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Optimal Allocation with Costly Verification †

By Elchanan Ben-Porath, Eddie Dekel, and Barton L. Lipman *

A principal allocates an object to one of I agents. Each agent values 
receiving the object and has private information regarding the value 
to the principal of giving it to him. There are no monetary trans-
fers, but the principal can check an agent’s information at a cost. 
A favored-agent mechanism specifies a value ​v​∗​ and an agent ​i​∗​. If 
all agents other than ​i​∗​ report values below ​v​∗​, then ​i​∗​ receives the 
good and no one is checked. Otherwise, whoever reports the highest 
value is checked and receives the good if and only if her report is 
confirmed. All optimal mechanisms are essentially randomizations 
over optimal favored-agent mechanisms. (JEL D82)

Consider a principal with a good to allocate among a number of agents, each of 
whom wants the good. Each agent i knows the value the principal receives if he 
gives the good to i, but the principal does not. (This value need not coincide with the 
value to i of getting the good.) The principal can verify the agents’ private informa-
tion at a cost, but cannot use transfers. There are a number of economic environ-
ments of interest that roughly correspond to this scenario; we discuss a few below. 
How does the principal maximize the expected gain from allocating the good less 
the costs of verification?

We characterize optimal mechanisms for such settings. We construct an optimal 
mechanism with a particularly simple structure which we call a favored-agent mech-
anism. There is a threshold value and a favored agent, say i. If each agent other than 
i reports a value for the good below the threshold, then the good goes to the favored 
agent and no verification is required. If some agent other than i reports a value above 
the threshold, then the agent who reports the highest value is checked. This agent 
receives the good if and only if his claims are verified and the good goes to any other 
agent otherwise.

In addition, we show that every optimal mechanism is essentially a randomiza-
tion over optimal favored-agent mechanisms. In this sense, we can characterize the 

* Ben-Porath: Department of Economics and Center for the Study of Rationality, Hebrew University of Jerusalem, 
Mount Scopus, Jerusalem 91905 (e-mail: benporat@math.huji.ac.il); Dekel: Department of Economics, Northwestern 
University, 2001 Sheridan Road, Evanston, IL 60208, and School of Economics, Tel Aviv University (e-mail: dekel@
northwestern.edu); Lipman: Department of Economics, Boston University, 270 Bay State Road, Boston, MA 02215 
(e-mail: blipman@bu.edu). We thank Ricky Vohra, Benjy Weiss, numerous seminar audiences, and three anonymous 
referees for helpful comments. We also thank the National Science Foundation, grants SES-0820333 and SES-1227434 
(Dekel) and SES-0851590 (Lipman), and the US–Israel Binational Science Foundation (Ben-Porath and Lipman) for 
support for this research. Lipman also thanks Microsoft Research New England for their hospitality while the first draft 
was in progress and Alex Poterack for proofreading. The authors declare that they have no relevant or material financial 
interests that relate to the research described in this paper.

† Go to http://dx.doi.org/10.1257/aer.104.12.3779 to visit the article page for additional materials and author  
disclosure statement(s).

01_A20130317_10412.indd   3779 11/10/14   12:46 PM

mailto:benporat@math.huji.ac.il
mailto:dekel@northwestern.edu
mailto:dekel@northwestern.edu
mailto:blipman@bu.edu
http://dx.doi.org/10.1257/aer.104.12.3779
http://dx.doi.org/10.1257/aer.104.12.3779


3780 THE AMERICAN ECONOMIC REVIEW december 2014

full set of optimal mechanisms by focusing entirely on favored-agent mechanisms. 
By “essentially,’’ we mean that any optimal mechanism has the same outcomes as 
such a randomization up to sets of measure zero.1 An immediate implication is that 
if there is a unique optimal favored-agent mechanism, then there is essentially a 
unique optimal mechanism.

Finally, we give a variety of comparative statics. In particular, we show that an 
agent is more likely to be the favored agent the higher is the cost of verifying him, the 
“better’’ is his distribution of values in the sense of first-order stochastic dominance 
(FOSD), and the less risky is his distribution of values in the sense of second-order 
stochastic dominance (SOSD).

The standard mechanism-design approach to an allocation problem is to construct 
a mechanism with monetary transfers and ignore the possibility of the principal 
verifying the agent’s information. In many cases obtaining information about the 
agent’s type at a cost is quite realistic (see examples below). Hence we think it is 
important to add this option. In our exploration of this option, we take the opposite 
extreme position from the standard model and do not allow transfers. This obviously 
simplifies the problem, but we also find it reasonable to exclude transfers. Indeed, 
in many cases they are not used. In some situations, this may be because transfers 
have efficiency costs that are ignored in the standard approach. More specifically, 
the monetary resources each agent has might matter to the principal, so changing 
the allocation of these resources in order to allocate a good might be costly. In other 
situations, the value to the principal of giving the good to agent i may differ from 
the value to agent i of receiving the good, which reduces the usefulness of monetary 
transfers. For example, if the value to the principal of giving the good to i and the 
value to agent i of receiving it are independent, then, from the point of view of the 
principal, giving the good to the agent who values it most is the same as a random 
allocation. For these reasons, we adopt the opposite assumption to the standard one: 
we allow costly verification but do not allow for transfers.

We now discuss some examples of the environment described above. A firm may 
need to choose a unit to head up a new, prestigious project. A venture capital firm 
may need to choose which of a set of competing startups to fund. A government may 
need to choose in which town to locate a new hospital. A funding agency may have 
a grant to allocate to one of several competing researchers. A dean may have a job 
slot to allocate to one of several departments in the university. The head of person-
nel for an organization may need to choose one of several applicants for a job with 
a predetermined salary.

In each case, the head of the organization wishes to allocate a good to that agent 
who would use it in the way that best promotes the interests of the organization as 
a whole. Each agent, on the other hand, has his own reasons for wanting the good 
which may not align entirely with the incentives of the organization. For example, 
each town may want the hospital and put little or no value on having the hospital 
located in a different town. Each unit in the firm may want the resources and prestige 
associated with heading up the new project without regard to whether it is the unit 
which will best carry out the project. The venture capital firm wishes to maximize its 

1 Two mechanisms have the same “outcome’’ if the interim probabilities of checking and allocating the good are 
the same; see Section I for details.
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profits, but each of the competing startups desires funding independently of which 
startup will yield the highest return.

It is also natural to assume that the agents have private information relevant to the 
choice by the head of the organization. The researchers know much more about the 
likelihood of a breakthrough than the funding agency. The individual towns know 
more about the likely level of use of a hospital than the central government. The 
departments know more about the characteristics of the people they would hire than 
does the dean.

In many of these situations, the head of the organization can, at a cost, obtain 
and process some or all of this information. The funding agency can investigate the 
research areas and progress to date of some or all of the competing researchers. The 
government can carry out a careful study of the towns. The firm can audit past per-
formance of a unit and its current capabilities in detail. The head of personnel can 
verify some of the job applicants’ claims.

Finally, monetary transfers are not practical or at least not used in many of these 
cases. Firms allocate budgets to individual units based on what activities they want 
these units to carry out—it would be self-defeating to have units bid these resources 
for the right to head up the new project. Similarly, it would be odd for a funding 
agency to ask researchers to pay in order to receive grants. Governments may ask 
towns to share in the cost of a hospital—but if part of the purpose of the project is to 
serve the poor, such transfers would undermine this goal.2

Literature Review.—Townsend (1979) initiated the literature on the principal-
agent model with costly state verification. See also Gale and Hellwig (1985); Border 
and Sobel (1987); and Mookherjee and Png (1989). These models differ from what 
we consider in that they include only one agent and allow monetary transfers. In this 
sense, one can see our work as extending the costly state verification framework to 
multiple agents when monetary transfers are not possible. Our work is also related 
to Glazer and Rubinstein (2004, 2006), particularly the former which can be inter-
preted as a model of a principal and one agent with limited but costless verification 
and no monetary transfers. Finally, it is related to the literature on mechanism design 
and implementation with evidence—see Green and Laffont (1986); Bull and Watson 
(2007); Deneckere and Severinov (2008); Ben-Porath and Lipman (2012); Kartik 
and Tercieux (2012); and Sher and Vohra (2011). With the exception of Sher and 
Vohra (2011), these papers focus on general issues, rather than on specific mecha-
nisms and allocation problems. Sher and Vohra do consider a specific allocation 
question, but it is a bargaining problem between a seller and a buyer, very different 
from what is considered here.

There is a somewhat less related literature on allocations without transfers but 
with costly signals (McAfee and McMillan 1992; Hartline and Roughgarden 2008; 
Yoon 2011; Condorelli 2012; and Chakravarty and Kaplan 2013).3 In these papers, 

2 In a similar vein, Banerjee, Hanna, and Mullainathan (2013) give the example of a government that wishes to 
allocate free hospital beds. Their focus is the possibility that corruption may emerge in such mechanisms where it 
becomes impossible for the government to entirely exclude willingness to pay from playing a role in the allocation. 
We do not consider such possibilities here.

3 There is also a large literature on allocations without transfers, namely the matching literature; see, e.g., Roth 
and Sotomayor (1990) for a classic survey and Abdulkadiro​     g​lu and Sönmez (2013) for a more recent one.
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agents can waste resources to signal their values and the principal’s payoff is the 
value of the type receiving the good less the cost of the wasted resources. The papers 
differ in their assumptions about the cost, the number of goods to allocate, and so 
on, but the common feature is that wasting resources can be useful in allocating 
efficiently and that the principal may partially give up on allocative efficiency to 
save on these resources. See also Ambrus and Egorov (2012) who allow both mon-
etary transfers and wasting of resources in a delegation model.

The remainder of the paper is organized as follows. In the next section, we present 
the model. Section II shows that all optimal mechanisms are essentially randomiza-
tions over optimal favored-agent mechanisms. In Section III, we characterize the set 
of best favored-agent mechanisms. In Section IV, we give comparative statics and 
discuss various properties of the optimal mechanism. In Section V, we sketch the 
proof of our uniqueness result, while Section VI discusses some simple extensions. 
Section VII concludes. Proofs not contained in the text are either in the Appendix or 
the online Appendix.

I.  Model

The set of agents is  = {1, …, I }. There is a single indivisible good to allocate 
among them. The value to the principal of assigning the object to agent i depends on 
information which is known only to i. Formally, the value to the principal of allocat-
ing the good to agent i is ​t​i​ where ​t​i​ is private information of agent i. We normalize 
so that types are always nonnegative and the value to the principal of assigning the 
object to no one is zero. As we explain in Section VI, the assumption that the prin-
cipal always prefers allocating the object to the agents is used only to simplify some 
statements—the results easily extend to the case where the principal sometimes pre-
fers to keep the object. We assume that the ​t​i​ s are independently distributed. The 
distribution of ​t​i​ has a strictly positive density ​f​i​ over the interval4 ​​i​ ≡ ​[ ​​t _​​ i​ , ​​

_
 t ​​i​ ]​ where 

0 ≤ ​​t _​​ i​ < ​​
_
 t ​​i​ < ∞. We use ​F​i​ to denote the corresponding distribution function. Let 

 = ​∏​ i​ 
 ​ ​​i​.

The principal can check the type of agent i at a cost ​c​i​ > 0. We interpret checking 
as obtaining information (e.g., by requesting documentation, interviewing the agent, 
or hiring outside evaluators) which perfectly reveals the type of the agent being 
checked. The cost to the agent of providing information is assumed to be zero. We 
discuss these assumptions and the extent to which they can be relaxed in Section VI.

We assume that every agent strictly prefers receiving the object to not receiving 
it. Consequently, we can take the payoff to an agent to be the probability he receives 
the good. The intensity of the agents’ preferences plays no role in the analysis, so 
these intensities may or may not be related to the types.5 We also assume that each 
agent’s reservation utility is less than or equal to his utility from not receiving the 

4 It is straightforward to drop the assumption of a finite upper bound for the support as long as all expectations 
are finite. Also, when in Section VI we allow the principal to prefer keeping the object, it is similarly straightforward 
to drop the assumption that the support is bounded below.

5 Suppose we let the payoff of agent i from receiving the good be ​​
_
 u ​​i​(​t​i​) and let his utility from not receiving it 

be ​​u _​​ i​(​t​i​) where ​​
_
 u ​​i​(​t​i​) > ​​u _​​ i​(​t​i​) for all i and all ​t​i​. Then it is simply a renormalization to let ​​

_
 u ​​i​(​t​i​) = 1 and ​​u _​​ i​(​t​i​) = 0 

for all ​t​i​. To see this, note that each of the incentive constraints will take the form

 	  p ​​_ u ​​i​(​t​ i​) + (1 − p)​​u _​​ i​(​t​ i​) ≥ ​p​′​  ​​_ u ​​i​(​t​ i​) + ​( 1 − ​p​′​ )​ ​​u _​​ i​(​t​ i​),
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good. Since monetary transfers are not allowed, this is the worst payoff an agent 
could receive under a mechanism. Consequently, individual rationality constraints 
do not bind and so are disregarded throughout.

In its most general form, a mechanism can be quite complex, having multiple 
stages of cheap-talk statements by the agents and checking by the principal, where 
who can speak and which agents are checked depend on past statements and the 
results from past checks, finally culminating in the allocation of the good, perhaps 
to no one. However, it is not hard to show that one can use an argument similar 
to the Revelation Principle to restrict attention to a simple class of mechanisms.6 
Specifically, we show in part 1 of the online Appendix that we can consider only 
direct mechanisms (i.e., mechanisms which ask agents to report their types) for 
which truthful revelation is a Nash equilibrium and which have the following prop-
erties. First, for any vector of reported types, the mechanism selects (perhaps via 
randomization) at most one agent who is checked. If an agent is checked and (as 
will happen in equilibrium) found to have told the truth, then he receives the good. 
If no agent is checked, then the mechanism (again, perhaps randomly) selects which 
agent, if any, receives the good.

Hence we can write a mechanism as specifying for each vector of reports, two 
probabilities for each agent: the probability he is awarded the object without being 
checked and the probability he is awarded the object conditional on a successful 
check. Let ​p​i​(t) denote the total probability i is assigned the good and ​q​i​(t) the 
probability i is assigned the good and checked. Then these functions must satisfy ​
p​i​ :  → [0, 1], ​q​i​ :  → [0, 1], ​∑​ i​ 

 ​ ​p​i​(t) ≤ 1 for all t ∈ , and ​q​i​(t) ≤ ​p​i​(t) for all 
i ∈  and all t ∈ . Henceforth, the word “mechanism’’ will be used only to denote 
such a tuple of functions, generally denoted (p, q) for simplicity.

The principal’s objective function is

 	​  E​t​​[ ​∑​ 
i
  ​ 
 
 ​​(  ​p​i​(t)​t​i​  − ​ q​i​(t)​c​i​ )​ ]​.

The incentive compatibility constraint for i is

 	​  E​​t​−i​​ ​p​i​(t)  ≥ ​ E​​t​−i​​​[ ​p​i​(​t​ i​ ′​, ​t​−i​)  − ​ q​i​(​t​ i​ ′​, ​t​−i​) ]​,  ∀​t​i​, ​t​ i​ ′​ ∈ ​​i​,  ∀i  ∈  .

Given a mechanism (p, q), let

 	​​    p ​​i​(​t​i​)  = ​ E​​t​−i​​ ​p​i​(​t​i​, ​t​−i​)

and

 	​​    q ​​i​(​t​i​)  = ​ E​​t​−i​​ ​q​i​(​t​i​, ​t​−i​).

where p is the probability player i gets the good when he is type ​t​ i​ and tells the truth and ​p​′​ is the probability he 
gets the good if he lies in some particular fashion. It is easy to rearrange this equation as p​[ ​​_ u ​​i​(​t​i​) − ​​u _​​ i​(​t​i​) ]​ ≥ 
​p​′​ ​[  ​​_ u ​​ i​(​t​ i​) − ​​u _​​ i​(​t​i​) ]​. Since ​​

_
 u ​​ i​(​t​i​) > ​​u _​​ i​(​t​i​), this holds if and only if p ≥ ​p​′​, exactly the incentive constraint we have 

if ​​
_
 u ​​ i​(​t​i​) = 1 and ​​u _​​ i​(​t​i​) = 0.
6 The usual version of the Revelation Principle does not apply to games with verification and hence cannot be 

used to obtain this conclusion. See Townsend (1988) for a discussion and an extension to a class of verification 
models which does not include ours.
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The 2  I tuple of functions (​  p​, ​  q​​)​i∈​ is the reduced form of the mechanism (p, q). 
We say that (​p​1​, ​q​1​) and (​p​ 2​, ​q​2​) are equivalent if ​​  p​​1​ = ​​  p​​ 2​ and ​​  q​​1​ = ​​  q​​2​ up to sets 
of measure zero. It is easy to see that we can write the incentive compatibility con-
straints and the objective function of the principal as a function only of the reduced 
form of the mechanism. Hence if (​p​1​, ​q​1​) is an optimal incentive compatible mecha-
nism, (​p​2​, ​q​2​) must be as well. Therefore, we can only identify the optimal mecha-
nism up to equivalence.

II.  The Sufficiency of Favored-Agent Mechanisms

Our main result in this section is that we can restrict attention to a class of mecha-
nisms we call favored-agent mechanisms. To be specific, we show that every opti-
mal mechanism is equivalent to a randomization over favored-agent mechanisms. 
Hence to compute the set of optimal mechanisms, we can simply optimize over the 
much simpler class of favored-agent mechanisms. In the next section, we use this 
result to characterize optimal mechanisms in more detail.

We say that (p, q) is a favored-agent mechanism if there exists a favored agent ​
i​ ∗​ ∈  and a threshold ​v​∗​ ∈ R such that the following holds up to sets of mea-
sure zero. First, if ​t​i​ − ​c​i​ < ​v​∗​ for all i ≠ ​i​ ∗​, then ​p​​i​ ∗​​(t) = 1 and ​q​i​(t) = 0 for all i. 
That is, if every agent other than the favored agent reports a “value’’ ​t​i​ − ​c​i​ below 
the threshold, then the favored agent receives the object and no agent is checked. 
Second, if there exists j ≠ ​i​ ∗​ such that ​t​j​ − ​c​j​ > ​v​∗​ and ​t​i​ − ​c​i​ > ma​x​k≠i​ (​t​k​ − ​c​k​), 
then ​p​i​(t) = ​q​i​(t) = 1 and ​p​k​(t) = ​q​k​(t) = 0 for all k ≠ i. That is, if any agent 
other than the favored agent reports a value above the threshold, then the agent with 
the highest reported value (regardless of whether or not he is the favored agent) is 
checked and, if his report is verified, receives the good.7

Note that this is a very simple class of mechanisms. Optimizing over this set of 
mechanisms simply requires us to pick one of the agents to favor and a number for 
the threshold, as opposed to probability distributions over checking and allocation 
decisions as a function of the types.

Obviously, any randomization over optimal mechanisms is optimal.8 Also, as 
noted in Section I, if a mechanism (p, q) is optimal, then any mechanism which 
is essentially the same in the sense of having the same reduced form up to sets of 
measure zero must also be optimal. Hence given any set of optimal mechanisms, we 
know that all mechanisms that are essentially equivalent to a randomization over 
mechanisms in this set must also be optimal.

Theorem 1: A mechanism is optimal if and only if it is essentially a randomiza-
tion over optimal favored-agent mechanisms.

7 If there are several agents that maximize ​t​i​ − ​c​i​, then one of them is chosen arbitrarily. This event has prob-
ability zero and so does not affect incentives or the principal’s payoff.

8 Randomizing refers to the pointwise convex combination of mechanisms (p, q).

01_A20130317_10412.indd   3784 11/10/14   12:46 PM



3785Ben-Porath et al.: Optimal Allocation with Costly VerificationVOL. 104 NO. 12

Hence we can restrict attention to favored-agent mechanisms without loss of gen-
erality.9 Furthermore, if there is a unique optimal favored-agent mechanism, then 
there is essentially a unique optimal mechanism.

Section V contains a sketch of the proof of this result.
A very incomplete intuition for this result is the following. For simplicity, sup-

pose ​c​i​ = c for all i and suppose ​​i​ = [0, 1] for all i. Clearly, the principal would 
ideally give the object to the agent with the highest ​t​i​. Of course, this is not incentive 
compatible as each agent would claim to have type 1. By always checking the agent 
with the highest report, the principal can make this allocation of the good incentive 
compatible. So suppose the principal uses this mechanism.

Consider what happens when the highest reported type is below c. Obviously, it is 
better for the principal not to check in this case since it costs more to check than it 
could possibly be worth. Thus we can improve on this mechanism by only checking 
the agent with the highest report when that report is above c, giving the good to no 
one (and checking no one) when the highest report is below c. It is not hard to see 
that this mechanism is incentive compatible and, as noted, an improvement over the 
previous mechanism.

However, we can improve on this mechanism as well. Obviously, the principal 
could select any agent at random if all the reports are below c and give the good to 
that agent. Again, this is incentive compatible. Since all the types are positive, this 
mechanism improves on the previous one.

The principal can do still better by further exploiting his selection of the person to 
give the good to when all the reports are below c. To see this, suppose the principal 
gives the good to agent 1 if all reports are below c. Continue to assume that if any 
agent reports a type above c, then the principal checks the highest report and gives the 
good to this agent if the report is true. This mechanism is clearly incentive compat-
ible. However, the principal can also achieve incentive compatibility and the same 
allocation of the good while saving on checking costs: he doesn’t need to check 1’s 
report when he is the only agent to report a type above c. To see why this cheaper 
mechanism is also incentive compatible, note that if everyone else’s type is below c, 1 
gets the good no matter what he says. Hence 1 only cares what happens if at least one 
other agent’s report is above c. In this case, he will be checked if he has the high report 
and hence cannot obtain the good by lying. Hence it is optimal for him to tell the truth.

This mechanism is the favored-agent mechanism with 1 as the favored agent and ​
v​∗​ = 0. Of course, if the principal chooses the favored agent and the threshold ​v​∗​ 
optimally, he must improve on this payoff.

This intuition does not show that some more complex mechanism cannot be supe-
rior, so it does not establish existence of an optimal mechanism in the favored-agent 
class, much less the uniqueness part of Theorem 1. Indeed, the proof of this theorem 
is rather complex.

Remark 1: It is worth noting that the favored-agent mechanism is ex post incen-
tive compatible. To see this, note first that any agent i with ​t​i​ − ​c​i​ above the thresh-
old has a dominant strategy to report honestly. Second, any nonfavored agent i with ​

9 It is straightforward to show that an optimal mechanism exists, so Theorem 1 is not vacuous.
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t​i​ − ​c​i​ below the threshold gets the good with zero probability regardless of his report. 
Finally, if the favored agent has ​t​i​ − ​c​i​ below the threshold, he obtains the good if 
and only if all the other agents report values below the threshold, independently of his 
report.10 Since ex post incentive compatibility is stricter than incentive compatibility, 
this implies that the favored-agent mechanism is also the optimal ex post incentive 
compatible mechanism.

III.  Optimal Favored-Agent Mechanisms

We complete the specification of the optimal mechanism by characterizing the 
optimal threshold and the optimal favored agent. We show that conditional on the 
selection of the favored agent, the optimal favored-agent mechanism is unique. After 
characterizing the optimal threshold given the choice of the favored agent, we con-
sider the optimal selection of the favored agent.

For each i, define ​t​ i​ ∗​ by

(1) 	  E (​t​i​)  =  E ​( max {​t​i​, ​t​ i​ ∗​} )​  − ​ c​i​.

It is easy to show that ​t​ i​ ∗​ is well-defined.11

To interpret ​t​ i​ ∗​, suppose the principal is using a favored-agent mechanism with i as 
the favored agent. Note that the principal does not take into account i’s report unless 
at least one of the other agents reports a value above the threshold. For intuition, 
think of the principal as not even asking i for a report unless this happens. Suppose 
the profile of reports of the other agents is ​t​ −i​ ′  ​. Let v = ma​x​j≠i​ (​t​ j​ ′​ − ​c​j​). Suppose the 
principal is not committed to the threshold and consider his decision at this point. 
He can choose a threshold above v or, equivalently, give the object to agent i without 
checking him. If he does so, his expected payoff is E (​t​i​). Alternatively, he can choose 
a threshold below v or, equivalently, ask for a report from agent i and give the object 
to the agent with the highest value of ​t​j​ − ​c​j​ after a check. In expectation, this yields 
the principal E max{​t​i​ − ​c​i​, v}. Hence equation (1) says that when v = ​t​ i​ ∗​ − ​c​i​, the 
principal is indifferent between these two options.

A slight extension of this reasoning yields a proof of the following result.

10 In other words, truth telling is an almost dominant strategy in the sense that it is an optimal strategy for every 
type of every player regardless of the strategies of his opponents. It is not dominant for an agent who is not favored 
and whose type is such that ​t​i​ − ​c​i​ is below the threshold since his payoff is zero regardless of his report. We can 
make truth telling a dominant strategy by changing the mechanism off the equilibrium path. Specifically, suppose 
we modify our mechanism only by assuming that if an agent is checked and found to have lied, we select another 
agent at random, check him, and give the good to him if and only if he is found to have told the truth. It is easy 
to see that truth telling is a dominant strategy in this mechanism and that it generates the same allocation as the 
original mechanism.

11 To see this, observe that the right-hand side of equation (1) is continuous and strictly increasing in ​t​ i​ ∗​ for ​
t​ i​ ∗​ ≥ ​​t _​​ i​, below the left-hand side at ​t​ i​ ∗​ = ​​t _​​ i​, and above it as ​t​ i​ ∗​ → ∞. Hence there is a unique solution. Note that 
if we allowed it, then when ​c​i​ = 0, we would have ​t​ i​ ∗​ = ​​t _​​ i​. (At ​c​i​ = 0, ​t​ i​ ∗​ is not uniquely defined, but it is natural 
to take it to be the limit value as ​c​i​ ↓ 0 which gives ​t​ i​ ∗​ = ​​t _​​ i​.) This fact together with what we show below implies 
the unsurprising observation that if all the costs are zero, the principal always checks the agent who receives 
the object and gets the same payoff as under complete information. Note also that if ​c​i​ is very large, we have 
​t​ i​ ∗​ = E(​t​i​) + ​c​i​ > ​​

_
 t ​​i​ .
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Theorem 2: Within the set of favored-agent mechanisms with i as the favored 
agent, the unique optimal mechanism is obtained by setting the threshold ​v​∗​ equal 
to ​t​ i​ ∗​ − ​c​i​.

Proof:
For notational convenience, let the favored agent i equal 1. Contrast the princi-

pal’s payoff to thresholds ​t​ 1​ ∗​ − ​c​1​ and ​​  v ​​∗​ > ​t​ 1​ ∗​ − ​c​1​. Given a profile of types for the 
agents other than 1, let x = ma​x​ j≠1​    ​(​t​j​ − ​c​j​)—that is, the highest value of (and hence 
reported by) one of the other agents. Then the principal’s payoff as a function of the 
threshold and x is given by

x < ​t​ 1​ ∗​ − ​c​1​ < ​​  v ​​∗​ ​t​ 1​ ∗​ − ​c​1​ < x < ​​  v ​​∗​ ​t​ 1​ ∗​ − ​c​1​ < ​​  v ​​∗​ < x
​t​ 1​ ∗​ − ​c​1​ E (​t​1​) E max{​t​1​ − ​c​1​, x}     E max {​t​1​ − ​c​1​, x}    .

​​  v ​​∗​ E (​t​1​) E (​t​1​) E max{​t​1​ − ​c​1​, x}

To see this, note that if x < ​t​ 1​ ∗​ − ​c​1​ < ​​  v ​​∗​, then the principal gives the object to 
agent 1 without a check using either threshold. If ​t​ 1​ ∗​ − ​c​1​ < ​​  v ​​∗​ < x, then the prin-
cipal gives the object to either 1 or the highest of the other agents with a check 
and so receives a payoff of either ​t​1​ − ​c​1​ or x, whichever is larger. Finally, if 
​t​ 1​ ∗​ − ​c​1​ < x < ​​  v ​​∗​, then with threshold ​t​ 1​ ∗​ − ​c​1​, the principal’s payoff is the larger 
of ​t​1​ − ​c​1​ and x, while with threshold ​​  v ​​∗​, she gives the object to agent 1 without a 
check and has payoff E (​t​1​).

Recall that ​t​ 1​ ∗​ > ​​t _​​ 1​. Hence ​t​1​ < ​t​ 1​ ∗​ with strictly positive probability. Therefore, for 
x > ​t​ 1​ ∗​ − ​c​1​, we have

 	  E max{​t​1​ − ​c​1​, x}  >  E max {​t​1​ − ​c​1​, ​t​ 1​ ∗​ − ​c​1​}.

But the right-hand side is E max{​t​1​, ​t​ 1​ ∗​} − ​c​1​ which equals E (​t​1​) by definition of ​t​ i​ ∗​.  
Thus,

 	  E max {​t​1​ − ​c​1​, x}  >  E(​t​1​).

Hence given that 1 is the favored agent, the threshold ​t​ 1​ ∗​ − ​c​1​ weakly dominates any 
larger threshold. A similar argument shows that the threshold ​t​ 1​ ∗​ − ​c​1​ weakly domi-
nates any smaller threshold, establishing that it is optimal.

To see that the optimal mechanism in this class is unique, note that the comparison 
of threshold ​t​ 1​ ∗​ − ​c​1​ to a larger threshold ​v​∗​ is strict unless the middle column of the 
table above has zero probability. That is, the only situation in which the principal 
is indifferent between the threshold ​t​ 1​ ∗​ − ​c​1​ and the larger threshold ​v​∗​ is when the 
allocation of the good and checking decisions are the same with probability 1 given 
either threshold. That is, indifference occurs only when changes in the threshold do 
not change (p, q). Hence, conditional on favoring i, there is a unique best mechanism.

While ​t​ i​ ∗​ resembles an index or reservation value of the sort often seen in the 
search literature, this specific definition is not standard in that literature. Indeed, it 
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is not straightforward to interpret it in terms of search. To see the point, compare it 
to the index identified in Weitzman (1979). In his model (with some minor adjust-
ments for easier comparability), the value to learning the payoff to option i is char-
acterized by a critical value ​t​ i​ ∗​ defined by

 	​  t​ i​ ∗​ = E (max {​t​i​, ​t​ i​ ∗​}) − ​c​i​ ,

where ​c​i​ is the cost of finding out the payoff of option i and ​t​i​ is the random variable 
giving the value of this payoff. Note that this is identical to our expression, except 
that E(​t​i​) appears on the left-hand side of equation (1), not ​t​ i​ ∗​. Weitzman’s expression 
is easily interpreted. If the best alternative found so far has value ​t​ i​ ∗​, then the agent is 
indifferent between stopping his search and choosing it versus checking option i and 
then stopping. Our expression is not as obviously interpreted in terms of search.12

Now that the optimal threshold is characterized given the choice of the favored 
agent, it remains only to characterize the optimal favored agent.

Theorem 3: The optimal choice of the favored agent is any i with ​t​ i​ ∗​ − ​c​i​  
= ma​x​ j​  ​(​t​ j​ ∗​ − ​c​j​).

A rough intuition for this result is that ​t​ i​ ∗​ − ​c​i​ can be thought of as the standard 
that agents j ≠ i must satisfy to persuade the principal to not give the good to i with-
out checking anyone. Intuitively, the higher is this threshold, the more inclined the 
principal is to give the good to i without checking anyone. It is not surprising that 
the agent toward whom the principal is most inclined in this sense is the principal’s 
choice for the favored agent.

We sketch the main part of the proof here (see part 3 of the online Appendix for 
the omitted details). Fix any two agents, i and j, and assume ​t​ i​ ∗​ − ​c​i​ ≥ ​t​ j​ ∗​ − ​c​j​. We 
will show that this inequality implies that given a threshold of ​t​ j​ ∗​ − ​c​j​, it is weakly 
better for the principal to favor agent i than agent j. By Theorem 2, favoring i with a 
threshold of ​t​ i​ ∗​ − ​c​i​ is better still, establishing the result.

If any agent k other than i or j reports ​t​k​ − ​c​k​ above the threshold, then the agent 
with the highest report is checked and receives the object, independent of which 
agent was favored. Hence we may as well condition on the event that all agents 
other than i and j report values below the threshold. Also, if both i and j report val-
ues above the threshold, again, it does not matter to the principal which agent was 
favored. Hence we only need to consider realizations such that at least one of these 
agents reports a value below the threshold.

Note that j’s report is above the threshold if ​t​j​ − ​c​j​ ≥ ​t​ j​ ∗​ − ​c​j​ —i.e., ​t​j​ ≥ ​t​ j​ ∗​. On 
the other hand, i’s report is above the threshold if ​t​i​ − ​c​i​ ≥ ​t​ j​ ∗​ − ​c​j​ or ​t​i​ ≥ ​​  t ​​i​ ≡ ​t​ j​ ∗​ − ​
c​j​ + ​c​i​. Given this, we see that the principal is better off favoring i than j if

12 Since the first draft of this paper, Doval (2013) considered a search model where this definition does appear. 
In Doval (2013), the searcher could choose option i without checking it, yielding payoff E (​t​i​). Thus ​t​ i​ ∗​, computed 
according to our definition, emerges as the cutoff for the best option found so far with the property that it leaves the 
agent indifferent between taking the last option without checking it and checking the last option and then choosing 
between it and the outside option. To the best of our knowledge, this is the first time this definition has appeared in 
the search literature.
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 	​  F​i​(​​  t ​​i​)​F​j​(​t​ j​ ∗​)E[​t​i​ | ​t​i​ ≤ ​​  t ​​i​] + [1 − ​F​i​(​​  t ​​i​)]​F​j​ (​t​ j​ ∗​)E[​t​i​ | ​t​i​ > ​​  t ​​i​]

 	  + ​F​i​(​​  t ​​i​)[1 − ​F​j​ (​t​ j​ ∗​)]​{ E[​t​j​ | ​t​j​ > ​t​ j​ ∗​] − ​c​j​ }​

 	      ≥ ​F​i​(​​  t ​​i​)​F​j​(​t​ j​ ∗​)E[​t​j​ | ​t​j​ ≤ ​t​ j​ ∗​] + [1 − ​F​i​(​​  t ​​i​)]​F​j​ (​t​ j​ ∗​)​{ E[​t​i​ | ​t​i​ > ​​  t ​​i​] − ​c​i​ }​

 	  + ​F​i​(​​  t ​​i​)[1 − ​F​j​ (​t​ j​ ∗​)]E[​t​j​ | ​t​j​ > ​t​ j​ ∗​].

Rewriting,

	​ F​i​​( ​​  t ​​i​ )​​F​j​ ​( ​t​ j​ ∗​ )​​( E​[ ​t​i​ | ​t​i​ ≤ ​​   t ​​i​ ]​ −  E​[ ​t​j​ | ​t​j​ ≤ ​ t​ j​ ∗​ ]​ )​

 	      + ​ [ 1 − ​ F​i​ (​​  t ​​i​) ]​​F​j​ ​( ​t​ j​ ∗​ )​​c​i​ − ​ F​i​ ​( ​​  t ​​i​ )​​[ 1 − ​ F​j​​( ​t​ j​ ∗​ )​ ]​​c​j​ ≥  0.

This equation summarizes the change in the principal’s payoff from switching from 
j as the favored agent to i. The first term is the change in the expected payoff condi-
tional on giving the object to the favored agent without a check, while the last two 
terms give the change in the expected costs of checking.

It is easy to show that this must hold if ​F​i​​( ​​  t ​​i​ )​ = 0, so assume ​F​i​​( ​​  t ​​i​ )​ > 0. It fol-
lows from the definition of ​t​ j​ ∗​ that ​F​j​​( ​t​ j​ ∗​ )​ > 0, so we can rewrite this as

(2) 	  E​[ ​t​i​ | ​t​i​  ≤ ​​   t ​​i​ ]​  + ​ 
​c​i​ _ 

​F​i​​( ​​  t ​​i​ )​
 ​  − ​ c​i​  ≥  E​[ ​t​j​ | ​t​j​  ≤ ​ t​ j​ ∗​ ]​  + ​ 

​c​j​
 _ 

​F​j​​( ​t​ j​ ∗​ )​
 ​  − ​ c​j​.

We now show that this is implied by ​t​ i​ ∗​ − ​c​i​ ≥ ​t​ j​ ∗​ − ​c​j​.
Recall that ​t​ i​ ∗​ is defined by

 	  E (​t​i​)  =  E max {​t​i​, ​t​ i​ ∗​}  − ​ c​i​,

so ​t​ i​ ∗​ − ​c​i​ ≥ ​t​ j​ ∗​ − ​c​j​ or, equivalently, ​t​ i​ ∗​ ≥ ​​  t ​​i​ implies

 	  E(​t​i​) = E max  {​t​i​, ​t​ i​ ∗​} − ​c​i​ ≥ E max  {​t​i​, ​​  t ​​i​} − ​c​i​

or

 	​  ∫​ 
​​t _​​ i​
​ 
​​  t ​​i​

​ ​t​i​ ​f​i​(​t​i​) d​t​i​  ≥ ​ F​i​(​​  t ​​i​)​​  t ​​i​  − ​ c​i​

or

 	  E[​t​i​ | ​t​i​  ≤ ​​   t ​​i​]  + ​ 
​c​i​ _ 

​F​i​​( ​​  t ​​i​ )​
 ​  ≥ ​​   t ​​i​  = ​ t​ j​ ∗  ​− ​ c​j​  + ​ c​i​.

Hence

 	  E​[ ​t​i​ | ​t​i​  ≤ ​​   t ​​i​ ]​  + ​ 
​c​i​ _ 

​F​i​(​​  t ​​i​)
 ​  − ​ c​i​  ≥ ​ t​ j​ ∗​  − ​ c​j​.
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But the same rearranging of the definition of ​t​ j​ ∗​ shows that

 	​  t​ j​ ∗​  − ​ c​j​  =  E[​t​j​ | ​t​j​  ≤ ​ t​ j​ ∗​]  + ​ 
​c​j​
 _ 

​F​j​(​t​ j​ ∗​)
 ​  − ​ c​j​.

Combining the last two inequalities yields equation (2) as asserted.
Summarizing, we see that the set of optimal favored-agent mechanisms is 

easily characterized. A favored-agent mechanism is optimal if and only if the 
favored agent i satisfies i ∈ arg ma​x​j​ (​t​ j​ ∗​ − ​c​j​) and the threshold ​v​∗​ satisfies  
​v​∗​ = ma​x​ j​  ​(​t​ j​ ∗​ − ​c​j​). Thus the set of optimal mechanisms is equivalent to pick-
ing a favored-agent mechanism with threshold ​v​∗​ = ma​x​ j​  ​(​t​ j​ ∗​ − ​c​j​) and random-
izing over which of the agents in arg ma​x​j​ (​t​ j​ ∗​ − ​c​j​) to favor. Clearly for generic 
checking costs, there will be a unique j maximizing ​t​ j​ ∗​ − ​c​j​ and hence a unique 
optimal mechanism. Moreover, fixing ​c​i​ and ​c​j​, the set of (​F​i​, ​F​j​) such that ​t​ i​ ∗​ − ​c​i​  
= ​t​ j​ ∗​ − ​c​j​ is nowhere dense in the product weak* topology. Hence in either sense, 
such ties are non-generic.13

IV.  Properties of Optimal Mechanisms

Given that optimal mechanisms are favored-agent mechanisms, it is easy to com-
pare outcomes under the optimal mechanism to the first best. For simplicity, sup-
pose there are two agents and that the optimal mechanism favors agent 1 and has 
threshold ​v​∗​. Then there are exactly three ways the outcome can be inferior for the 
principal to the first best. First, if ​t​2​ − ​c​2​ < ​v​∗​ but ​t​2​ > ​t​1​, then agent 1 receives the 
object, even though the principal would be better off giving it to agent 2. Second, if ​
t​2​ − ​c​2​ > ​v​∗​, then the principal ends up checking one of the agents, a cost he would 
avoid in the first best. Finally, if ​t​2​ − ​c​2​ > ​v​∗​, the good could still go to the “wrong’’ 
agent relative to the first best. In particular, if ​t​1​ > ​t​2​ but ​t​2​ − ​c​2​ > ​t​1​ − ​c​1​, then 
agent 2 will receive the good even though the principal prefers agent 1 to have it and 
similarly if we reverse the roles of 1 and 2.

Also, our characterization of the optimal favored agent and threshold makes it easy 
to compute optimal mechanisms and analyze their properties. Consider the follow-
ing example. There are two agents. Agent 1’s cost of being checked is large in the 
sense that ​c​1​ > ​​

_
 t ​​1​ − E(​t​1​). As discussed in footnote 11, this implies ​t​ 1​ ∗​ = E(​t​1​) + ​c​1​.  

For concreteness, assume E(​t​1​) = 1. Suppose ​c​2​ = ε where ε > 0 but very small. 
Finally, assume ​t​2​ is uniformly distributed over [0.99, 1.99]. It is easy to see that as 
ε ↓ 0, we have ​t​ 2​ ∗​ − ​c​2​ ↓ ​​t _​​ 2​ = 0.99 < 1 = ​t​ 1​ ∗​ − ​c​1​. Hence for ε sufficiently small, 1  
will be the favored agent and the threshold ​v​∗​ will equal 1. However, suppose 2  
reports ​t​2​ − ​c​2​ > ​v​∗​ = 1. Note that ​t​1​ − ​c​1​ < ​​

_
 t ​​1​ − ​c​1​ < E(​t​1​) = 1. Thus if 2 is above 

the threshold, he receives the good for sure. Therefore, 1, even though he is favored, 
only receives the good if ​t​2​ − ​c​2​ < 1, or ​t​ 2​ < 1 + ε. Recall ​t​2​ ∼ U[0.99, 1.99],  
so for ε small, 1 receives the good slightly more than 1 percent of the time, even 
though he is favored. Note that we have assumed very little about the distribution  
of ​t​1​, so it could well be true that 1 is very likely to have the higher type.14

13 We thank Yi-Chun Chen and Siyang Xiong for showing us a proof of this result.
14 We thank an anonymous referee for raising this issue with a similar example.
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This example highlights the fact that the favored agent is not necessarily the agent 
with the highest probability of receiving the good, even conditional on his type. So 
in what sense is the favored agent “favored?”

Compare a favored-agent mechanism with favored agent i and threshold ​v​ i​ ∗​ to 
a favored-agent mechanism with j ≠ i favored and threshold ​v​ j​ ∗​. Then for any ​v​ i​ ∗​,  
​v​ j​ ∗​, and j ≠ i, agent i (at least weakly) prefers the former mechanism to the latter. 
That is, it is always better to be favored than not. To see this, simply note that in 
the mechanism where j is favored, a necessary condition for i to receive the good is 
that ​t​i​ − ​c​i​ ≥ ​t​k​ − ​c​k​ for all k. This is true because i can only receive the good if he 
or some other agent is above the threshold and i’s value is the highest. However, in 
the mechanism where i is the favored agent, a sufficient condition for i to receive the 
good is that ​t​i​ − ​c​i​ ≥ ​t​k​ − ​c​k​ for all k. Thus i must weakly prefer being favored and 
typically will strictly prefer it.

For comparative statics, it is useful to give an equivalent definition of ​t​ i​ ∗​. Our 
original definition (see equation (1)) can be rewritten as

 	​  ∫​ 
​​t _​​ i​
​ 
​t​ i​ ∗​
​​t​i​ ​f​i​(​t​i​) d​t​i​  = ​ t​ i​ ∗​​F​i​(​t​ i​ ∗​)  − ​ c​i​

or

 	​  c​i​  = ​ t​ i​ ∗​​F​i​(​t​ i​ ∗​)  − ​ ∫​ 
​​t _​​ i​
​ 
​t​ i​ ∗​
​​t​i​ ​f​i​(​t​i​) d​t​i​  = ​ ∫​ 

​​t _​​ i​
​ 
​t​ i​ ∗​
​​F​i​(τ) dτ.

So an equivalent definition of ​t​ i​ ∗​ is

(3) 	​  ∫​ 
​​t _​​ i​
​ 
​t​ i​ ∗​
​​F​i​ (τ) dτ  = ​ c​i​.

From (3), it is easy to see that an increase in ​c​i​ increases ​t​ i​ ∗​. Also, from our first 
definition of ​t​ i​ ∗​, note that ​t​ i​ ∗​ − ​c​i​ is that value of ​v​ i​ ∗​ solving E(​t​i​) = E max{​t​i​ − ​c​i​, ​v​ i​ ∗​}.  
Obviously for fixed ​v​ i​ ∗​, the right-hand side is decreasing in ​c​i​, so ​t​ i​ ∗​ − ​c​i​ must be 
increasing in ​c​i​. Hence, all else equal, the higher is ​c​i​, the more likely i is to be 
selected as the favored agent. To see the intuition, note that if ​c​i​ is larger, then the 
principal is less willing to check agent i’s report. Since the agent who is favored is 
the one the principal checks least often, this makes it more desirable to favor i.

It is also easy to see that a first-order or second-order stochastic dominance shift 
upward in ​F​i​ reduces the left-hand side of equation (3) for fixed ​t​ i​ ∗​, so to maintain the 
equality, ​t​ i​ ∗​ must increase. Therefore, such a shift makes it more likely that i is the 
favored agent and increases the threshold in this case. Hence both “better’’ (FOSD) 
and “less risky’’ (SOSD) agents are more likely to be favored.

The intuition for the effect of a first-order stochastic dominance increase in ​t​i​ 
is clear. If agent i is more likely to have high type, he is a better choice to be the 
favored agent. The intuition for why less risky agents are favored is that there is less 
benefit from checking i if there is less uncertainty about his type.
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Finally, equation (3) shows that if we change ​F​i​ only at values of ​t​i​ larger than ​
t​ i​ ∗​, then ​t​ i​ ∗​ is unaffected. In this sense, the optimal favored agent and the optimal 
threshold are independent of the upper tails of the distributions of the ​t​i​ s. Intuitively, 
this is because the choice of threshold conditional on favoring agent i is based on 
comparing E(​t​i​) versus E​( max{​t​i​ − ​c​i​, v} )​ where v = ma​x​ j≠i​    ​ (​t​j​ − ​c​j​), for the rea-
sons explained in Section III. Changing the probabilities for very high values of ​t​i​ 
affects both parts of this comparison symmetrically and hence are irrelevant.

Now that we have shown how changes in the parameters affect the optimal 
mechanism, we turn to how these changes affect the payoffs of the principal and 
agents. First, consider changes in the realized type vector. Obviously, an increase in ​
t​i​ increases agent i’s probability of receiving the good and thus his ex post payoff. 
Therefore, his ex ante payoff increases with an FOSD shift upward in ​F​i​. Similarly, 
the ex post payoffs of other agents are decreasing in ​t​i​, so their ex ante payoffs 
decrease with an FOSD shift upward in ​F​i​. However, the principal’s ex post payoff 
does not necessarily increase as an agent’s type increases: if at some profile, the 
favored agent is receiving the good without being checked, an increase in another 
agent’s type might result in the same allocation but with costly verification.15

Nevertheless, an FOSD increase in any ​F​i​ does increase the principal’s ex ante 
payoff. To see this, suppose ​t​i​ has distribution function ​F​i​ and ​​  t ​​i​ has distribution 
function ​​  F​​i​ where ​​  F​​i​ dominates ​F​i​ in the sense of FOSD. It is not hard to see that ​

F​ i​ −1​​( ​​  F​​i​ ​( ​​  t ​​i​ )​ )​ has the same distribution as ​t​i​. So suppose after changing the dis-
tribution of i’s type from ​F​i​ to ​​  F​​i​, the principal uses the same mechanism as he 
used before the shift, but converts i’s report to keep the distribution of i’s reports 

unchanged. That is, if i reports ​​  t ​​i​, the principal treats this as a report of ​F​ i​ −1​​( ​​  F​​i​​( ​​  t ​​i​ )​ )​. 
Given this, we see that the principal’s payoff is affected by the shift in the distri-
bution only if he gives the good to agent i. In this case, he would have received 

​F​ i​ −1​​( ​​  F​​i​​( ​​  t ​​i​ )​ )​ under the original distribution, but receives ​​  t ​​i​ instead. Since ​F​i​(​​  t ​​i​) ≥ 
​​  F​​i​​( ​​  t ​​i​ )​ by FOSD, we see that ​​  t ​​i​ ≥ ​F​ i​ −1​ ​( ​​  F​​i​​( ​​  t ​​i​ )​ )​, so the principal is better off.

Turning to the effect of changes in ​c​i​, it is obvious that a decrease in ​c​i​ makes the 
principal better off as he could use the same mechanism and save on costs. It is also 
easy to see that if agent i is not favored, then increases in ​c​i​ make him worse off and 
make all other agents better off, as long as the increase in ​c​i​ does not change the 
identity of the favored agent. This is true simply because i receives the good if and 
only if ​t​i​ − ​c​i​ is large enough, so a higher ​c​i​ makes i less likely to receive the good 
and other agents more likely to do so.

On the other hand, changes in the cost of checking the favored agent have ambigu-
ous effects in general. This is true because ​t​ i​ ∗​ − ​c​i​ is increasing in ​c​i​. Hence if the 
cost of the favored agent increases, all other agents are less likely to be above the 
threshold. This effect makes the favored agent better off and the other agents worse 
off. However, it is also true that if ​t​j​ − ​c​j​ is above the threshold, then it is the com-
parison of ​t​j​ − ​c​j​ to ​t​i​ − ​c​i​ that matters. Clearly, an increase in ​c​i​ makes this com-
parison worse for the favored agent i and better for j. The total effect can be positive 

15 For example, if 1 is the favored agent and t satisfies ​t​1​ > ​t​ 1​ ∗​ and ​t​i​ − ​c​i​ < ​t​ 1​ ∗​ − ​c​1​ for all i ≠ 1, the payoff 
to the principal is ​t​1​. If ​t​2​, say, increases to ​t​ 2​ ′ ​ such that ​t​ 1​ ∗​ − ​c​1​ < ​t​ 2​ ′ ​ − ​c​2​ < ​t​1​ − ​c​1​, then the principal’s payoff 
falls to ​t​1​ − ​c​1​.
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or negative for the favored agent. For example, if I = 2 and ​F​1​ = ​F​2​ = F, then the 
favored agent benefits from an increase in his cost of being checked if the density f is 
increasing and conversely if it is decreasing; see online Appendix 4. In short, every 
agent has an incentive to increase his cost of being checked if this can make him the 
favored agent and, depending on the density, the favored agent may have incentives 
to increase his cost of being checked even beyond that point. Clearly, such an incen-
tive is potentially costly for the principal.

V.  Proof Sketch for Theorem 1

Mechanism design problems without transfers are very difficult to solve in general 
since the usual integral characterization of feasible allocation rules is unavailable. 
As we explain in this section, in our case, the structure of the problem provides 
some useful simplifications which allow for a complete characterization of optimal 
mechanisms.

The first step is to rewrite the optimization problem. Recall that ​​  p ​​i​(​t​i​)  
= ​E​​t​−i​​  ​p​i​(​t​i​, ​t​−i​) and ​​  q ​​i​ (​t​i​) = ​E​​t​−i​​ ​q​i​ (​t​i​, ​t​−i​). We can write the incentive compatibil-
ity constraint as

	​​   p ​​i​​( ​t​ i​ ′​  )​  ≥ ​​   p ​​i​(​t​i​)  − ​​   q ​​i​(​t​i​),  ∀​t​i​, ​t​ i​ ′​  ∈ ​ ​i​.

That is, the payoff to type ​t​ i​ ′​ from telling the truth exceeds the payoff to claiming 
to be type ​t​i​. The unusual property of our incentive compatibility constraint is that 
the payoff to falsely claiming to be type ​t​i​ does not depend on the true type ​t​ i​ ′​. We 
have this structure because any lie is caught if and only if the agent is checked and 
because we can normalize so that an agent’s payoffs to receiving or not receiving the 
good do not depend on his type.

Normally, one rearranges the incentive constraints to say that for each type, tell-
ing the truth is better than the best possible lie. Because the payoff to lying does not 
depend on the truth, we can rearrange the incentive constraint to say that the worst 
truth is better than any lie. In other words, a mechanism is incentive compatible if 
and only if it satisfies

 	​   inf    
​t​ i​ ′ ​∈​​i​

​ ​​  p ​​i​​( ​t​ i​ ′​ )​  ≥ ​​   p ​​i​(​t​i​) − ​​  q ​​i​(​t​i​),   ∀​t​i​ ∈ ​​i​.

Letting ​φ​i​ = in​f​​t​ i​ ′ ​∈​​i​​ ​​  p ​​i​​( ​t​ i​ ′​ )​, we can rewrite the incentive compatibility constraint  
as

 	​​    q ​​i​(​t​i​)  ≥ ​​   p ​​i​(​t​i​)  − ​ φ​i​,  ∀​t​i​  ∈ ​ ​i​.

Because the objective function is strictly decreasing in ​​  q ​​i​(​t​i​), this constraint must 
bind, so

(4) 	​​    q ​​i​(​t​i​)  = ​​   p ​​i​(​t​i​)  − ​ φ​i​.

We can substitute this result into the objective function and rewrite it as
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(5) 	​  E​t​ ​[ ​∑​ 
i
  ​ 

 
 ​ ​p​i​(t)​t​i​  − ​ ∑​ 

i
  ​ 

 
 ​ ​c​i​ ​q​i​(t) ]​  = ​ ∑​ 

i
  ​ 

 
 ​ ​E​​t​i​​​[ ​​   p​​i​(​t​i​)​t​i​  − ​ c​i​  ​​  q ​​i​(​t​i​) ]​

 	  = ​ ∑​ 
i
  ​ 

 
 ​ ​E​​t​i​​​[ ​​   p​​i​ (​t​i​)(​t​i​  − ​ c​i​)  + ​ φ​i​ ​c​i​ ]​

(6) 	  = ​ E​t​​[ ​∑​ 
i
  ​ 

 
 ​​[  ​p​i​ (t)(​t​i​  − ​ c​i​)  + ​ φ​i​ ​c​i​ ]​ ]​.

Some of the arguments below will use the reduced form probabilities and hence rely 
on the first expression, (5), for the payoff function, while others focus on the “non-
reduced’’ mechanism and so rely on the second expression, (6).

From this point forward, we treat the principal’s problem as choosing the ​φ​i​ s 
and ​p​i​ s subject to the constraints that the ​p​i​ s be well-defined probabilities and the 
constraints implied by ​φ​i​ = in​f​​t​i​​  ​​  p ​​i​(​t​i​). Given this, equation (6) expresses the key 
trade-off in the model. Recall that ​φ​i​ is the minimum probability for any type of i to 
receive the good. Since the principal only needs to check ​t​i​ often enough that a fake 
claim of ​t​i​ succeeds with probability equal to this minimum, a higher value of ​φ​i​ 
means that the principal does not have to check agent i as often, as shown by equa-
tion (4). Thus, as the payoff function (6) shows, this helps the principal in propor-
tion to the cost ​c​i​ that he saves. However, this puts a more severe constraint on ​​  p ​​i​ , 
thus tending to force a less efficient allocation of the good.

Next, we give a partial characterization of the optimal mechanism taking the  
​φ​i​ s as given and optimizing over the ​p​i​ s. This partial characterization enables us to 
reduce the problem to choosing the ​φ​i​ s and one other variable which will turn out 
to be the threshold.

Thus in what follows, we fix ​φ​i​ ∈ [0, 1] for each i and characterize the solution to 
what we will call the relaxed problem of maximizing (6) by the choice of functions ​
p​i​ :  → [0, 1] for i ∈  subject to ​∑​ i​ 

 ​ ​p​i​ (t) ≤ 1 for all t and ​E​​t​−i​​ ​p​i​(t) ≥ ​φ​i​ for all ​t​i​ 
and all i.16 Note that since the ​φ​i​  s are fixed, we can take the objective function to be

 	​  ∑​ 
i
  ​ 
 
 ​ ​E​​t​i​​ ​​  p ​​i​(​t​i​)(​t​i​ − ​c​i​) = ​E​t​​[ ​∑​ 

i
  ​ 
 
 ​ ​p​i​(t)(​t​i​ − ​c​i​) ]​.

We show below that every optimal solution to the relaxed problem is what we 
call a threshold mechanism. Specifically, every solution has a threshold ​v​∗​ with the 
following properties. First, if ​t​i​ − ​c​i​ < ​v​∗​, then ​​  p ​​i​(​t​i​) = ​φ​i​. Second, for any t such 
that some agent i has ​t​i​ − ​c​i​ > ​v​∗​, the agent with the highest ​t​i​ − ​c​i​ receives the 
good with probability 1. As we show below, for an appropriate selection of the ​φ​i​ s, 
a threshold mechanism is equivalent to a favored-agent mechanism.

Theorem 4: Every solution to the relaxed problem is a threshold mechanism.

16 The constraint set is nonempty if and only if ​∑​ i​ 
 
 ​ ​φ​i​ ≤ 1. It is not hard to show that the solution to the overall 

problem will necessarily satisfy this and so we assume it in what follows.
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To see the intuition for this, first note that the solution to the relaxed problem 
would be trivial if we did not have the constraint that ​E​​t​−i​​ ​p​i​(t) ≥ ​φ​i​. Without this 
constraint, the relaxed problem is equivalent to allocating the good where the prin-
cipal receives ​t​i​ − ​c​i​ if he allocates the good to i. Hence the solution would be  
​p​i​(t) = 0 for all i if ​t​i​ < ​c​i​ for all i and otherwise ​p​i​(t) = 1 for that i such that  
​t​i​ − ​c​i​ = ma​x​ k​   ​(​t​k​ − ​c​k​). Typically, this solution will violate the lower bound con-
straint on ​​  p ​​i​(​t​i​). For example, if ​t​i​ < ​c​i​, this solution would have ​​  p ​​i​(​t​i​) = 0, so the 
constraint could only be satisfied if ​φ​i​ = 0.

Thus the constraint forces the principal to sometimes allocate the good to an agent 
with ​t​i​ < ​c​i​ or to an agent who does not have the highest value of ​t​i​ − ​c​i​. When 
should the principal deviate from giving the good to the agent with the highest value 
of ​t​i​ − ​c​i​ in order to satisfy the constraint? Intuitively, it is obvious that the princi-
pal should do this only when ma​x​ i​  ​(​t​i​ − ​c​i​) is relatively small. That is, it is natural 
that there should be a threshold for ma​x​ i​  ​(​t​i​ − ​c​i​) such that the principal allocates 
the good to the agent with the highest ​t​i​ − ​c​i​ when this threshold is met. It is also 
natural that if the principal does not want to allocate the good to a particular type 
of a particular agent because ​t​i​ − ​c​i​ is relatively small, then he gives it to that agent 
with the smallest probability allowed by the constraints. It is not as immediately 
intuitive that the same threshold should apply to every i for this second statement or 
that this threshold should also apply to the first statement, but this is the content of 
Theorem 4.

We sketch the proof of Theorem 4 below, but first explain how this result enables 
us to complete the proof of Theorem 1.

Theorem 4 implies that ​  p​ is completely pinned down as a function of ​v​∗​ and the ​φ​i​ s. 
Specifically, if ​t​i​ − ​c​i​ > ​v​∗​, then ​​  p ​​i​(​t​i​) must be the probability that ​t​i​ − ​c​i​ > 
ma​x​ j≠i​    ​ (​t​j​ − ​c​j​). If ​t​i​ < ​t​∗​, then ​​  p ​​i​(​t​i​) = ​φ​i​. By substituting into equation (5), we can 
write the principal’s payoff as a function only of ​v​∗​ and the ​φ​i​ s. Note that Theorem 4 
does not say that any ​v​∗​ is consistent with given ​φ​i​  s. To see why, note that the theo-
rem pins down ​​  p ​​i​(​t​i​) as a function of ​v​∗​ for any ​t​i​ > ​v​∗​ + ​c​i​. But if this implied value 
of ​​  p ​​i​(​t​i​) is below ​φ​i​, then the threshold ​v​∗​ is not feasible given the ​φ​i​ s.

It turns out to be more convenient to fix the threshold ​v​∗​ and ask which ​φ​i​ s are 
consistent with it. We show in Appendix A (Lemma 1) that for any ​v​∗​, the set of con-
sistent ​φ​i​ s is convex. It is also easy to show that the objective function of the prin-
cipal, holding ​v​∗​ fixed, is linear in the ​φ​i​ s. Hence given ​v​∗​, there must be a solution 
to the principal’s optimization problem at an extreme point of the set of consistent ​
φ​i​ s. Furthermore, every optimal choice of the ​φ​i​ s is a randomization over optimal 
extreme points.

The last step is to show that the optimal extreme points correspond to favored-agent 
mechanisms. First, we show that extreme points take on one of two forms. In one 
type of extreme point, all but one of the ​φ​i​ s is set to zero and the remaining one is 
“as large as possible.’’ For convenience, consider the extreme point where ​φ​j​ = 0 
for all j ≠ 1 and ​φ​1​ is set as high as possible. In this case, we have a favored-agent 
mechanism where 1 is the favored agent and ​v​∗​ is the threshold. To see this, first 
observe that the allocation probabilities match this. If every agent other than the 
favored agent has ​t​j​ − ​c​j​ < ​v​∗​, then each of these agents receives the good with 
probability ​φ​j​ = 0. It is not hard to show that making ​φ​1​ “as large as possible’’ 
entails giving the good to agent 1 in this situation, whether or not ​t​1​ − ​c​1​ is above ​
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v​∗​. If some agent j ≠ 1 has ​t​j​ − ​c​j​ > ​v​∗​, then he receives the good if and only if he 
has the highest value of ​t​j​ − ​c​j​, just as required by the favored-agent mechanism. 
Equation (4) can be used to show that the checking probabilities, up to equivalence, 
are as required for a favored-agent mechanism.

The other type of extreme point is where ​φ​i​ = 0 for all i. One way this can come 
about is if there are two agents, say i and j, with ​t​i​ − ​c​i​ > ​v​∗​ and ​t​j​ − ​c​j​ > ​v​∗​ with 
probability 1. In this case, we have the same mechanism as a favored-agent mecha-
nism with threshold ​v​∗​ and any agent selected as the favored agent. Since we always 
have more than one agent above the threshold, the identity of the favored agent is 
irrelevant as the mechanism always picks the agent i with the largest ​t​i​ − ​c​i​, checks 
him, and gives him the good after a successful check.

There is one other way to have an extreme point with ​φ​i​ = 0 for all i. This occurs 
when every agent has a strictly positive probability of being below the threshold. 
Recall that Theorem 4 implies that if ​t​i​ − ​c​i​ < ​v​∗​, then ​​  p ​​i​(​t​i​) = ​φ​i​. Hence this 
mechanism has the property that for any t such that all agents have ​t​i​ − ​c​i​ < ​v​∗​, no 
agent receives the good. It is easy to use our assumption that the value of the good 
to the principal is zero and that types are positive with probability 1 to show that this 
extreme point cannot be optimal.17

We now sketch the proof of Theorem 4. The proof of this theorem has some 
technical complications because of our use of a continuum of types. The continuum 
has the significant advantage that it makes the statement of the optimal mechanism 
much cleaner, while we would have messy specifications of the mechanism at cer-
tain “boundary’’ types if we assumed finitely many types instead. On the other 
hand, the continuum of types assumption introduces measurability considerations 
and makes the argument more complex. We could retain the simplicity of the state-
ment of the mechanism but simplify the proof if we only wished to characterize an 
optimal mechanism rather than all optimal mechanisms. To characterize an optimal 
mechanism, we could approximate the continuum type space with a finite partition, 
characterize the optimal mechanism measurable with respect to this partition (and 
hence focus on an effectively finite model), and take limits. It is not hard to show 
that the limiting mechanism would have to be optimal in the continuum model, but 
we know of no way to show that all optimal mechanisms in the continuum model 
would be characterized this way. Thus we are led to work with the continuum model 
in spite of its complexities.

For the purposes of this sketch, we will simplify by considering the case of finite 
type spaces and will disregard certain boundary issues. This enables us to convey 
the basic ideas of the construction without getting bogged down in measurability 
issues, allowing a much simpler approach. We now use this simplification to sketch 
the argument that any solution to the relaxed problem is a threshold mechanism.

The proof sketch has four steps. First, we observe that every solution to the relaxed 
problem is monotonic in the sense that higher types are more likely to receive the 
object. That is, for all i, ​t​i​ > ​t​ i​ ′​ implies ​​  p ​​i​(​t​i​) ≥ ​​  p ​​i​(​t​ i​ ′​ ). To see why this holds, suppose 
we have a solution which violates this monotonicity property so that we have types ​t​i​ 
and ​t​ i​ ′​ such that ​​  p ​​i​(​t​i​) < ​​  p ​​i​(​t​ i​ ′​ ) even though ​t​i​ > ​t​ i​ ′​. For simplicity, suppose that these 

17 As we discuss in Section VI, if the principal has a strictly positive value for keeping the good, then this 
extreme point can be optimal.
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two types have the same probability.18 Then consider the mechanism ​p​∗​ which is 
the same as this one except we flip the roles of ​t​i​ and ​t​ i​ ′​. That is, for any type profile ​
 t​ where ​​  t ​​i​ ∉ ​{ ​t​i​, ​t​ i​ ′​  }​, we let ​p​ j​ ∗​(​ t​) = ​p​j​(​ t​) for every j. For any ​t​−i​, we set ​p​ j​ ∗​(​t​i​, ​t​−i​) 
= ​p​j​ (​t​ i​ ′​, ​t​−i​) and ​p​ j​ ∗​(​t​ i​ ′​, ​t​−i​) = ​p​j​(​t​i​, ​t​−i​) for every j. Since the probabilities of ​t​i​ and ​t​ i​ ′​ 
are the same, our independence assumption implies that for every j ≠ i, agent j is 
unaffected by the change in the sense that ​​  p ​​ j​ ∗​(​t​j​) = ​​  p ​​j​ (​t​j​) for all ​t​j​. Obviously, ​​  p ​​i​(​t​ i​ ′​ ) 
= ​​  p ​​ i​ ∗​(​t​i​) > ​​  p ​​ i​ ∗​(​t​ i​ ′​ ) = ​​  p ​​i​(​t​i​). Since the original mechanism satisfied the constraint 
that ​​  p ​​j​ (​t​j​) ≥ ​φ​j​ for all ​t​j​ and all j, the new mechanism satisfies this constraint as well. 
It is easy to see from equation (5) that this change improves the objective function, 
so the original mechanism could not have been optimal.

This monotonicity property implies that any solution to the relaxed problem has 
the property that there is a cutoff type, say ​​  t ​​i​ ∈ ​[ ​​t _​​ i​, ​​

_
 t ​​i​ ]​, such that ​​  p ​​i​ (​t​i​) = ​φ​i​ for ​

t​i​ < ​​  t ​​i​ and ​​  p ​​i​ (​t​i​) > ​φ​i​ for ​t​i​ > ​​  t ​​i​.
The second step shows that if we have a type profile t = (​t​1​, … , ​t​I​) such that ​

t​i​ − ​c​i​ > ​t​j​ − ​c​j​ > ​​  t ​​j​ − ​c​j​, then any solution to the relaxed problem has ​p​j​(t) = 0. 
To see this, suppose to the contrary that we have a solution with ​p​j​(t) > 0. Then 
we can change the mechanism by lowering this probability slightly and raising the 
probability of giving the good to i. Since ​t​j​ > ​​  t ​​j​, we have ​​  p ​​j​(​t​j​) > ​φ​j​ before the 
change, so if the change is small enough, we still satisfy this constraint. Since ​t​i​ − ​
c​i​ > ​t​j​ − ​c​j​, the value of the objective function in equation (6) increases, so the 
original mechanism could not have been optimal.

The third step is to show that for a type profile t = (​t​1​, … , ​t​I​) such that ​t​i​ > ​​  t ​​i​ 
and ​t​j​ < ​​  t ​​j​, we must have ​p​j​(t) = 0. Because this step is more involved, we post-
pone explaining it till the end of the argument. So we continue the proof sketch 
taking this step as given.

The fourth step is to show that ​​  t ​​i​ − ​c​i​ = ​​  t ​​j​ − ​c​j​ for all i and j. To see this, suppose 
to the contrary that ​​  t ​​j​ − ​c​j​ > ​​  t ​​i​ − ​c​i​. Then consider a type profile t = (​t​1​, … , ​t​I​) 
such that ​​  t ​​j​ − ​c​j​ > ​t​j​ − ​c​j​ > ​t​i​ − ​c​i​ > ​​  t ​​i​ − ​c​i​ and ​t​k​ < ​​  t ​​k​ for all k ≠ i, j. From our 
second step, the fact that ​t​j​ − ​c​j​ > ​t​i​ − ​c​i​ > ​​  t ​​i​ − ​c​i​ implies ​p​i​(t) = 0. However, 
from our third step, ​t​i​ > ​​  t ​​i​ and ​t​k​ < ​​  t ​​k​ implies ​p​k​(t) = 0 for all k ≠ i. But ​t​i​ > ​​  t ​​i​  
implies ​​  p ​​i​(​t​i​) > ​φ​i​. The only way this could be optimal is if ​t​i​ > ​c​i​. But then we can 
improve the objective function at t by setting ​p​i​(t) = 1, a contradiction. Hence ​​  t ​​i​ − ​
c​i​ = ​​  t ​​j​ − ​c​j​ for all i and j.

Let ​v​∗​ equal the common value of ​​  t ​​i​ − ​c​i​. To sum up the four steps, we see that 
any solution to the relaxed problem is characterized by a threshold ​v​∗​. If ​t​i​ − ​c​i​ < ​v​∗​, 
then since ​v​∗​ = ​​  t ​​i​ − ​c​i​, we have ​t​i​ < ​​  t ​​i​ and hence ​​  p ​​i​(​t​i​) = ​φ​i​. Also, suppose we 
have a type profile t such that ​t​i​ − ​c​i​ > ​v​∗​ for some i. From our third step, if ​t​i​ − ​
c​i​ > ​v​∗​ > ​t​j​ − ​c​j​, then ​p​j​ (t) = 0. Hence no agent below the threshold can receive 
the object. As argued in the last step, we must also have ​∑​ i​ 

 ​ ​p​i​ (t) = 1. Hence if only 
one agent is above the threshold, he receives the object. From our second step, if we 
have ​t​i​ − ​c​i​ > ​t​j​ − ​c​j​ > ​v​∗​, then ​p​j​ (t) = 0. Hence if two or more agents are above 
the threshold, the agent with the highest ​t​i​ − ​c​i​ receives the object. Either way, then, 

18 If, say, ​t​i​ has higher probability than ​t​ i​ ′ ​  , we can simply create two “versions’’ of ​t​i​, one of which has the same 
probability as ​t​ i​ ′ ​. Then apply this argument to ​t​ i​ ′ ​ and the version of ​t​i​ with the same probability, leaving the other 
version unchanged.
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if there is at least one agent i with ​t​i​ − ​c​i​ above the threshold, the agent with the 
highest ​t​i​ − ​c​i​ receives the object. Hence we have a threshold mechanism.

This concludes the proof sketch, except for proving step 3 to which we now turn. 
For added simplicity, we sketch this argument only for the case of two agents.19 We 
show that for a type profile t = (​t​1​, ​t​2​) such that ​t​1​ > ​​  t ​​1​ and ​t​2​ < ​​  t ​​2​, we must have ​
p​2​(t) = 0. To see this, suppose we have a solution to the relaxed problem such that 
this property is violated at the point labeled α = (​​ t ​​1​, ​​ t ​​2​) in Figure 1, where ​​ t ​​1​ > ​​  t ​​1​ 
while ​​ t ​​2​ < ​​  t ​​2​. So suppose that at α, ​p​2​(​̃ t ​) > 0 so player 1 receives the good with 
probability strictly less than 1.

Then at any point directly below α but above ​​  t ​​1​, such as the one labeled  
β = (​t​ 1​ ′ ​, ​​ t ​​2​), player 1 must receive the good with probability zero. This follows 
because if 1 did receive the good with strictly positive probability at β, we could 
change the mechanism by lowering this probability slightly, giving the good to 2 
at β with higher probability, and increasing the probability with which 1 receives 
the good at α. By choosing these probabilities appropriately, we do not affect  
​​  p ​​2​(​​ t ​​2​) so this remains at ​φ​2​. Also, by making the reduction in ​p​1​ small enough,  

19 The case of three or more agents works similarly but the construction of the improving mechanism is more 
complex.
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​​  p ​​1​(​t​ 1​ ′ ​) will remain above ​φ​1​. Hence this new mechanism would satisfy the constraints 
for the relaxed problem. Since it would switch probability from one type of player 1 
to a higher type, the new mechanism would be better than the old one, implying the 
original one was not a solution to the relaxed problem.20

Similar reasoning implies that for every ​t​1​, we must have ​∑​ i​ 
 ​ ​p​i​ (​t​1​, ​​ t ​​2​) = 1. 

Otherwise, as we show below, we could increase ​​  p ​​1​(​​ t ​​1​) without affecting any other ​​  p ​​i​. 
This increase would improve the objective function as ​​ t ​​1​ > ​​ t ​​1​ implies ​​ t ​​1​ > ​c​1​, a 
contradiction. For ​t​1​ = ​​ t ​​1​, it is obvious that we could increase ​​  p ​​1​(​​ t ​​1​) since we could 
increase ​p​1​(​​ t ​​1​, ​​ t ​​2​). For ​t​1​ ≠ ​​ t ​​1​, this follows because otherwise, the principal could 
increase ​p​2​(​t​1​, ​​ t ​​2​), decrease ​p​2​(​​ t ​​1​, ​​ t ​​2​), and increase ​p​1​(​​ t ​​1​, ​​ t ​​2​). If we choose the sizes of 
these changes appropriately, ​​  p ​​2​(​​ t ​​2​) is unchanged but ​​  p ​​1​(​​ t ​​1​) is increased.

Since player 1 receives the good with zero probability at β but type ​t​ 1​ ′ ​ does have a 
strictly positive probability overall of receiving the good (as ​t​ 1​ ′ ​ > ​​  t ​​1​), there must be 
some point like the one labeled γ = (​t​ 1​ ′ ​, ​t​ 2​ ′ ​) where 1 receives the good with strictly 
positive probability. We do not know whether ​t​ 2​ ′ ​ is above or below ​​  t ​​2​; the position 
of γ relative to this cutoff plays no role in the argument to follow.

Finally, there must be a ​t​ 1​ ′′​ ≠ ​​ t ​​1​ (not necessary below ​​  t ​​1​) corresponding to 
points δ and ε where ​p​1​ is strictly positive at δ and strictly less than 1 at ε. To see 
that such a ​t​ 1​ ′′​ must exist, suppose not. Then for all ​t​1​ ≠ ​​ t ​​1​, either ​p​1​(​t​1​, ​​ t ​​2​) = 0 or  
​p​1​(​t​1​, ​t​ 2​ ′ ​) = 1. Since ​∑​ i​ 

 
 ​ ​p​i​ (​t​1​, ​​ t ​​2​) = 1 for all ​t​1​ ≠ ​​ t ​​1​, either ​p​2​(​t​1​, ​​ t ​​2​) = 1 or ​p​2​(​t​1​, ​​ t ​​ 2​   ′ ​) 

= 0. Either way,  ​p​2​(​t​1​, ​​ t ​​2​) ≥ ​p​2​(​t​1​, ​t​ 2​ ′ ​) for all ​t​1​ ≠ ​​ t ​​1​.
We now show that ​p​2​(​​ t ​​1​, ​t​ 2​ ′ ​) = 0, implying ​p​2​(​​ t ​​1​, ​​ t ​​2​) ≥ ​p​2​(​​ t ​​1​, ​t​ 2​ ′ ​) as well. 

Suppose by contradiction that ​p​2​(​​ t ​​1​, ​t​ 2​ ′ ​) > 0, so ​p​1​(​​ t ​​1​, ​t​ 2​ ′ ​) < 1. Then we could 
slightly lower ​p​1​ and raise ​p​2​ at the point γ = (​t​ 1​ ′ ​, ​t​ 2​ ′ ​) and raise ​p​1​ and lower ​p​2 ​ at 
the point (​​ t ​​1​, ​t​ 2​ ′ ​). By choosing these changes appropriately, ​​  p ​​2​(​t​ 2​ ′ ​) is unaffected and 
​​  p ​​1​(​t​ 1​ ′ ​) remains above ​φ​1​. Since ​​ t ​​1​ > ​t​ 1​ ′ ​, this improves the payoff, a contradiction.

Hence, ​p​2​(​t​1​, ​​ t ​​2​) ≥ ​p​2​(​t​1​, ​t​ 2​ ′ ​) for every ​t​1​. But we also have ​p​2​(​t​ 1​ ′ ​, ​​ t ​​2​)  =  1  > 
1  −  ​p​1​(​t​ 1​ ′ ​, ​t​ 2​ ′ ​) ≥ ​p​2​(​t​ 1​ ′ ​, ​t​ 2​ ′ ​). So ​​  p ​​2​(​​ t ​​2​)  > ​​  p ​​2​(​t​ 2​ ′ ​). But ​​  p ​​2​(​​ t ​​2​) = ​φ​2​, so this implies 
​​  p ​​2​(​t​ 2​ ′ ​) < ​φ​2​, which violates the constraints of the relaxed problem.

Now we use ​p​1​(​t​ 1​ ′′​, ​​ t ​​2​) > 0 and ​p​1​(​t​ 1​ ′′​, ​t​ 2​ ′ ​) < 1 to derive a contradiction to the opti-
mality of the mechanism. Specifically, we change the specification of p at the points 
α, γ, ε, and δ in a way that lowers the probability that 1 gets the object at γ and 
raises the probability he gets it at α by the same amount, while maintaining the con-
straints. Since 1’s type is higher at α, this is an improvement, implying that the origi-
nal mechanism does not solve the relaxed problem. For simplicity, assume ​​ t ​​1​, ​t​ 1​ ′ ​, 
and ​t​ 1​ ′′​ all have the same probability and that ​​ t ​​2​ and ​t​ 2​ ′ ​ have the same probability.21 
Let Δ > 0 be a “small’’ positive number. All the changes in p that we now define 
involve increases and decreases by the same amount Δ. At γ, lower ​p​1​ and increase ​
p​2​. At ε, do the opposite—i.e., raise ​p​1​ and lower ​p​2​. Because the probabilities of  
​t​ 1​ ′ ​ and ​t​ 1​ ′′​ are the same, ​​  p ​​2​​( ​t​ 2​ ′ ​ )​ is unchanged. Also, if Δ is small enough, ​​  p ​​1​​( ​t​ 1​ ′ ​ )​ remains 
above ​φ​1​. Thus the constraints are maintained. Now that we have increased ​p​1​ at ε, 
we can decrease it at δ while increasing ​p​2​, keeping ​​  p ​​1​​( ​t​ 1​ ′′​ )​ unchanged as ​​ t ​​2​ and 

20 Since ​​  p ​​2​(​​ t ​​2​) is unchanged, the ex ante probability of type ​​ t ​​1​ getting the good goes up by the same amount that 
the ex ante probability of the lower type ​t​ 1​ ′ ​ getting it goes down.

21 If they do not have the same probability, the same approach as outlined in footnote 18 can be used to complete 
the argument.
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​t​ 2​ ′ ​ have the same probability. Finally, since we have increased ​p​2​ at δ, we can decrease 
it at α while increasing ​p​1​, keeping ​​  p ​​2​(​​ t ​​2​) unchanged. Note that the overall effect of 
these changes is a reduction of Δ in the probability that 1 gets the object at γ and 
an increase of Δ in the probability that he gets the object at α, while maintaining 
all constraints.

VI.  Reservation Values, Small Fines/Costly Disclosure, Weaker Verification

In this section, we discuss three issues. First, we show that our analysis extends 
to the case where the principal has a strictly positive payoff to keeping the object. 
Second, under an additional simplifying assumption, we characterize the optimal 
mechanism when it is costly to an agent to have his report verified. A byproduct of 
this analysis is a characterization of the optimal mechanism when the principal can 
impose limited fines on dishonest agents. Finally, we discuss the robustness of our 
analysis to weakening our assumptions on verification.

Turning to the first point, let R > 0 denote the principal’s payoff from retaining 
the object. To analyze this case, note first that we can renormalize by subtracting 
R from every type of every player and changing the principal’s payoff from keep-
ing the object to 0. This effectively subtracts R from the principal’s payoff to every 
action and so cannot change the optimal mechanism. Thus we can consider this case 
simply by relaxing our assumption that ​​t _​​ i​ > 0 for all i.

This change affects very little of our analysis. To see this, refer again to the proof 
sketch in Section V. It is easy to see that our analysis of incentive compatibility is 
unaffected by allowing some ​t​i​ s to be negative since the ​t​i​ s play no role in incentive 
compatibility. Hence the rewriting of the objective function in the form of equa-
tions (5) and (6) is unaffected.

Similarly, the threshold mechanism result, Theorem 4, is unaffected. This result 
characterizes the solution of

 	 ​    max   ​p​1​ . … , ​p​I​
​ ​E​t​​[ ​∑​ 

i
  ​ 
 
 ​ ​p​i​(t)(​t​i​  − ​ c​i​) ]​

subject to feasibility and ​​  p ​​i​(​t​i​) ≥ ​φ​i​ for all i and ​t​i​. This characterization again has 
nothing to do with the sign of the ​t​i​  s. The sign of ​t​i​ − ​c​i​ is certainly relevant, but the 
assumptions we used to prove Theorem 4 did not impose any particular sign on this 
expression. Hence this result still holds even when some of the ​t​i​  s can be negative.

Once we have Theorem 4, the convexity of the set of ​φ​i​  s, the linearity of the objec-
tive function in ​φ​i​  s, the conclusion that the optimum is at an extreme point, and the 
characterization of the extreme points all have nothing to do with the signs of the ​t​i​  s.

The only time the assumption that the types are positive is used in the proof of 
Theorem 1 is when we rule out one of the extreme points for φ. Specifically, as dis-
cussed in the proof sketch, we can have an extreme point of the form ​φ​i​ = 0 for all 
i. If every agent has a strictly positive probability of being below the threshold, then 
this mechanism has a strictly positive probability that no agent receives the good. 
When types are positive with probability 1, this cannot be optimal. But when types 
can be negative, it may be. Thus the only point that changes when we allow the pos-
sibility that it is better for the principal to keep the good than to allocate it to any of 
the agents is that this particular mechanism may now be optimal.
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So what is this mechanism? If ​φ​i​ = 0 for all i, this says that if every agent has 
​t​i​ − ​c​i​ < ​v​∗​, then no one gets the good. In other words, this is a “reserve-price 
mechanism’’ with reserve ​v​∗​.

This mechanism is easily reinterpreted as a form of a favored-agent mechanism. 
Simply introduce an agent 0 whose type ​t​0​ = 0 with probability 1 and for whom 
the checking cost ​c​0​ is zero. Then the principal keeping the good is the same as 
allocating the good to this agent. Then the reserve-price mechanism is the same as a 
favored-agent mechanism where agent 0 is the favored agent and ​v​∗​ is the threshold.

Our characterization of optimal thresholds and the optimal favored agent carries 
over to the inclusion of “agent 0.’’ More specifically, it is easy to see that ​t​ 0​ ∗​ = 0 
solves the equation E(​t​0​) = E max{​t​0​, ​t​ 0​ ∗​} − ​c​0​ (though negative values of ​t​ 0​ ∗​ also 
solve the equation). One can show that if “agent 0’’ is favored, then the optimal 
threshold to use is ​t​ 0​ ∗​ − ​c​0​ = 0 and that the optimal agent (including agent 0 in this 
statement) to favor is any agent i with ​t​ i​ ∗​ − ​c​i​ = ma​x​j=0, … , I​ (​t​ j​ ∗​ − ​c​j​).

The simplest way to state how the principal’s value affects the optimal mechanism 
is to undo the renormalization and go back to a model where types are positive and 
the principal’s value is R > 0. It is easy to see that undoing the renormalization 
makes ​t​ 0​ ∗​ − ​c​0​ = R. So we can restate the results above as follows. If R is suf-
ficiently large, then agent 0 will be favored. That is, if every agent i ≥ 1 reports  
​t​i​ − ​c​i​ < R, then the principal retains the object. If any agent i ≥ 1 reports  
​t​i​ − ​c​i​ > R, then the agent with the highest such report is checked and, if found not 
to have lied, receives the object. If R is small enough that 0 is not the favored agent, 
then the optimal mechanism is unaffected by the principal’s value. In this case, the 
principal may end up allocating the good to the favored agent even when the favored 
agent’s type is below R.22

We can treat in parallel two other natural extensions. First, we can consider the 
case when the process of verifying an agent’s claim is also costly for that agent. 
This complicates the analysis since such costs create a “back door’’ for transfers. If 
agents bear costs of providing documentation, then the principal can use these costs 
to provide incentives for truth telling. Intuitively, the agents may now trade off the 
value of obtaining the object with the costs of verification. An agent who values the 
object more highly would, of course, be willing to incur a higher expected verifica-
tion cost to increase his probability of receiving it. This both complicates the analy-
sis and indirectly introduces a form of the transfers we wish to exclude.

Second, as this intuition suggests, this case is similar to the case where the prin-
cipal can impose limited fines on the agent. As above, agents who value the object 
more are willing to take a bigger risk of receiving such fines.

In both cases, the simplification we obtain where we can treat the agent’s payoff 
as equal to the probability he receives the object no longer holds. While a general 
analysis of either of these extensions is beyond the scope of this paper, we can 
easily extend our analysis at the cost of adding an assumption under which this 

22 On the other hand, from the definition of ​t​ i​ ∗​, we have

 	  E(​t​i​)  =  E (max {​t​i​, ​t​ i​ ∗​})  −  ​c​i​  ≥  ​t​ i​ ∗​  −  ​c​i​.
Hence if i ≠ 0 is the favored agent, we must have E(​t​i​) ≥ ​t​ i​ ∗​ − ​c​i​ > R. That is, while the favored agent might 
receive the good even though his type is below R, his type cannot be below R in expectation.
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simplification continues to hold. To be specific, we assume that the value to the 
agent of receiving the object is 1 and the value of not receiving it is 0, regardless of 
his type. If we make this assumption, the extension to fines or verification costs for 
the agents is straightforward. To see this, first consider the case where verification 
imposes costs on the agent. Let ​​  c ​​ i​ T​ ≥ 0 be the cost incurred by agent i from being 
verified by the principal if he reported his type truthfully and let ​​  c ​​ i​ F​ ≥ 0 be his cost 
if he lied. We assume ​​  c ​​ i​ T​ < 1 to ensure that individual rationality always holds. This 
formulation nests the case where the principal can impose limited fines on the agent. 
To see this, simply note that the optimal mechanism in such a case is for the princi-
pal to impose the largest possible fine when the agent is found to have lied and noth-
ing otherwise. Thus we obtain a model appropriate for this case by setting ​​  c ​​ i​ T​ = 0 
and ​​  c ​​ i​ F​ equal to this maximum penalty.

In this model, the incentive compatibility condition becomes

 	​​    p ​​i​​( ​t​ i​ ′​ )​  − ​​   c ​​ i​ T​​​  q ​​i​​( ​t​ i​ ′​ )​  ≥ ​​   p ​​i​(​t​i​)  − ​​   c ​​ i​ F​​​  q ​​i​(​t​i​)  − ​​   q ​​i​(​t​i​),  ∀​t​i​, ​t​ i​ ′​,  ∀i.

Let

 	​  φ​i​  = ​ inf   
​t​ i​ ′ ​
 ​ ​[  ​​  p ​​i​​( ​t​ i​ ′​ )​  − ​​   c ​​ i​ T​​​  q ​​i​​( ​t​ i​ ′​ )​ ]​,

so that incentive compatibility holds if and only if

 	​  φ​i​  ≥ ​​   p ​​i​(​t​i​)  − ​​   c ​​ i​ F​​​  q ​​i​(​t​i​)  − ​​   q ​​i​(​t​i​),  ∀​t​i​,  ∀i.

Analogously to the way we characterized the optimal mechanism in Section V, we 
can treat ​φ​i​ as a separate choice variable for the principal where we add the con-
straint that ​​  p ​​i​​( ​t​ i​ ′​ )​ − ​​  c ​​ i​ T​​​  q ​​i​​( ​t​ i​ ′​ )​ ≥ ​φ​i​ for all ​t​ i​ ′​.

Given this, ​​  q ​​i​(​t​i​) must be chosen so that the incentive constraint holds with equal-
ity for all ​t​i​. To see this, suppose to the contrary that we have an optimal mechanism 
where the constraint holds with strict inequality for some ​t​i​ (more precisely, some 
positive measure set of ​t​i​ s). If we lower ​​  q ​​i​(​t​i​) by ε, the incentive constraint will 
still hold. Since this increases ​​  p ​​i​​( ​t​ i​ ′​ )​ − ​​  c ​​ i​ T​​​  q ​​i​​( ​t​ i​ ′​ )​, the constraint that this quantity is 
greater than ​φ​i​ will still hold. Since auditing is costly for the principal, his pay-
off will increase, implying the original mechanism could not have been optimal, a 
contradiction.

Since the incentive constraint holds with equality for all ​t​i​, we have

(7) 	​​    q ​​i​(​t​i​)  = ​ 
​​  p ​​i​(​t​i​) − ​φ​i​

 _ 
1 + ​​  c ​​ i​ F​

 ​ .

Substituting, this implies that

 	​  φ​i​  = ​ inf   
​t​ i​ ′ ​
 ​ ​[ ​​  p ​​i​​( ​t​ i​ ′​ )​  − ​ 

​​  c ​​ i​ T​
 _ 

1 + ​​  c ​​ i​ F​
 ​ ​[ ​​  p ​​i​(​t​ i​ ′​ )  − ​ φ​i​ ]​ ]​

or

 	​  φ​i​  = ​ inf   
​t​ i​ ′ ​
 ​ ​[ ​{ 1 − ​ 

​​  c ​​ i​ T​
 _ 

1 + ​​  c ​​ i​ F​
 ​ }​ ​​  p ​​i​(​t​ i​ ′​ )  + ​ 

​​  c ​​ i​ T​
 _ 

1 + ​​  c ​​ i​ F​
 ​ ​φ​i​ ]​.

01_A20130317_10412.indd   3802 11/10/14   12:47 PM



3803Ben-Porath et al.: Optimal Allocation with Costly VerificationVOL. 104 NO. 12

By assumption, the coefficient multiplying ​​  p ​​i​​( ​t​ i​ ′​ )​ is strictly positive, so this is equiv-
alent to

 	​  { 1 − ​ 
​​  c ​​ i​ T​
 _ 

1 + ​​  c ​​ i​ F​
 ​ }​ ​φ​i​  = ​ { 1 − ​ 

​​  c ​​ i​ T​
 _ 

1 + ​​  c ​​ i​ F​
 ​ }​  ​inf   

​t​ i​ ′ ​
 ​ ​​  p ​​i​ ​( ​t​ i​ ′​ )​,

so ​φ​i​ = in​f​​t​ i​ ′ ​​ ​​  p ​​i​​( ​t​ i​ ′​ )​, exactly as in our original formulation.
The principal’s objective function is

 	​  E​t​ ​∑​ 
i
  ​ 
 
 ​ ​[ ​p​i​(t)​t​i​  − ​ c​i​​q​i​(t) ]​  = ​ ∑ ​ 

i
  ​ 
 
  ​​E​​t​i​​​[ ​​  p ​​i​(​t​i​)​t​i​  − ​ c​i​  ​​  q ​​i​(​t​i​) ]​

 	  = ​ ∑​ 
i
  ​ 
 
 ​ ​E​​t​i​​​[ ​​  p ​​i​(​t​i​)​t​i​  − ​ 

​c​i​ _ 
1 + ​​  c ​​ i​ F​

 ​ ​[ ​​  p ​​i​(​t​i​)  − ​ φ​i​ ]​ ]​
 	  = ​ ∑​ 

i
  ​ 
 
 ​ ​E​​t​i​​​[ ​​  p ​​i​(​t​i​)(​t​i​  − ​​   c​​i​)  + ​ φ​i​  ​​   c​​i​ ]​ ,

where ​​   c​​i​ = ​c​i​/​( 1 + ​​  c ​​ i​ F​ )​. This is the same as the principal’s objective function in our 
original formulation but with ​​   c​​i​ replacing ​c​i​.

Thus the solution changes as follows. The allocation probabilities ​p​i​ are exactly the 
same as what we characterized but with ​​   c​​i​ replacing ​c​i​. The checking probabilities, 
however, are the earlier ones divided by 1 + ​​  c ​​ i​ F​ (see equation (7)). Intuitively, since 
verification or fines impose costs on the agent in this model, the threat of checking 
the agent is more severe than in the previous model, so the principal doesn’t need to 
check as often.

That is, the new optimal mechanism is still a favored-agent mechanism but where 
the checking which had probability 1 before now has probability 1/​( 1 + ​​  c ​​ i​ F​ )​. The 
optimal choice of the favored agent and the optimal threshold is exactly as before 
with ​​   c​​i​ replacing ​c​i​. Note that agents with low values of ​​  c ​​ i​ F​ have higher values of ​​   c​​i​ 
and hence are more likely to be favored. That is, agents who find it easy to undergo 
an audit after lying are more likely to be favored. Note also that ​​  c ​​ i​ T​ has no effect on 
the optimal mechanism.

Finally, we discuss the robustness of our results to weakening our assumptions on 
the verification process. To motivate the kinds of robustness that are of interest, we 
first clarify how we view the model. Think of each agent as knowing a set of facts 
about how he would make use of the object if the principal were to give it to him. 
Suppose the principal has no private information and that the facts known to the 
agent are sufficient to determine the value the principal would receive if he gives the 
object to the agent. Thus verifying the agent’s type is equivalent to verifying these 
facts known to the agent. Finally, suppose that if the principal checks the agent, he 
learns all the facts known to the agent. Since the agent knows these facts, he knows 
exactly what the principal would learn if he were to verify. Thus we can identify the 
agent’s knowledge with the value of the object to the principal and with what the 
principal would learn if he verifies and call all of these things ​t​i​.

There are several assumptions in this story that are worth generalizing. First, one 
could assume that the facts known to agent i are not sufficient to determine the value 
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the principal would receive if he gives the object to i. If this is because the principal 
has private information which is also relevant to determining this value, then the 
results would depend greatly on the nature of this information.23 So suppose the 
principal does not have private information. In this case, we can simply interpret ​t​i​ 
as the expectation of the value to the principal conditional on the information of the 
agent and our results go through unaltered.

Second, one could assume that not all of the agent’s information is verifiable. 
We can think of agent i’s type as consisting of a pair (​u​i​, ​v​i​) where ​u​i​ is the unverifi-
able part of the agent’s information, ​v​i​ is verifiable, and the value to the principal 
of giving the object to i is determined by the pair. More precisely, if the principal 
checks agent i, he learns ​v​i​ but learns nothing about ​u​i​ (except to the extent that these 
components are correlated). We can rewrite this variation on our model in a way 
which makes it identical to the original version. To see this, note that the principal 
cannot verify ​u​i​ and hence cannot induce the agent to reveal it unless he makes the 
agent indifferent over all possible ​u​i​ reports. That is, i’s ​u​i​ report cannot affect the 
probability he receives the object. Hence it is irrelevant to the principal since it can-
not affect the objective function so the principal may as well disregard the ​u​i​ reports. 
So we can assume the principal only solicits information about ​v​i​ and treat the prin-
cipal’s value given ​v​i​ as the expectation of his value conditional on this parameter. 
Then, just as in the preceding paragraph, our results are unchanged.

Finally, we could assume that the verification process itself is subject to noise. 
That is, even if all the agent’s information is verifiable and his information is suf-
ficient to determine the value to the principal, the verification process may not per-
fectly “measure’’ the agent’s information. For example, it may be that the agent’s 
information is contained in a large number of documents and the principal checks 
the agent by reading a randomly chosen subset of these documents.

A thorough analysis of such noise is well beyond the scope of this paper. However, 
we can show that the favored-agent mechanism is robust to relaxing this assumption 
by allowing small amounts of noise. More specifically, for approximately perfect 
verification, a mechanism which is approximately a favored-agent mechanism is 
approximately optimal. Also, it is easy to see that if verification is pure noise, the 
principal has no means to enforce incentive compatibility of a nonconstant mecha-
nism and hence will simply allocate the good to some agent i ∈ arg ma​x​ j​ E(​t​j​). Note 
that this is also a favored-agent mechanism with a threshold that no type of any agent 
can meet. Thus we see that our results continue to hold, at least approximately, for 
very large or very small amounts of noise. The range in between is more complex.

VII.  Conclusion

A natural question to ask is whether we see mechanisms like the favored-agent 
mechanism in practice and, if not, why not. As argued in the introduction, the set-
ting we consider appears to be a natural benchmark description of many real world 

23 As a very simple example, suppose the principal has a type s and the value to the principal of giving the object 
to agent i is a function of (​s​i​, ​t​i​). Suppose that for some values of s, this function is increasing in ​t​i​, while for others, 
it is decreasing. Then it is possible that even without verification, the agent reports ​t​i​ truthfully because the agent 
thinks he is equally likely to get the object with a high report or a low one. Such a formulation would yield very 
different results from ours.
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situations involving allocation of desirable resources, particularly within an organi-
zation or by a government.

Mechanisms similar to the favored-agent mechanism do seem to be used in some 
of these settings. At its essence, the favored-agent mechanism is simply a setting of 
appropriate defaults. In other words, we can describe the mechanism as setting a 
default outcome in case no agent makes a strong enough claim for “special consider-
ation.’’ If such a strong claim is made, it is checked before being granted. Otherwise, 
the principal goes with the default outcome.

The use of defaults along this line is very common and can be seen in any of 
the examples from the introduction. For instance, when selecting a unit to head 
a new project, it seems natural that the manager has a default unit in mind if no 
other unit makes a strong claim of special qualifications. While in practice the prin-
cipal’s prior and the checking costs will surely enter in the determination of the 
threshold and the default agent, how these are determined may not exactly match 
our calculations. For example, the default unit may be the one with the most expe-
rience, or, when checking costs are low, every unit may be checked. There are a 
variety of implicit or explicit assumptions of the model that may be violated in some 
situations, suggesting why the mechanism used in practice does not exactly match 
our favored-agent mechanism.

First, as noted at the end of Section IV, the favored-agent mechanism gives every 
agent an incentive to increase his costs of being checked in order to become the 
favored agent, cost increases which make the principal worse off. Hence in settings 
where agents can affect these costs, it may be optimal for the principal to modify the 
favored-agent structure to avoid such incentives.

Second, in some settings, there may be concerns that the principal is biased in 
favor of one of the agents. For example, some divisions of an organization may 
suspect that the head of the organization is not just maximizing profits, but is biased 
toward one division in the sense that his payoff is skewed toward them. Such beliefs 
could have counterproductive effects as these divisions engage in strategic behav-
ior to overcome this bias or protect themselves from it. Similar issues arise with 
government allocation of public goods. If a government has to locate a hospital, for 
example, and uses a mechanism which favors one town, this could create political 
pressure by the other towns. Thus it may be important for the mechanism designer to 
signal a lack of bias by choosing a mechanism which treats all agents symmetrically, 
even (or especially) if it is costly to do so.

Third, as noted in Section VI, if each agent bears costs associated with being 
checked by the principal and his value of receiving the good is increasing in his 
type, then the favored-agent mechanism may not be optimal. In some situations, the 
assumption that checking does not impose costs on the agent is natural, but in oth-
ers, it is more natural to assume that this involves time-consuming and hence costly 
paperwork for the agent.

Fourth, as discussed in Section VI, it may be of interest to consider models where 
either the principal has private information relevant to determining his value and/or 
there is an intermediate level of noise in the verification technology.
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Appendix

A. Proof of Theorem 1

In the Appendix, we work with the restated version of the optimization problem 
for the principal derived in Section V (in particular, equations (5) and (6) and the 
constraints that follow).

The following definition was given in the text.

Definition 1: (p, q) is a threshold mechanism if there exists ​v​∗​ ∈ R such that the 
following holds for all t up to sets of measure zero. First, if there exists any i with ​
t​i​ − ​c​i​ > ​v​∗​, then ​p​i​(t) = 1 for that i such that ​t​i​ − ​c​i​ > ma​x​ j≠i​    ​(​t​j​ − ​c​j​). Second, 
for all i, if ​t​i​ − ​c​i​ < ​v​∗​, then ​q​i​(t) = 0 and ​​  p ​​i​(​t​i​) = mi​n​​t​ i​ ′ ​∈​T​i​​ ​​  p ​​i​(​t​ i​ ′​ ).

As discussed in the text, Theorem 4, proved in part 2 of the online Appendix, 
states that every solution to the relaxed problem is a threshold mechanism. We now 
use this result to prove Theorem 1.

Let (p, q) denote any optimal mechanism. In light of Theorem 4, we know (p, q) 
is a threshold mechanism. Hence we can specify ​​  p ​​i​(​t​i​) for each agent as a function 
only of ​v​∗​ and φ. To see this, fix ​v​∗​ and the ​φ​i​ s and consider ​t​i​ such that ​t​i​ − ​c​i​ > ​v​∗​.  
Since (p, q) is a threshold mechanism, ​t​i​ receives the object with probability 1 if ​
t​i​ − ​c​i​ > ma​x​ j≠i​    ​ ​t​j​ − ​c​j​ and with probability 0 if ma​x​ j≠i​    ​ ​t​j​ − ​c​j​ > ​t​i​ − ​c​i​. Hence  
​​  p ​​i​(​t​i​) = ​∏​ 

j≠i
​  

  ​ ​F​j​(​t​i​ − ​c​i​ + ​c​j​). For any ​t​i​ such that ​t​i​ < ​v​∗​, the definition of a threshold 
mechanism requires ​​  p ​​i​(​t​i​) = ​φ​i​. Since we can write the principal’s payoff as a func-
tion of the ​​  p ​​i​ s, this means we can write his payoff as a function only of ​v​∗​ and the ​
φ​i​ s. More specifically, the principal’s payoff is

​E​t​ ​[ ​∑​ 
i
  ​ 
 
 ​​[ ​p​i​(t)(​t​i​  −  ​c​i​)  +  ​φ​i​ ​c​i​ ]​ ]​  =  ​∑​ 

i
  ​ 
 
 ​ ​F​i​(​v​∗​ + ​c​i​)​E​t​​[ ​p​i​(t)(​t​i​ − ​c​i​) | ​t​i​ < ​v​∗​ + ​c​i​ ]​

 	  +  ​∑​ 
i
  ​ 
 
 ​​∫​ 

​v​∗​+​c​i​
​ 

​​
_
 t ​​ i​
  ​​[ ​∏​ 

j≠i
 ​ 

 
  ​​F​j​(​t​i​  −  ​c​i​  +  ​c​j​) ]​(​t​i​  −  ​c​i​) ​f​i​(​t​i​) d​t​i​  +  ​∑​ 

i
  ​ 
 
 ​​φ​i​​c​i​.

Note that

 	​  E​t​[ ​p​i​(t)(​t​i​ − ​c​i​) | ​t​i​ < ​v​∗​ + ​c​i​]  = ​ E​​t​i​​ ​{ ​E​​t​−i​​​[ ​p​i​(t)(​t​i​ − ​c​i​) ]​ | ​t​i​ < ​v​∗​ + ​c​i​ }​

 	  = ​ E​​t​i​​​[ ​​  p ​​i​(​t​i​)(​t​i​ − ​c​i​) | ​t​i​ < ​v​∗​ + ​c​i​ ]​

 	  = ​ E​​t​i​​[​φ​i​(​t​i​ − ​c​i​) | ​t​i​ < ​v​∗​ + ​c​i​]

 	  = ​ φ​i​​( ​E​​t​i​​[​t​i​ | ​t​i​ < ​v​∗​ + ​c​i​] − ​c​i​ )​.

Hence we can rewrite the objective function as
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 	​  ∑​ 
i
  ​ 
 
 ​ ​F​i​(​v​∗​ + ​c​i​)​φ​i​[​E​​t​i​​(​t​i​ | ​t​i​ < ​v​∗​ + ​c​i​) − ​c​i​]

 	  + ​∑​ 
i
  ​ 
 
 ​​∫​ ​v​ ∗​+​c​i​

​ 
​​
_
 t ​​i​
  ​ ​[ ​∏​ 

j≠i
 ​ 

 
  ​​F​j​(​t​i​ − ​c​i​ + ​c​j​) ]​(​t​i​ − ​c​i​)​f​i​(​t​i​) d​t​i​ + ​∑​ 

i
  ​ 
 
 ​ ​φ​i​​c​i​

 	      = ​∑​ 
i
  ​ 
 
 ​​φ​i​ ​{ ​F​i​(​v​∗​ + ​c​i​)​E​​t​i​​(​t​i​ | ​t​i​ < ​v​∗​ + ​c​i​) + [1 − ​F​i​(​v​∗​ + ​c​i​)]​c​i​ }​

 	  + ​∑​ 
i
  ​ 
 
 ​​∫​ ​v​ ∗​+​c​i​

​ 
​​
_
 t ​​i​
  ​ ​[ ​∏​ 

j≠i
 ​ 

 
  ​​F​j​​( ​t​i​ − ​c​i​ + ​c​j​ )​ ]​(​t​i​ − ​c​i​) ​f​i​(​t​i​) d​t​i​.

Without loss of generality, we can restrict attention to ​v​∗​ ≥ ma​x​i​ ​​t _​​ i​ − ​c​i​ and ​
v​∗​ ≤ ma​x​i​  ​​

_
 t ​​ i​ − ​c​i​. To see this, note that if ​v​∗​ < ma​x​ i​  ​ ​​t _​​ i​ − ​c​i​, then with probability 

1, there will be some i with ​t​i​ − ​c​i​ > ​v​∗​. Hence the principal’s payoff is the same if ​
v​∗​ = ma​x​i​ ​​t _​​ i​ − ​c​i​ as it would be at any lower ​v​∗​. Similarly, if ​v​∗​ > ma​x​i​  ​​

_
 t ​​ i​ − ​c​i​, then 

with probability 1, every i will have ​t​i​ − ​c​i​ < ​v​∗​. Hence, again, the principal’s pay-
off at ​v​∗​ = ma​x​i​  ​​

_
 t ​​ i​ − ​c​i​ is the same as it would be at any higher ​v​∗​ (holding φ fixed).

For a fixed ​v​∗​, the principal’s objective function is linear in the vector φ. Given ​v​∗​, 
the set of feasible φ vectors is convex. To be precise, recall that a given specification 
of ​p​i​ and ​φ​i​, i ∈ , is feasible if and only if each ​p​i​ :  → [0, 1], each ​φ​i​ ∈ [0, 1],  
​∑​ i​ 

 ​ ​p​i​(t) ≤ 1 for all t, and ​E​​t​−i​​ ​p​i​(t) ≥ ​φ​i​ for all ​t​i​ ∈ ​​i​ and all i. From Theorem 4, 
we know the exact value of ​p​i​(t) for all i for (almost) any t such that ​t​i​ − ​c​i​ > ​v​∗​ 
for some i. Finally, Theorem 4 also tells us that ​​  p ​​i​(​t​i​) = ​φ​i​ for (almost) all ​t​i​ < ​v​∗​ + ​
c​i​ for all i. (From Lemma 6 in the online Appendix, we know this holds on a set of 
strictly positive measure.) We say that a profile ​φ​i​, i ∈ , is feasible given ​v​∗​ if there 
exists ​p​i​ functions satisfying the properties above given ​v​∗​ and these ​φ​i​ s.

Lemma 1: The set of ​φ​i​, i ∈ , that is feasible given ​v​∗​ is the set satisfying ​
φ​i​ ∈ [0, 1] for all i,

 	​  φ​i​  = ​ ∏​ 
j≠i

 ​ 
 
  ​ ​F​j​(​v​∗​ + ​c​j​),  ∀i such that ​F​i​(​v​∗​ + ​c​i​)  =  0,

and

 	​  ∑​ 
i
  ​ 
 
 ​​φ​i​ ​F​i​(​v​∗​ + ​c​i​)  ≤ ​ ∏​ 

i
  ​ 
 
  ​​F​i​(​v​∗​ + ​c​i​).

proof:
Since ​φ​i​ = ​​  p ​​i​(​t​i​) on a set of strictly positive measure, it is obviously necessary 

to have ​φ​i​ ∈ [0, 1]. To see the necessity of the second condition, consider some 
i with ​F​i​(​v​∗​ + ​c​i​) = 0 or, equivalently, ​v​∗​ ≤ ​​t _​​ i​ − ​c​i​. Since we must have ​v​∗​ ≥  
ma​x​j​ ​​t _​​ j​ − ​c​j​, this implies ​v​∗​ = ​​t _​​ i​ − ​c​i​. For any ​t​i​ ∈ (​​t _​​ i​, ​​

_
 t ​​i​), then, we have ​t​i​ − ​c​i​ > ​

v​∗​, so type ​t​i​ receives the good if and only if his is the highest value. That is, ​​  p ​​i​(​t​i​)  
= ​∏​ 

j≠i
​  

  ​ ​F​j​ (​t​i​ − ​c​i​ + ​c​j​). Thus,

 	​  φ​i​  = ​ inf   
​t​i​
  ​ ​​  p ​​i​(​t​i​)  = ​ lim    

​t​i​↓​​t _​​ i​
 ​ ​​  p ​​i​(​t​i​)  = ​ ∏​ 

j≠i
 ​ 

 
 ​ ​F​j​(​v​∗​  + ​ c​j​),
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implying that the second condition is necessary.

For necessity of the third condition, note that

 	​  ∑​ 
i
  ​ 

 
 ​​φ​i​​F​i​(​v​∗​  + ​ c​i​)  = ​ ∑​ 

i
  ​ 

 
 ​​∫​ 

​​t _​​ i​
​ 
​v​ ∗​+​c​i​

​​​  p ​​i​(​t​i​)​f​i​(​t​i​) d​t​i​

 	  = ​ ∑​ 
i
  ​ 

 
 ​ ​ ∫​ 

​​t _​​ i​
​ 
​v​ ∗​+​c​i​

​​E​​t​−i​​  ​p​i​(​t​i​, ​t​−i​)​f​i​(​t​i​) d​t​i​

 	  = ​ ∑​ 
i
  ​ 

 
 ​ ​∫​ 

​​t _​​ i​
​ 
​v​ ∗​+​c​i​

​​∫​ 
​t​−i​

​ 
 
  ​ ​p​i​(t) ​f​i​ (​t​i​) ​f​−i​(​t​−i​) d​t​−i​ d​t​i​.

But for any ​t​−i​ such that ​t​j​ − ​c​j​ > ​v​∗​ for some j ≠ i, we must have ​p​i​(​t​i​, ​t​−i​) = 0. 
Hence

 ​ ∑​ 
i
  ​ 

 
 ​ ​∫​ 

​​t _​ ​i​
​ 
​v​ ∗​+​c​i​

​ ​∫​ 
​t​−i​

​ 
 
  ​ ​p​i​(t)  ​f​i​(​t​i​)​f​−i​(​t​−i​) d​t​−i​ d​t​i​  = ​ ∑​ 

i
  ​ 

 
 ​ ​∫​ 

t | ​t​j​<​v​ ∗​+​c​j​, ∀j
​ 

 
  ​ ​p​i​(t) f  (t) dt

 	  = ​ ∫​ 
t | ​t​j​<​v​ ∗​+​c​j​, ∀j

​ 
 
  ​ ​[ ​∑​ 

i
  ​ 

 
 ​ ​p​i​(t) ]​ f  (t) dt

 	  ≤ ​ ∫​ 
t | ​t​j​<​v​ ∗​+​c​j​, ∀j

​ 
 
  ​ f  (t) dt

 	  = ​ ∏​ 
j
  ​ 

 
 ​​F​j​ (​v​∗​  + ​ c​j​).

Hence the third condition is necessary.
Note for use below that the third condition and ​φ​i​ ≥ 0 implies

 	​  φ​i​ ​F​i​(​v​∗​  + ​ c​i​)  ≤ ​ ∏​ 
j
  ​ 

 
 ​​F​j​(​v​∗​  + ​ c​j​).

If ​F​i​(​v​∗​ + ​c​i​) ≠ 0, this implies ​φ​i​ ≤ ​∏​ 
j≠i

​  
  ​ ​F​j​(​v​∗​ + ​c​j​). As the second condition 

shows, if ​F​i​(​v​∗​ + ​c​i​) = 0, we still require this condition, though with equality.
To see that these conditions are sufficient, we consider three cases. Let

 	​  ​ 0​  = ​ { i  ∈   | ​F​i​(​v​∗​  + ​ c​i​)  =  0 }​  = ​ { i  ∈   | ​v​∗​  = ​​ t _​​ i​  − ​ c​i​ }​.

The first case is where #​​ 0​ ≥ 2 (where # denotes cardinality). In this case, we 
have ​∏​ 

j≠i
​  

  ​ ​F​j​(​v​∗​ + ​c​j​) = 0 for all i. Hence the third condition implies ​φ​i​ = 0 for all 

i such that ​F​i​(​v​∗​ + ​c​i​) ≠ 0. If ​F​i​(​v​∗​ + ​c​i​) = 0, then the second condition applies to 
i, so, again, ​φ​i​ = 0. Hence the only φ satisfying the necessary conditions for such a ​
v​∗​ is the zero vector. It is easy to see that this is feasible since it is achieved for any 
p satisfying ​p​i​(t) = 1 for that i with ​t​i​ − ​c​i​ > ma​x​j≠i​ ​t​j​ − ​c​j​ for every t.
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The second case is where #​​ 0​ = 1. Let k denote the unique element of ​​ 0​. Then 
the third condition implies that ​φ​i​ = 0 for all i ≠ k. The second condition implies ​
φ​k​ = ​∏​ 

j≠k
​  

  ​​F​j​(​v​∗​ + ​c​j​). Hence, again, there is a unique φ satisfying the necessary 
conditions for such a ​v​∗​. Again, it is easy to see that this is feasible since it is achieved 
for any p satisfying ​p​i​(t) = 1 for that i with ​t​i​ − ​c​i​ > ma​x​j≠i​ ​t​j​ − ​c​j​ for every t. To 
see this, note that k ∈ ​​ 0​ implies ​t​k​ − ​c​k​ > ​v​∗​ with probability 1, so the threshold 
mechanism must always allocate the good to the agent with the highest value. If 
every other agent has value below ​v​∗​, k must get the good, regardless of his value; ​
φ​k​ is the probability this occurs.

Finally, suppose ​​ 0​ = 0/. In this case, ​∏​ 
j≠i

​  
  ​ ​F​j​(​v​∗​ + ​c​j​) > 0 for all i. Fix any φ 

satisfying the conditions of the lemma. To see that this φ is feasible, set p as fol-
lows. For any t such that ma​x​ i​  ​ ​t​i​ − ​c​i​ > ​v​∗​, let ​p​i​(t) = 1 for that i with ​t​i​ − ​c​i​ > 
ma​x​ j≠i​    ​ ​t​j​ − ​c​j​. For any t with ma​x​ i​  ​ ​t​i​ − ​c​i​ < ​v​∗​, let ​p​i​(t) = ​φ​i​/​∏​ 

j≠i
​  

  ​ ​F​j​ (​v​∗​ + ​c​j​) for 
every i. Since ​φ​i​ ∈ [0, 1], ​p​i​(t) is non-negative for all i. Also,

 	​  ∑​ 
i
  ​ 
 
 ​ ​p​i​(t)  = ​ ∑​ 

i
  ​ 
 
 ​ ​ 

​φ​i​ ​F​i​(​v​∗​ + ​c​i​)  __  
​∏​ j​ 

 ​ ​F​j​ ​( ​v​∗​ + ​c​j​ )​
 ​  = ​ 

​∑​ i​ 
 ​ ​φ​i​ ​F​i​ (​v​

∗​ + ​c​i​)  __  
​∏​ j​ 

 ​ ​F​j​ ​( ​v​∗​ + ​c​j​ )​
 ​ .

By our third condition, this is less than 1.
Also, for any i and any ​t​i​ < ​v​∗​ + ​c​i​, we have

	​​   p ​​i​(​t​i​)  = ​ [ ​∏​ 
j≠i

 ​ 
 
  ​​F​j​(​v​∗​ + ​c​j​) ]​ E​( ​p​i​(t) | ​t​j​ ≤ ​v​∗​ + ​c​j​,  ∀j ≠ i )​

 	  + ​ [ 1 − ​∏​ 
j≠i

 ​ 
 
  ​​F​j​(​v​∗​ + ​c​j​) ]​ E​( ​p​i​(t) | ​t​j​ > ​v​∗​ + ​c​j​,  for some  j ≠ i )​

 	  = ​ [ ​∏​ 
j≠i

 ​ 
 
  ​​F​j​(​v​∗​ + ​c​j​) ]​ ​[ ​  ​φ​i​ __  

​∏​ 
j≠i

​  
  ​​ F​j​(​v​∗​ + ​c​j​)

 ​ ]​ + ​[ 1 − ​∏​ 
j≠i

 ​ 
 
  ​​F​j​(​v​∗​ + ​c​j​) ]​(0)

 	  = ​ φ​i​.

If ​F​i​(​v​∗​ + ​c​i​) = 1, this implies in​f​​t​i​​  ​​  p ​​i​(​t​i​) = ​φ​i​. Otherwise, for ​t​i​ > ​v​∗​ + ​c​i​, we have

 	​​    p ​​i​(​t​i​)  = ​ ∏​ 
j≠i

 ​ 
 
 ​ ​F​j​(​t​i​  − ​ c​i​  + ​ c​j​)  ≥ ​ ∏​ 

j≠i
 ​ 

 
 ​ ​F​j​(​v​∗​  + ​ c​j​)  ≥ ​ φ​i​,

where the last inequality follows from the necessary conditions. Hence, again,  
in​f​​t​i​​ ​​  p ​​i​(​t​i​) = ​φ​i​, so φ is feasible given ​v​∗​. 

Given Lemma 1, we see that the set of feasible φ given ​v​∗​ is the set satisfying a 
finite system of linear inequalities and hence is convex. Since the objective function 
is linear in φ and the feasible set is convex, we see that given ​v​∗​, there is an optimal 
φ which is an extreme point. Furthermore, the set of optimal φ is the convex hull of 
the set of optimal extreme points.

The following lemma characterizes the extreme points. Recall that

 	​  ​ 0​ = ​{ i ∈  | ​F​i​(​v​∗​ + ​c​i​) = 0 }​ = ​{ i ∈  | ​v​∗​ = ​​t _​​ i​ − ​c​i​ }​.
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Lemma 2: If ​​ 0​ is not a singleton, then ​φ​∗​ is an extreme point of the set of  
feasible φ given ​v​∗​ if and only if either ​φ​∗​ = 0 or there exists i such that  
​φ​ j​ ∗​ = 0 for all j ≠ i and ​φ​ i​ ∗​ = ​∏​ 

j≠i
​  

  ​ ​F​j​(​v​∗​ + ​c​j​). If ​​ 0​ = {i}, then ​φ​∗​ is an extreme 

point of the set of feasible φ given ​v​∗​ if and only if ​φ​ j​ ∗​ = 0 for all j ≠ i and  

​φ​ i​ ∗​ = ​∏​ 
j≠i

​  
  ​ ​F​j​(​v​∗​ + ​c​j​).

Proof:
If #​​ 0​ ≥ 2, then, as shown in the proof of Lemma 1, the only feasible φ is the 

0 vector. Note, though, that ​∏​ 
j≠i

​  
  ​ ​F​j​(​v​∗​ + ​c​j​) = 0 for all i, so the description in the 

statement of the lemma applies. If ​​ 0​ = {i}, then the proof of Lemma 1 shows that 
the only feasible φ is the one stated as the extreme point in the lemma, so again the 
lemma follows.

So for the rest of this proof, assume ​​ 0​ = 0/. That is, ​F​i​(​v​∗​ + ​c​i​) > 0 for all i. 
It is easy to see that the ​φ​∗​ s stated in the lemma must all be extreme points. To 
see this, suppose that there exist a feasible ​φ​1​ and ​φ​2​ such that ​φ​1​ ≠ ​φ​2​ and there 
exists λ ∈ (0, 1) such that λ​φ​1​ + (1 − λ)​φ​2​ = ​φ​∗​ for one of the ​φ​∗​ s stated in the 
lemma. Obviously, we cannot have ​φ​∗​ equal to the zero vector since ​φ​ i​ k​ ≥ 0 for 
all i and k would then imply ​φ​1​ = ​φ​2​ = 0, a contradiction. So suppose there is 
some i with ​φ​ j​ ∗​ = 0 for all j ≠ i and ​φ​ i​ ∗​ = ​∏​ 

j≠i
​  

  ​ ​F​j​(​v​∗​ + ​c​j​). Again, we must have 

​φ​ j​ 1​ = ​φ​ j​ 2​ = 0 for all j ≠ i. Since we cannot have ​φ​1​ = ​φ​2​, without loss of gen-

erality, we must have ​φ​ i​ 1​ < ​∏​ 
j≠i

​  
  ​ ​F​j​(​v​∗​ + ​c​j​) < ​φ​ i​ 2​. But then ​φ​2​ violates the third 

condition for feasibility of φ given ​v​∗​, a contradiction.
Hence we only need to show that there are no other extreme points. To show this, 

we show that any φ which is feasible given ​v​∗​ can be written as a convex combi-
nation of these points. So fix any such φ. Define ​r​i​ = ​φ​i​/​∏​ 

j≠i
​  

  ​ ​F​j​(​v​∗​ + ​c​j​). By the 
necessary conditions stated in Lemma 1, ​r​i​ ≥ 0. Also,

 	​  ∑​ 
i=1

​ 
I

  ​​r​i​  = ​ ∑​ 
i=1

​ 
I

  ​ ​ 
​φ​i​​F​i​(​v​∗​ + ​c​i​)  __  
​∏​ j​ 

 ​​F​j​ ​( ​v​∗​ + ​c​j​ )​
 ​  = ​ 

​∑​ i=1​ 
I
  ​​φ​i​​F​i​(​v​∗​ + ​c​i​)

  __  
​∏​ j​ 

 ​​F​j​ ​( ​v​∗​ + ​c​j​ )​
 ​  .

By the third necessary condition, then, ​∑​ i=1​ 
I
  ​​r​i​ ≤ 1. Finally, let ​r​0​ = 1 − ​∑​ i=1​ 

I
  ​​r​i​ 

Hence ​∑​ i=0​ 
I
  ​​r​i​ = 1. Let ​φ​∗​(i) denote the ​φ​∗​ of the lemma which has ​φ​ j​ ∗​ = 0 for all 

j ≠ i and ​φ​ i​ ∗​ = ​∏​ 
j≠i

​  
  ​ ​F​j​(​v​∗​ + ​c​j​). It is easy to see that

 	  φ  = ​ ∑​ 
i=1

​ 
I

  ​ ​r​i​​φ​∗​(i)  + ​ r​0​(0),

where 0 denotes the 0 vector. Hence φ is not an extreme point unless it equals one 
of the ​φ​∗​ s. 

Summarizing, any optimal mechanism has its reduced form completely specified 
by a choice of ​v​∗​ and a vector φ. Given any ​v​∗​, the set of optimal φ s is the convex 
hull of the set of optimal extreme φ s, characterized in Lemma 2. We now show that 
for any ​v​∗​ and any optimal extreme φ, there is a favored-agent mechanism with the 
same reduced form as that determined by ​v​∗​ and φ.
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Lemma 3: Given any ​v​∗​ and any optimal extreme φ, let (​​  p​​∗​, ​​  q​​∗​) be the reduced form 
specified by ​v​∗​ and φ. Then there is a favored agent mechanism (p, q) with ​  p​ = ​​  p​​∗​ 
and ​  q​ = ​​  q​​∗​.

Proof:
First, suppose #​​ 0​ ≥ 2. In Lemma 1, we showed that the only feasible φ in 

this case is the zero vector. Because #​​ 0​ ≥ 2, we have at least two agents i with ​
t​i​ − ​c​i​ > ​v​∗​ with probability 1. Hence ​p​ i​ ∗​(t) = 1 for that i such that ​t​i​ − ​c​i​ > 
ma​x​ j≠i​    ​ ​t​j​ − ​c​j​. Thus for all i and all ​t​i​, ​​  p ​​ i​ ∗​(​t​i​) = ​ ∏​ 

j≠i
​  

  ​ ​F​j​(​t​i​ − ​c​i​ + ​c​j​). Since ​φ​i​ = 0 

for all i, we have ​​  q ​​ i​ ∗​(​t​i​) = ​​  p ​​ i​ ∗​(​t​i​). We generate the same reduced form from the 
favored-agent mechanism with threshold ​v​∗​ for any selection of the favored agent. 
Since there are always at least two agents with values above the threshold, the selec-
tion of the favored agent is irrelevant—any agent receives the good if and only if he 
has the highest value and is checked in this case.

Next, suppose ​​ 0​ = {k}. In the proof of Lemma 1, we showed that the only fea-
sible φ in this case is ​φ​∗​(k) defined by

 	​  φ​ i​ ∗​(k)  = ​ { ​0,
      

​∏​ 
i≠k

​  
  ​ ​F​i​(​v​∗​ + ​c​i​),

​ ​
if i ≠ k 

    
if i = k.

​ 

​

​

The reduced form generated by this extreme point is as follows. First, consider any 
j ≠ k. Since ​φ​j​ = 0, we know that ​​  q ​​ j​ ∗​(​t​j​) = ​​  p ​​ j​ ∗​(​t​j​). By Theorem 4, if ​t​j​ − ​c​j​ < ​v​∗​, 
then ​​  p ​​ j​ ∗​(​t​j​) = ​φ​j​ = 0. For ​t​j​ − ​c​j​ > ​v​∗​, ​p​ j​ ∗​(​t​j​) = ​ ∏​ 

i≠j
​  

  ​ ​F​i​(​t​j​ − ​c​j​ + ​c​i​). Also, for 
every ​t​k​, ​​  p ​​ k​ ∗​(​t​k​) = ​ ∏​ 

j≠k
​  

  ​​F​j​(​t​k​ − ​c​k​ + ​c​j​) and

 ​​   q ​​ k​ ∗​(​t​k​)  = ​​   p ​​ k​ ∗​(​t​k​)  − ​ ∏​ 
j≠k

 ​ 
 
  ​​F​j​(​v​∗​  + ​ c​j​)

 	  =  Pr​[ ​t​k​ − ​c​k​ > ​t​j​ − ​c​j​,  ∀j ≠ k ]​  −  Pr[​t​j​  − ​ c​j​  < ​ v​∗​,  ∀j  ≠  k]

 	  =  Pr​[ ​v​∗​  < ​ max   
j≠k

  ​ ​t​j​  − ​ c​j​  < ​ t​k​  − ​ c​k​ ]​.

It is easy to see that a favored-agent mechanism with k as the favored agent and 
threshold ​v​∗​ generates the same reduced form.

Finally, suppose ​​ 0​ = 0/. We showed in the proof of Lemma 1 that the set of 
extreme points consists of the zero vector 0 and the collection of vectors ​φ​∗​(k), 
k = 1, … , I. The same argument as for the previous case shows that any of the 
extreme points ​φ​∗​(k) generates the same reduced form as the favored-agent mecha-
nism with k as the favored agent and ​v​∗​ as the threshold.

We now complete the proof by showing that 0 cannot be the optimal extreme 
point. To see this, simply note that the term multiplying ​φ​i​ in the principal’s objec-
tive function is

	​ F​i​(​v​∗​  + ​ c​i​)​E​​t​i​​(​t​i​ | ​t​i​  ≤ ​ v​∗​  + ​ c​i​)  +  [1  − ​ F​i​(​v​∗​  + ​ c​i​)]​c​i​.
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It is easy to see that this term must be strictly positive since ​​t _​​ i​ ≥ 0 and ​c​i​ > 0. Hence 
whenever there is a feasible φ other than 0, it must yield the principal a higher payoff 
than setting φ to the zero vector. 

Hence the set of optimal mechanisms given a particular ​v​∗​ is equivalent to the 
convex hull of the set of optimal favored-agent mechanisms with ​v​∗​ as the threshold. 
Therefore, the set of optimal mechanisms is equivalent to the convex hull of the 
set of optimal favored-agent mechanisms where we optimize over ​v​∗​ as well as the 
identity of the favored-agent. 
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