attention
further to the case where a = d.

It is less clear how we should compare different mutation rates in this
stochastic model. That is, what is the analog to the comparison of mutation
rates according to population growth rates, as above? One might presume
that the mutation rate which will be selected is the one with the highest
growth rate of the expected population.!” We first consider this possibility.

In order to state our results for the randomly changing environment it
is helpful to introduce some notation. l.et h, denote a t period history
specifying the environment in each period, #, € {£,, E,}'. Denote by c(k,)
the number of times that the environment changed in the history 4,. If
we start in environment £;, with an initial population (x,(0), x,(0}) of
individuals with mutation rate u, then after a history #, the total population
(after reproduction) will be a'(1 — w) ™y *x,(0). (In any period  where
the environment is E;, each individual who plays s; will have a children.
Of these how many will bear children? If the environment in ¢ + 1 is again
E; then a proportion 1 — p will reproduce so that the effective growth
rate, so long as there are no changes in the environment, is a(l — wu). If
the environment in period ¢ + 1 changed, then only the mutants born to
the ¢ period players will reproduce. Thus, after a change in the environment
the effective growth rate is only au.) The per-period growth rate after
history h, and starting from environment E, is then [a'(1 — u)'~“"'x,(0)/
(x,(0) + x,(0)]'". This leads to the following result.

ProproSITION 3.2,  The growth rate of the expected population size at
time t is decreasing in u, for l/n € (0, 3} and for any t.

Proof. If there are k& switches of environment in the first ¢ pericods,
and the initial environment was E; then the total population after ¢ periods
of reproduction is a’(1 — w)' *u*x;(0). This events occurs with probability

(2) (1 — t/n)'"%1/n)*. Thus the expected population at time ¢ is

t
> (;{) (1 = Un) X 1/nYa'(l — w)*ukx,(0)
k=1
= [(1 = 1/m)( = p) + (Hn)plx,(0)
which, for 1/n < 3, is decreasing in u. QED

17 The only explicit model of a random environment of which we are aware does in fact
focus on the growth rate of the expected population, see Gillespie (1981).
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Thus in this case u* = 0 is a global maximizer. This surprising conclu-
sion, which conflicts with the deterministic cycling model, is due to the
fact that we used expectations to measure the success of a mutation rate:
an extremely high growth rate in some very unlikely history yields high
growth of the expected population. In fact, a population with mutation
rate 0 will almost surely be extinct in finite time.'® This raises doubts about
comparing mutation rates according to the growth rate of the expected
population. Moreover, as we argued in the Introduction, comparing muta-
tion rates by calculating expectations is relevant only if we think that
there are simultaneously many islands in each of which the environment
is determined independently and if we want to know which is the mutation
rate that is most common after a long enough time when we aggregate
the populations on all the islands.

Instead, we may be interested in asking which mutation rate is most
common in most islands, or if there is only one location we would ask
which mutation rate is most likely to be the dominant proportion of the
population. Thus, instead of looking at the growth rate of the expected
population, it seems more relevant to consider the probability of domina-
tion. That is, in comparing two mutation rates to see which will be selected,
we should ask which is more likely to yield a larger population. We now
demonstrate that this will lead to a result exactly analogous to Proposition
3.1 from the deterministic cycling model.

Denote by x(u, h,) the total population after history /&, and with mutation
rate u. For each k, where & is the number of switches in history #4,,
mutation rate g, has less growth than u, if and only if a'(1 — wp,) *ul =
a'(l — p))*uX, which is equivalent to (1 — ) "ub = (1 — p)' ",
where r is the proportion of times in which a switch occurs.

By the weak law of large numbers the probability that |r — 1/n] is
greater than & is converging to 0 as ¢ goes to infinity. So if we have

(l _ ‘LLZ)IAI/"/.Ly" > (1 _ M])I*I/nuiln (1)

then the probability that the population with w, at time 1 is greater than
the population with u, at time ¢, is converging to 1 as ¢ goes to infinity.

Thus we compare pairs of mutation rates according to Eq. (1). The
function f(u) = (1 — w)'"Y"u'™ is strictly quasi-concave and is maximized
at u* = 1/n. Thus the probability that a population with mutation rate u*

18 That is, it will be extinct at time 1 with probability approaching 1 as 1 goes to infinity.
This is because after one period only individuals playing one of the strategies remain, and
once the environment changes all these individuals will be extinct. The probability of the
environment changing within the first 1 periods is, of course, converging to -as r converges
to infinity.
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will be larger than any population with a different mutation rate converges
to 1. Formally, we have proven the following results.

ProrosITION 3.3. For any pair u;, W,

P(Eim([f(m RO = X (g, A1) > 0) = 1S fpy) > fluy).

COROLLARY 3.4. P(lim,([X(1/n, h,)]"" — [X (@, 1)) > 0) = | if
u# lUn.

This section has shown that, for the special case where non-optimal
strategies are immediately extinguished (b = ¢ = 0) and optimal strategies
yield the same payoffs (¢ = d = 0), the mutation rate that yields the
highest growth rate is 1/n where n is the (expected) length of time in an
environment. We have also argued that the correct method of evaluating
mutation rates when environments are random is not the growth rate of
the expected population but rather the likelihood of having a higher growth
rate, and we have shown that using this method the conclusions of the
deterministic and stochastic models coincide. We now return to the more
general model.

4. CHANGING ENVIRONMENTS: RESULTS WITH GENERAL PAYOFFS

This section focuses on the deterministic cycling model with general
payoffs and addresses the main question of this paper: what does y(u,
n) look like? A natural conjecture might be that! for n large enough we
get something like two back-to-back fixed-environment models. To state
this more precisely, let y () be the long-run growth rate if the environment
is E; forever.?® If n is large, then during the E; phase we get to a point
where the per-period growth rate is close to y'(u) and stay there long
enough so that the average growth in this phase is close to y'(u). The
case is similar in the £, phase. This intuition is drawn in Fig. 1, and it
leads to the proposition below.

PROPOSITION 4.1.  lim,_.y(u, n) = [y (w)y ()", for u € (0, 3), where
vi(w), i = 1,2, denotes the long-run growth rate when the environmeni is
E; forever (that is, when the environment is not changing).

¥ We ignore for the moment knife-edge cases where one strategy is not represented in
the population.

® Thus y'(w) is the same as y(u) which was defined preceding Lemma 2.1 where we dealt
with the unchanging environment case.
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CoroLLARY 4.2, lim,_o(lim, . y(u, 7)) = (ad)"™.

However, the conjecture (as well as the proposition) does not tell the
whole story. In particular, y(0, n) = (ac)" if x,(0) > 0.*' To see why this
is true, recall that we assumed that ac > bd, so those playing s, will
reproduce more during a cycle than those playing s, . Hence the proportion
of people playing s, converges to | (see Fig. 2). We define y(0, n) =
(ac)'?; with this definition y(-, n) is analytic w.r.t. u.

The previous paragraph says that, for every n and almost every starting
point, if & = 0, then the population converges to a state where the propor-
tion playing a best reply to the average environment is 1. By average we
mean an environment in which s, has payoffs (ab)"? and s, yields (cd)!?.
Continuity of the growth rate w.r.t. the mutation rate implies that, given
any n, there is a neighborhood of zero, such that for every mutation rate
in that neighborhood the following holds: (i) the limit proportion of the
population that is playing a best reply to the average environment is close

FIGURE 2

2! Thus, the order of limits in the corollary is important.
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to 1, and (ii) the long-run rate of growth is close to (ac)"?, rather than
(ad)l/2'22

In contrast to the fixed-environment case, here the rate of mutation
that maximizes growth is, for large enough n, different from zero. This
demonstrates the benefit of mutations when the environment is changing:
by providing a ‘*kick’’ in the right direction, mutations enable the popula-
tion to adapt to the current environment. To clarify the contrast with the
fixed environment case, recall that the only role of mutations in a fixed
environment is to introduce a strategy that is not present in the population.
We saw in Proposition 2.3 that once the strategy is present mutations are
harmful. We see now that in the changing environment case, mutations
serve a significant additional role: for any n, if u is too small then the
presence of s, is irrelevant; despite being good in E,, s, is driven to
extinction. Mutations must be large enough to give a *‘kick’’ in the right
direction.

So far we have discovered two properties of the function y(u, n). First,
for all n, y(0, n) = (ac)'?. Second, if we let u*(n) denote the mutation
rate that maximizes the growth rate, then Propositions 2.3 and 4.1 imply
that for n large, y(u*(n), n) is approximately (ad)'?. We might guess that
the function is single peaked at i *(n), (so that the growth rate as a function
of the mutation rate, for given n, is quasiconcave). However, simulations
suggest that the function is as in Fig. 3. Not only is it not single peaked;
it is decreasing in a neighborhood of zero. That this somewhat surprising
feature is general is stated in the proposition below.

ProPOSITION 4.3. For every n there exists a number 5(n) > 0 such
that y(u, n) is decreasing in the interval [0, 8(n)].

2 Continuity of the growth rate (except at knife-edge cases) follows from continuity of
the eigenvalues of the matrix representing the growth during a 2x cycle; see the proofs of
Lemmas 2.1 and 2.4.
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That is, near zero, an increase in the mutation rate is costly. The rough
intuition for this result is that, when u is small relative to 1/n, then the
“*kick”’ that is given by p doesn’t help enough. The problem is that in
this case the “‘kick™ doesn’t only cause more people to play s, during
E,, but rather it results in more people playing s, during both E, and E,.
Alternatively put, if @ is small then the strategy selected is one which
maximizes against the average environment (not one that tries to maximize
in each environment separately), and when maximizing against the un-
changing average environment, as in the case of a fixed environment, less
mutation is better.

For a more precise intuition, consider a 2n cycle starting in E,. When
the mutation rate is small we know that most of the population is playing
s;, which is a best reply to the average environment. So mutations from
5, to s, are negligible all along the cycle. Therefore, we can focus on
mutations from s, into s, only. Consider then the growth rate, during a
cycle lasting 2» periods, of a lineage starting from a group who mutated
from s, to 5,. (The mutation rate must be small relative to # in order for
us to be able to claim that throughout the cycle we can ignore mutations
back out of this lineage into s,). Instead of reproducing a”¢” these mutants
and their descendants reproduce only b"d". So the mutation is costly.

Proposition 4.3 immediately implies that for n, there is a local maximum
at zero.” This suggests a reason why, even in a changing environment,
the population might evolve to zero mutations.

A natural question is whether this result in the deterministic-cycling
model holds in a stochastic version of the model. While we showed that
the results for the b = ¢ = 0 and a = d case coincide in the deterministic-
cycling model and in the stochastic model, we have been unable to extend
the result that there is a local maximum of y(u, n) in the general cycling
mode! to a stochastic model. We conjecture that the following analog to
Proposition 3.3 does hold.

Conjecture. lim,,_, P(him,_.([x (0, AV = (e, AD1Y) > 0) = 1.

That is, the probability that a mutation rate of zero does better than
another strictly positive mutation rate goes to one as the mutation rate
becomes small. We have been able to confirm this result in simulations,
but we have been unable to prove it analytically.

In terms of understanding the form of y(u, n), it is interesting to compare
two different n’s, a slowly changing environment and a quickly changing
environment. When is an increase in mutation rates more valuable? It
might seem that mutations are more valuable in a quickly changing environ-

3 Note that the local maximum is robust in that it does not depend on the parameters at
all.
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Jac

FIGURE 4

ment. In particular we might expect the following: If n < n’, then y'(u,
n')y > 0= vy'(u, n) > 0. This is because, if an increase is good with n’,
then when the environment changes more quickly there are less periods
in which the best strategy is chosen; therefore increasing p should help
even more. This intuition is satisfied in Fig. 4, which is obtained by
simulations, on the intervals (0, p’) and (w, 1). However, this intuition is
violated in the interval (u', ). Moreover, this violation is general (and
not only a feature of the simulation): Given any n, there exists an n such
that for any n' > n there is an interval (u’, ) on which y'(u, n’) > 0
but y'(u, n") < 0. (This immediately follows from Proposition 4.3 and the
fact that lim,,_,,u*(n) = 0, which in turn follows immediately from Proposi-
tions 2.3 and 4.1.)

A related view of y(u, n) can be seen by asking when is more mutation
better? Not necessarily in a more quickly changing environment. If the
environment changes quickly enough relative to u, then it might be better
(locally) to decrease the rate of mutation. This we saw in Proposition 4.3.
On the other hand, if the environment is changing slowly relative to u,
then simulations suggest that, again, a decrease in u increases growth.
And this is partially confirmed by Proposition 4.1, which implies that a
smaller growth rate is better than a larger one if » is large enough, that
is, for every w,;, p, with § > p, > p, = 0, there exists N(u,, u,) such
that for n = N, y(u,, n) > y(u,, n). However, if the environment is
changing, but not too quickly nor too slowly, then an increase in ju is
beneficial, since it will enable the population to adapt better in each envi-
ronment. And the increased adaptation of the population is the dominant
feature when » is neither too small nor too large.

5. DiscussioN

In this section we discuss several issues concerning the robustness and
interpretation of our model. One issue was already touched upon in the
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Introduction: in what sense will those mutation rates that maximize popu-
lation growth be selected? A second issue is whether the results seem
plausible when alternative dynamic processes are used. Both of these are
related to the final point we address, which is whether our results might
be relevant for economics.

Throughout this paper we have been comparing populations with differ-
ent mutation rates, and we have been asking which will have a larger
growth rate in isolation. This seems like what biologists term group selec-
tion. If the populations interacted would not that affect our results? As
argued by Maynard Smith (1978), in this type of model the answer, at
least in the case of the deterministic cycling model, is clearly no. If all
the populations were together then in our model there would still be
no interaction among the individuals with different mutation rates and
therefore the conclusions would not be affected. More specifically, con-
sider a population with individuals who were characterized by two traits:
a strategy choice and a mutation rate. Assume that mutation rates are
inherited perfectly and only the strategy choice can mutate. Our results
imply that the proportion of individuals who have the mutation rate that
yields a higher growth rate would converge to 1.%

The argument above does not imply that the mutation rate that globally
maximizes growth would be selected; it only shows that among those
mutation rates represented in the population, the one that maximizes
population growth would dominate. If, for example, only a small range
of mutation rates were represented, and only small changes of mutation
rates were possible, then one could end up at a focal maximum.

In the random model the group-selection issue is less clear. We have
shown that the set of histories on which & = I/n has a larger population
in period ¢ than any other u has probability converging to | when ¢ goes
to infinity. However, it might be that for different sets of possible histories,
where each set has probability going to zero, there is some mutation rate
that does better than 1/n (where the mutation rate may vary from set to
set). It may be that the probability of the union of these sets is not
converging to zero. Then, if we had a population consisting of subpopula-
tions with all different possible mutation rates, the probability that at least
one of these subpopulations would grow more than the subpopulation
with mutation rate 1/n can be large.

One question of robustness concerns the fact that the mutation rate
was assumed throughout not to depend on any exogenous features.
Allowing the mutation rate to be time-dependent would dramatically

4 Even if one believes that there is a capacity constraint that limits growth, so long as
the death caused by this capacity constraint is random and not a function of mutation rates,
the conclusion that growth-maximizing mutation rates would dominate the population would
continue to hold.
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change our results. In a model where the environment changes every
n periods growth would be greater if the mutation rate could be large
immediately after the environment changed, and small while the environ-
ment is constant. However, while the cycles we model in this paper are
simple and easy to identify, cycles in reality are more complex and harder
to identify. Therefore the simplifying assumption that mutation rates can-
not depend on the cycle or on time seems reasonable.” Moreover, in a
stochastic environment it would not be enough for mutation rates to be
time-dependent; they would have to depend on some aspect which seems
hard to identify, such as the environment itself, the proportion of players
choosing particular strategies, or the growth rate of the population. The
idea that the mutation rate should not be constant is interesting, and very
similar to models of simulated annealing and other adaptive algorithms
used to solve for optima. While examining what rules governing mutation
rates might evolve seems worthwhile—especially in the context of learn-
ing—it is beyond the scope of this current paper.

Another question that is especially important if one wants to evaluate
the relevance of this to economics concerns the robustness of our results
to using alternative dynamic processes. The interior maximum in the case
of changing environments relies on a feature of the replicator dynamics.™
In this dynamic process, if there is almost no one paying a particular
strategy then the process is slow. That is, if a strategy in some pericd is
played by very few agents, then even if that strategy is very good, only
a small proportion of people will be playing it in the next round (since
only *‘children” of those playing this strategy can “‘inherit’” it). Therefore,
it can be very beneficial for mutations to give a “‘jump start’’ to strategies
that become good after a change in environment. If, however, everyone
can observe everything then more plausible dynamic processes—-es-
pecially if one has in mind a learning process—might have very fast
movement as soon as any one player adopted a good strategy. Thus, the
conclusion that in a changing environment there is an interior maximum
seems more likely to extend to dynamic processes where players learn
only from some individuals, possibly as in local-learning models (e.g.,
Ellison (1992), Blume (1993)), than to dynamics where good strategies are
immediately adopted by everyone.

We have argued so far that evolutionary forces would lead most of the
population to exhibit mutation rates that are global or local maximizers
of the population's growth rate. The most direct interpretation of these

3 This is not to say that the observed proportion of individuals with different mutation
rates will be constant. Immediately after a change in environment those individuals with
higher mutation rates will do better. Our results suggest however that the cycles will dampen
and converge to most of the population having a growth-maximizing mutation rate.

3 We are grateful to Jeroen Swinkels for raising this issue.
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results seems to be as a biological model. Similar to other models of
evolution in the literature there are some leaps of faith that are needed
to justify giving these results an economic interpretation. First, we must
assume that individuals ‘‘inherit’” from others what strategy to play and
how often to ‘‘mutate.”” So, we need to justify the dynamic process of
inheritance embodied in the replicator dynamics and to consider the extent
to which mutations and experiments are similar.

The replicator dynamics are motivated using payoffs that are given in
terms of bilogical fitness, not utility. Moreover, there has only been limited
success at justifying the replicator dynamics in a learning context (see,
e.g., Nachbar (1990) and Cabrales (1993)). However, other than the issue
discussed in the preceding paragraph, the intuition underlying our main
results on an interior global maximum and a local maximum at zero do
not seem to depend on the precise process. It is, nevertheless, crucial
that we believe that individuals decide both what to do and how often to
try something new based on the success of these modes of behavior in their
immediate surroundings. The interpretation of mutations as experiments is
standard in the literature; however, this relies on the premise that a player
who tries something new and the people who follow that player (his/her
“‘children’’) need to be locked into the experiment (see, e.g., Kandori
and Rob (1992) for justifications of this type of experiment).

Despite the strong assumptions needed for the economic interpretation,
we think the model and its conclusions are interesting. First, they aie
interesting even if only as results about evolution. In addition, it seems
intuitive that new strategies may be tried too rarely because slightly more
experimentation will lead a player to lag behind the ever changing environ-
ment and others will then not mimic those who do try new things a little
more often. It will seem better to stick to the tried and true which is best
on average.

7. APPENDIX

We begin with some known results that will be used in the proofs.

THEOREM 7.1 Let D be a strictly positive, real-valued, n-by-n matrix. There is a unique
eigenvalue of D with largest modulus. This eigenvalue is positive, real, and its associated
eigenvector can be taken to be positive.

Proof. See, e.g.. Theorem 1, p. 288, in Bellman (1974). QED

THEOREM 7.2. Let D be a real-valued n-by-n diagonal matrix whose maximal element
on the diagonal is unique. There is a unique eigenvalue of D with largest modulus. This
eigenvalue is positive, real, and its associated eigenvector has zeros in all places except
for the location associated with the maximal element on the diagonal.
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Proof. The proof is immediate. QED
Henceforth we denote the largest eigenvalue of a matrix D by A(D).

THEOREM 7.3.  For D a strictly positive, n-by-n matrix and x(0) = (x;(0), a positive
vector, let x(t) = x(O)D'. Then lim, amx(l)/z;;,xj(t) exists, is independent of x(0), and is
equal to the eigenvector associated with (D). Moreover, lim,_,, EJ'-L,XJ-(I)/ ::|x,(0) exists
and is equal to [MD)].

Proof. See, e.g., Theorem 4, p. 292, in Bellman (1974). QED

THEOREM 7.4 Let D be a real-valued, n-by-n, diagonal matrix whose maximal element
on the diagonal is unique, and let x(0) be a strictly positive vector. Then lim,ﬁmx(l)/zle
x;(t) exists, is independent of x(0), and is equal to the eigenvector associated with \(D).

n Iit

Moreover, lim,ﬂwzgl,x,(t)/zlz,.\'l(()) exists and is equal to [N(D)]
Proof, The proof is immediate. QED

THEOREM 7.5. Let D: (0, §) — N" define a n-by-n matrix whose entries are polynomial
Sfunctions of a real-valued parameter, say z. Assume that for any z there is a unique maximal
eigenvalue Mz) = ND(2)). Then N2) is analytic in z.

Proof. See, e.g., Kato (1982, pp. 74, 83-84, or 148). Note that it is easy to shov/ that
A(z) is C” using the implicit function theorem and the fact that A(z) is an eigenvalue with
multiplicity 1. The proof of analyticity is not so immediate. QED

THEOREM 7.6. Consider a two-by-two, strictly-positive matrix D(z) = [d”:f: ‘j‘:ﬂ As-
2l nhe

sume that the elements are converging in z as follows: lim__4d(z) = lim._,d2\(2) = 0, and
lim, ,od(z) > lim. 4dn(z) = 0. Then the eigenvector associated with N(D(2)) is contiruous
in z at 0 and can be taken to converge to (1, 0).

Proof. This is a straightforward calculation. QED

In the proofs of our results we use the following additional notation. Let p(r) = x‘r(l)/;
(r) be the proportion of the population that plays strategy s;, at time r starting from some
strictly positive population vector x{0). The long-run proportion is p{p) = lim,_ .p(1): the
existence of p(u) follows immediately from Theorem 7.3 for the case of > 0 and from
Theorem 7.4 when u = 0, if one defines D as in the proof of Lemma 2.1 below.

LeMMA 2.1. Forall 0 < g <4, lim, y, exists and does not depend on the initial condition
x{0), so y: (0, }) — N is a well-defined function.

Proof of Lemma 2.1. Let D = [ lb“ wa ma_ )h], Then by Theorem 7.3 y(u) is given by
the maximal eigenvalue of D and by Theorem 7.1 this eigenvalue is real and positive.

LEMMA 2.2. The growth rate y(u): [0, §) — R is an analytic function.

Proof of Lemma 2.2. By Theorems 7.3 and 7.4, y(u) is the maximal eigenvalue and by
Theorems 7.1 and 7.2 it is unique. Then by Theorem 7.5 it is an analytic function.

ProOPOSITION 2.3. Forall0 = p <4, y'(n) <0.
Proof of Proposition 2.3. 1t is easy to see that p(t + 1) = (1 — w)ap(t) + pb(l — p(2))/
(ap(t) + b(1 — p(¢))). Therefore, taking the limit, we obtain

1 — wap(p) + ub(l ~ p(u))
ap(u) + b(1 — p(u)) ’

p(p) =4
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Consider the functions F(p, u) = ((1 — wlap + ub(1 — p)ap + b(1 — p)) — p, and G(p,
w) = F(p, wWlap + b(1 — p)], where p and w are in [0, 1]. Since F(p(u), u) = 0, and since
G(p, u) = 0& F(p, 1) = 0 then, applying the implicit function theorem to G, it is easy to
see that

—ap(p) + b(l — p(u))
(I~ wla — pb — 2ap(p) - b(1 — p(u)) + bp(u)’

pl(p)=—

Since the denominator equals (¢ — o)1 — 2p(w)) — pla + b), we have that, if p(u) > 4,
then p'(n) < 0.

We now show that indeed p(u) > 4 when o < 4. First, it is easy to see that if 0 < u, then
F(0, p) > 0; and if, in addition, 0 < p < §, then F(3, u) > 0. Also, F(p, w) > 0 G(p,
w) > 0. Taking partial derivatives of G as below, we see that G is concave in p.

PGp,p) _

9GP (4~ )1 = 2p) — la + b = 2= <o,

ap

Since G is concave in p. and since G(4, p) > 0 and G(0, u) > 0, it follows that G(p, u) >
0 for every p € [0, 4].

Since G(p(u), n) = 0 we conclude that p{u) > §. 1t follows that p’(u) < 0. Since y(u) =
ap(p) + b{1 — p(w)) we obtain y'(u) = (a ~ b)p'(p) < 0.

LEMMA 2.4, y(u, n) is well defined for all §, > u > 0, that is, the limit exists and it is
independent of the initial state x(0). Moreover, for any n. y(-, n) is analytic w.r.t. u.

Proof of Lemma 2.4.  The structure of the proof and the theorems used are the same as
in the proof of Lemma 2.1.

For environment E, let A(l) = [L'h‘ o u)b] and for E, let AQ2) = [L'd_“"' e md]'
Now define D = [A(1)}" - [A(2)]", and proceed as in the proofs of Lemmas 2.1 and 2.2.

LEMMA 2.5. The long-run growth rate is the same when averaging Oover any 2n consecu-
tive periods, that is. y(g, n) = lim_[XQ2nlk + 1) + IY/F2nk + D] foralli=0,1,...,
2n — 1.

Proof of Lemma 2.5. We prove the claim for i = n, i.e., for the case where the cycle
starts just after the system has shifted to the environment E,. The proof for any other i is
similar. Let v, = X(t + 2n)/x(r) denote the growth rate over a 2n cycle starting in period 1.
A simple modification of the proof of Lemma 2.4 shows that there is a limit growth rate for
cycles of length 2 that start in E,, that is, lim;_.y5.1, exists. Let y(u, n) denote the 2nth
root of this limit. Let 1 = 2kn be some period in which the system moves back to the
environment E,. Let m be some natural number, and let ¢’ = 2(k + m)n be a period m
cycles later. Consider the growth of the population from time 7 to time ', that is X(2)/X(1).

If k is large enough, then yyy.yy, and Youipn-n+ { = 0, ..., m — 1, are close to their limits.
So we have ¥(t'}/%, = [y(u, W)™ + R{k) where lim,_.R,(k) = 0. On the other hand,
we have X(CVI() = (X(t+ mVRONF(e, " YEE)EE - n) + Ryk),

where lim,_.R(k) = 0. Rearranging terms we obtain that

[Z““ n)]‘ - G+ mEONRG 3/}(1 )N Rk, where lim Ra(k) = O,
¥, n} ¥, M) b

If y(u, n) > ¥(u, n) then the left-hand side tends to infinity when m — . If y(u, n) <
Y(u, n) then the left-hand side tends to zero when m — <. Since the right-hand side is
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bounded from above and it is bounded from below above zero, it follows that y(u, n) =
¥, n).

PropPOSITION 4.1, lim,_.y(u, 1) = (y'(phy () for 0 < u < 4.
Proof of Proposition 4.1. Let u € (0, ), and & be given. There exists § > 0 such that

[y (ry ()" + /2 > [y () + 8)(y ) + )]
> [y () — B)y ) — 8)'
> [y )y H))'™? = 612

It follows from Lemma 2.1 that there exists a number T such that for every initial state of
the population, x(0), and for every ¢ > T, the rate of growth at time ¢ in environment E;,
which we denote by y!, satisfies |y! — y/(@)| < 8. That is, if the rate of change of the
environment is slow enough, then in each environment there will be a point after which the
per-period growth rate is almost equal to the long-run growth rate if the environment were
fixed.

It is easy to see that there exists a number N > T, such that for every n > N,

(') = 81" Th Iy () = 81T T = [y () = 8)y () — 8)1'F = &/2 > [y (hy(w)]'? — e,
and

Uyl + 81 TaTly(p) + 8 Td'™ = [(y'(w) + 8)y (p) + 8)]'" + &/2
< Iy ' + e

Since for every 1, a = y'(t) = b and d = yX(t) = ¢, it follows that for every n,

el 2 hm
[}((6‘))] - 'y <e.

CoroLLARY 4.2, lim,_o(lim,_.y(u, 7)) = (ad)".
Corollary 4.2 follows immediately from Proposition 4.1.

ProposiTION 4.3. For every n there exists a number &(n) > O, such that y(u, n) is
decreasing in the interval [0, §(n)].

Proof of Proposition 4.3. We show that for every n there exists 6(#n) such that for every
m € (0, 8(n)], y(u, n) < y(0, n). We then show that this implies the proposition. Consider
a 2n cycle which starts in environment £,. Let p(u) denote the limit of the proportion that
plays the strategy s, at the beginning of such a cycle. It is easy to see that the matrix [A(2)]” -
[A(1)]", where A(1) and A(2) are as defined in Lemma 2.4, satisfies the provisions of Theorem
7.6. It follows that the function p(u) is continuous at 0 and therefore lim,_,p(u) = p(0) = 1.
Let P,,i =0, ...,2n — 1, be the set of individuals in the population who mutate at <tage
i. Since lim,_,p(u) = 1, for every n there exists 8(n) such that for every u € (0. 8(n)] we
can choose the sets P; so that the following two properties are satisfied:
() PN P =@ fori#j.
(2) In each P; the proportion that mutates from s, to 5, is greater than 4.
Property 1 can be satisfied when u is small, by relabeling people if necessary. Property 2
can be satisfied because when p(u) is close to 1 and u is small the proportion of the populction
that plays s, is close to 1 throughout the cycle.
Consider a cycle of length 2n, that begins in period 0 in environment E,, and assume that
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the initial proportion playing s, is p(u). We now consider the effect of allowing only i < 2n
periods of mutation, so that mutations occur at rate x up to but not including stage i, and
no mutations occur afterward. We show that the growth rate in such cycles is decreasing
in i, that is, allowing more periods of mutation, decreases the growth over this cycle. Let
y; denote the rate of growth during a cycle of such a dynamic process (i.e., the ratio between
the size of the population at the end and its size at the beginning of the cycle, when the
population mutates up to but not including stage i and then stops mutating). With this
definition ¥,,., = y{u. n) because a mutation at the last stage of the cycle does not affect
the size of the population at the end of the cycle.

Claim. Foreveryi=0,1,...2n - 2, %, <%

Proof of Cluim. It follows from Property 2 that if there is a mutation at stage i then the
measure of the set that changes from s, to s, is greater than the measure that changes from
s> 1o 5;. We can analyze the system in terms of the net transformations, so we can view
the mutants born at the end of period 7 as a transformation in which a set of individuals
with a positive measure changes from s, to s, (and none change from s, to s;). Let P, denote
this set of players (who were born in period / and will play and reproduce in period i + 1),
and let m; denote its measure. At the end of the cycle, the measure of the population that
originated from P, is m;d" "YU if i < n and it is m;p* 7V if i > n. However, if we allowed
mutations only up to but not including stage 7 — I, then the measure of the population that
originates from P, at the end of the cycle is ¢" " Pa" if i < nand it is a™ " Vif i = n. We
have a* > b* for every k and ¢*«" > d*b" for every 0 < k < n (because by assumption
c"a” > d"h" and d > ¢). It follows that the mutation at stage i decreases the growth of the
lineage following P; and therefore the growth of the whole population.

The claim implies that ¥, > ¥,,-;. This means that when the proportion of the population
that plays the strategy s, in the beginning of the cycle is p(u), then the growth in the cycle
is higher if there is no mutation. To complete the first part of the proof we note that if the
proportion of the population that plays s, is 1 and & = 0 then the growth is higher than
Yo. So we have v(0. n) > ¥, > ¥, = y(u, #).

Thus, we have shown that for sufficiently small w«, (0, n) > y(x. n). To complete the
proof of the proposition, we show that there exists an ¢ > 0 such that y'(n) < 0 for u €
(0, g). It is easy to see that the result that was established above implies that there is no
open interval (0. §) where y' > 0. Next assume by contradiction that there is an open
interval on which y' = 0 while there is no open interval on which y’ > 0. Then there is a
sequence {u,}f-; such that u; — 0 and y'(u;) = 0. By theorems 7.1, 7.2, and 7.5 ¥’ is
analytic it, follows that ¥’ = 0 but this implies that y is constant which is false. QED

The rest of the Appendix deals with the extension of our results to the general case of m
environments and n strategies.

Let E,, ..., E, be a finite set of environments and s, ..., s, be a finite set of actions.
We assume a deterministic cycle of length m, so that the environment at time 7 is Epoq ) -
We let a;; > 0 denote the payoff when the environment is E; and the action is s;. Let u >
0 be the mutation rate.

We now define the matrix that determines the dynamic process in a way that is similar
to the procedures in Lemmas 2.1, 2.2, and 2.4. First, for mutation rate p and environment
J, define an n-by-n matrix A(j, u) as follows:

(l-pla,; p=gq

[AG, W, =
o (n’j])a”J p#q.

The matrix A(/, ) enables us to define how the population changes from one period to the
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next: if x;(1) is the size of the population playing s; in period ¢ then the replicator dynamics
are x{t + 1) = x(1)A(t[mod m], w).

Let (1) = Z[_,x,(r) be the total population at time ¢, so [X(¢ + m)/X(1)]"" is the per-period
growth over a cycle through the m environments starting in period 1. Let y(u) = lim,_,.[x (km)/
X((k — m))"™. Define D(u) = Hj"L|A(j, wu). Again using Theorems 7.1, 7.2, 7.3, 7.4, and
7.5, y(u) is well defined and analytic. An argument similar to the proof of Lemma 2.5 shows
that y(u) = lim,_[X(km +1}/3((k — Dym + {)]" for all {; that is, the limit per-period growth
rate over a cycle does not depend on where we start to measure the cycle.

Note that the proofs of Proposition 4.1 and of Corollary 4.2 can be adapted immediately
to the general case with n strategies and m environments.

We now show that when one strategy is best on average, y(u) is decreasing in a neighbor-
hood of 0.

THEOREM 7.7.  Given the matrix of payoffs (a,,), if I a,; # 1 ap, for all i # ', then
there is a number & > 0 such that y(u) is decreasing in the interval [0, §].

Proof of Theorem 7.7. We assume w.l.o.g. that if i > i then I a,;> Il a, ;. In
particular, s, is the strategy that maximizes the growth over a cycle. Let a = Hj"i,a,bj and
b= H,-";,az‘j.

Let p;(u) denote the limit of the proportion of the population playing s;. For u > 0,
Theorem 7.3 implies that this limit exists; for & = 0 Theorem 7.4 implies that the limit ¢xists
and equals 1 for i = I and zero otherwise.

Claim. lim,_,pfp) = 1.

Proof of Claims. Assume by contradiction that there exists an £ > 0 and a sequence p;
such that limy ,.py = 0and p(p) = U — €. Then [t ~ p(p))/plp) =1 - pypuy) = .

Letp(p) =[p(p)- D(O)]/Z‘f':[[(p(u) - D(0))); be the vector of proportions that is obtained
by running the process for one cycle with mutation rate zero starting from initial population
proportions of p(u). Then we have

1 pp) a+ (l—pp)b t—p(w) b
= = =1+ =,
pi{p) pilp) - a i) a

where the inequality follows because the expression in the middle corresponds to a situation
where the fraction of the population that does not play s, plays the second best, namely s,.

Since Vp(w) = 1 + {1 — py(l/pi(p) and 1 + [1 — plu))pitpy) = e, we conclude that
for every p;

1 1 ( b )
== + 1-=1. 2)
i) Pl € a (
But since limy_,D(u;) — D(0) and p(p,) - D(wy) = p(py) it follows that lim_. l/p(g,) =
1/p\(is), which contradicts Eq. (2). QED

This completes the proof of the claim.

We return now to the proof the Theorem 7.7.

Given a mutation rate u and a sequence of periods consisting of N consecutive cycles,
we define a s-process to be one where the initial proportions of the strategies are p(u) and
where there are mutations at rate i up to, but not including, period ¢, and from period 1 to
the end there are no mutations. We denote by v,, | = 1 = Nm the growth rate along the
segment in a t-process. Formally define A’(x) = IT12] A(j[mod m], p) - IIXTA(j{mod m],
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0). and ¥, = y,(u) = 27 [p(g) - A'(w)};. Note that, for convenience, we have defined v,
to be the rate of growth along the segment and not the per-period growth rate. With this
definition yy,, is the growth along the segment with mutation rate u while y; is the growth
along the segment with no mutations.

Now choose i so that for every 0 < u < u the proportion of the population that plays
51 Is close to | all along the cycle. (How close is determined later.) It is possible to pick
& in such a way because lim,_op(x) = 1, by the claim, and because the cycle is of finite
length m. Since p(u) - D(u) = p(u) it follows that the proportion that plays s, is close to
1 all along the segment.

We now show that given such a u we can pick N so that

RIS 3)
YNm
We prove Eq. (3) by establishing a lower bound on ¥,/vy,., for every ¢ such that Nm - 1 is
sufficiently large.
Let L“(tz) denote the size of the population at the end of period 1, in a 1,-process. Let
M = Nm. Since L,(¢) = L,.(t) we have

e L(M) :L,(M) L,.(M)
Yi-1 LilM) L) L. (1) ’

Let p be the proportion of the population that plays s, in the period 1 after replication but
before mutation. Let 7 = 1 + m — f[mod m] and let t' = (M — 7)/m. Let N, be a number
such that forevery | < i <" < nand forevery 1 <[ =< m,

m m Ny m m Nl

nau I:n”t.&] 2l—Iar‘J [n”ﬁ.t] .

=i k=1 k=1
Assume that " = N;. It follows that

LM
L)

)2/)(-,(1" +(1 = pead’, 4)

—_ m —_ n _ m — . ”m
where ¢, = H,:,,Hm.,d,,,lal‘)and cy = H,=m|mm m@n;and d = H,;,a,u = min, H,-:I(J,»J.

The RHS of Eq. (4) is a fower bound for the LHS because it estimates the growth of the
population when the fraction that does not play s, plays the worst strategy, s,.

L. (M) p .
T = [p(1 = p) + (1 = plulca” + (1 = {p(t ~ @) + (1 = pluhec;b”, (5)
t+ 1

where ¢y = I jned w2,

The RHS of Eq. (5) is an upper bound for the LHS because it measures the growth of
the population when the fraction that does not play s, plays the second best strategy s-.

Since a > b = d it follows by simple algebra that if p is sufficiently close to 1 and ' is
sufficiently high then the ratio between the RHS of Eq. (4) and the RHS of Eq. (5) is larger
than 1/(1 — wp/2).

So let K be a number such that y,/y,,, > /(1 — u2) fort = M — K. Since M — K is
finite and since a,; # 0 there exists some number & > 0 such that yy_x, /vy > k. We now
have
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Y _ Y1 2 Yu-Kk  YM-K-1

RZ7ER ST K YM-K+1 Yo
Clearly if M is large enough then T1/% y,/y,,, = (/1 — w2 K > 1k, Tt follows that vy, <
v;- Let ¥(p, u) denote the growth rate on the segment consisting of N cycles, when the
initial proportions of the strategies are p and the mutation rate is w. Thus yy = y(p(u). p)
and y; = y(pu), 0). [t is easy to see that y{e;, 0) > y(p{u), 0) and therefore we have
v(0) = (yler, O™ > [y(p(u), O > [y(pu), "™ = y(u). We have shown that zero
is a strict local maximum of y(-). An argument that is similar to the one given in the proof
of Proposition 4.3 establishes that y(+) is decreasing in a neighborhood of zero. QED
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