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In a self-confirming equilibrium, each player correctly forecasts the actions that
opponents will take along the equilibrium path, but may be mistaken about the
way that opponents would respond to deviations. This paper develops a refinement
of self-confirming equilibrium in which players use information about opponents'
payoffs in forming beliefs about the way that opponents play off of the equilibrium
path. We show that this concept is robust to payoff uncertainty. We also discuss its
relationship to other concepts and show that it is closely related to assuming almost
common certainty of payoffs in an epistemic model with independent beliefs. Jour-
nal of Economic Literature Classification Numbers: C72, D84. � 1999 Academic Press

1. INTRODUCTION

Suppose, as is now common, that we interpret equilibrium in a game
as a steady state of some non-equilibrium process of adjustment and
``learning.'' What steady states might we expect to observe, and conversely
what strategy profiles seem unlikely to be steady states? The notion of
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self-confirming equilibrium is designed to model steady states where players
have no a priori information about opponents' play or payoffs, and each
time the game is played they observe only the actions played by their
opponents. Intuitively, self-confirming equilibrium requires only that
players correctly forecast the actions opponents will take along the equi-
librium path, but does not require that their off-path beliefs are correct.
When the only information players have is the observed play in the game,
they will never receive evidence that their forecasts of off-path play are
incorrect. We expect, then, that any self-confirming equilibrium can be a
steady state, including those with outcomes that cannot arise in Nash
equilibrium.2

Because self-confirming equilibrium (henceforth ``SCE'') allows beliefs
about off-path play to be completely arbitrary, it does not force the beliefs
to incorporate restrictions that players might be able to deduce from infor-
mation about opponents' payoff functions. That is, it supposes that players
do not ``think strategically,'' but simply learn from their experience. Of
course, if players have no information about their opponents' preferences,
they are unable to deduce that the opponents like certain actions more
than others, and there is no reason to restrict beliefs about off-path play.
This may be a good approximation of some real-world situations, and is
also the obvious way to model play in experiments in which subjects are
given no information about opponents' payoffs. In other cases, both in the
real world and in the laboratory, it seems plausible that players have and
use some information about their opponents' payoffs.3

The goal of this paper is to develop a more restrictive version of SCE
that captures how players' deductions, based on commonly known infor-
mation about all the payoffs in the game, can restrict the set of observed
long-run outcomes. We provide some formal results to verify the robust-
ness of our solution concept to certain perturbations, and to help relate our
contribution to past work, but these results are not the main point of the
paper. Rather, the paper's main contribution is the development of the
``rationalizable self-confirming'' concept, and the illustration of its implica-
tions in a number of examples.
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2 Fudenberg and Kreps [10] and Fudenberg and Levine [13].
3 In many experiments subjects are told the rules that determine their opponents' money

payoffs. The extent to which this approximates common knowledge of payoffs depends on the
extent to which opponents are believed to be motivated by non-pecuniary factors such as
altruism or spite. In some experiments, there is evidence that a substantial fraction of subjects
are motivated by non-pecuniary factors. But there is also experimental evidence that some
players successfully apply concepts such as iterated dominance to anticipate opponents play;
see, for example, Costa-Gomez et al. [8]. However, there is substantially more scope for the
experimental study of the impact of information about other players' payoffs. This paper
suggests the hypothesis that without payoff information we should expect to see an SCE, but
with the additional information, we should see only RSCE.



The key issue is how to incorporate the information about payoffs into
SCE. We suppose that players believe that their opponents' actions will
maximize their presumed payoff functions so long as the opponents have not
been observed to deviate from anticipated play. However, players do not use
the prior payoff information to restrict their beliefs about the play of
opponents who have already been observed to deviate from expected play.
Intuitively, this corresponds to players supposing that such deviations are
signals that the deviator's payoff function is different than had been
expected. More formally, we require that a player's strategy be optimal at
all of his information sets that are not precluded by the strategy itself; we
call these reachable information sets.4

There are two related reasons that we impose optimality only at
reachable off-path information sets, rather than at all information sets.
In Section 2 we show by example that the latter requirement is not robust
in the sense of Fudenberg et al. [11], and in Section 4 we prove that the
former is robust. In Section 5 we claim that optimality at reachable infor-
mation sets follows from a natural epistemic model that assumes caution
and almost common knowledge (in the sense of Monderer and Samet
[19]) of rationality.5 Reny [21, 22], Ben Porath [3], and Gul [16],
among others, also argue (in varying degrees of specificity) for optimality
at reachable nodes.

To capture the idea that play corresponds to the steady state of a
learning process in which the path is observed each time the game is played,
we also assume that the path of play is public information. This is in the
spirit of, but stronger than, the assumption underlying self-confirming equi-
librium, which is that each player knows the path of play. For simplicity,
we also impose the assumption that players' beliefs concerning their
opponents' play correspond to independent randomizations. Combining
these assumptions with that of optimality at reachable nodes leads to
``rationalizable self-confirming equilibrium,'' or ``RSCE.''

Papers by Rubinstein and Wolinsky [23] and Greenberg [15], like
ours, are based on the idea that players form their forecasts of opponents
play using both prior information both about the opponents' payoffs and
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4 There are two closely related notions of optimality at off-path information sets that we
consider: best replies to the limit of a sequence of trembles, namely sequential rationality, as
in Kreps and Wilson [17], and best replies to the sequence itself, as in Selten's notion [24]
of trembling-hand perfection. We expect that, as in the relationship between sequential and
perfect equilibrium, the difference is only in non-generic games��see Kreps and Wilson [17]
and Blume and Zame [6]��but verifying this takes us too far afield. In this introduction we
are imprecise and use optimality to refer to both notions.

5 The relationship between the results of Sections 4 and 5 is similar to that between the
results of Dekel and Fudenberg [9] and those of Bo� rgers [7].



some information about what is observed when the game is actually
played. Greenberg's notions of null mutually acceptable courses of action
and path mutually acceptable courses of action correspond to the non-
robust ``sequentially rationalizable sets'' and ``sequentially rationalizable
self-confirming equilibrium'' that we define in Section 4. However, where
we use these concepts only as tools for understanding the RSCE concept,
Greenberg uses them as the center of his analysis.

Rubinstein and Wolinsky consider strategic-form, instead of extensive-
form games and therefore do not impose optimality at off-path information
sets. They represent the information that players obtain about opponents'
play by arbitrary but deterministic ``signal functions'' and they allow for
correlated beliefs. These differences complicate the comparison of their
work with ours, and we defer a fuller discussion to the Section 5, but
roughly speaking, in the cases that are common to their work and ours,
their notion of an RCE (``rationalizable conjectural equilibrium'')
corresponds to self-confirming equilibrium��the ``rationalizable'' aspect of
their concept has no additional bite.

We should make clear from the outset that, although this paper is
motivated by the learning-theoretic approach to equilibrium in games, we
do not here provide an explicit learning-theoretic foundation for our con-
cepts. We are confident that such foundations can be constructed by, for
example, incorporating restrictions on the priors into the steady-state
learning model of Fudenberg and Levine [13], but we have not checked
the details.

2. THE SOLUTION CONCEPTS

There are n players i=1, ..., n and a game tree with decision nodes x # X
and terminal nodes z # Z. Information sets for player i are hi # Hi ; singleton
information sets for nature are H0 . Available actions at an information
set are A(hi). A behavior strategy for player i, ?i # 6 i , satisfies ?i (hi) #
2(A(hi)). The payoffs are ui (z).

A profile ? is said to have the same path as ?̂ if ?, ?̂ agree on the set of
information sets reached with positive probability under ?. Call an infor-
mation set hi reachable given strategy ?i if there exists a ?$&i such that hi

is reached with positive probability given (?i , ?$&i); These represent places
in the tree that are consistent with player i playing ?i .

An assessment ai for player i is a probability distribution over nodes at
each of his information sets. A belief for player i is a pair bi #(ai , ? i

&i),
consisting of i 's assessment over nodes ai , and i 's expectations of
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opponents' strategies ? i
&i=(? i

j) j{i .
6 We should emphasize that the assump-

tion that player i 's expectations about his opponents' play corresponds to
a strategy profile incorporates the implicit restriction that opponents
randomize independently.7, 8

The belief bi #(a i , ? i
&i) is consistent (Kreps and Wilson [17]) if

ai=limn � � an
i , where the an

i are obtained using Bayes rule from a
sequence of strictly positive strategy profiles of the opponents, ? i, m

&i � ? i
&i .

Throughout this paper we are only concerned with consistent beliefs; at
times we will refer to the sequence ? i, m

&i as the one that makes bi consistent.
Given a consistent belief bi by player i, player i 's information sets give

rise to a decision tree, and for each information set hi there is a well-defined
sub-tree beginning with that information set. A behavior strategy ?i is a
best response at hi by a player i to consistent beliefs bi if the restriction of
?i to the subtree starting at hi is optimal in that sub-tree. (Thus a best
response at hi supposes that the player will play optimally at subsequent
nodes as well.) It is useful to define a version of player i, &i , as a strategy-
belief pair &i=(?i , bi). Our main solution concepts identify a belief model,
V=(V1 , ..., Vn), that specifies a set of versions Vi for each player i.

We begin by reviewing the notion of self-confirming equilibrium and
restating it in a way that is similar to our main notion.9

Definition 2.1. Profile ?̂ is a self-confirming10 equilibrium (SCE) if
there is a singleton belief model V=[(?1 , b1)], ..., [(?n , bn)] such that, for
all players i
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6 Note that what we call an ``assessment'' is what Kreps and Wilson [17] call a ``system of
beliefs for player i,'' and that our ``belief '' is similar to what they call an ``assessment.'' The
reason we have switched terminology is that, unlike Kreps and Wilson, we consider strategic
uncertainty, as reflected in the fact each player i makes his own forecast ?i

&i , where we do not
impose ? i

k=? j
k for i{ j. Thus in place of a single commonly known object (a, ?) we have

distinct ``beliefs'' bi #(ai , ? i
&i).

7 See Fudenberg and Kreps [10] for a discussion of this point.
8 Given independence, Kuhn's theorem [18] shows that there is no additional loss of

generality in restricting attention to expectations that correspond to a single strategy profile
?i

&i , as opposed to a probability distribution over such profiles.
9 In Definition 2.1 every version in the belief model is required to be consistent with the

overall path of play, so there is a single belief about the path of play for each player i;
this is called ``unitary'' self confirming in Fudenberg and Levine [12]. The alternative,
``heterogeneous,'' version of self-confirming equilibrium only requires that (?i , bi) be consistent
with the outcomes player i observes when playing ?i . Although heterogeneous beliefs are very
important for describing some experimental outcomes, developing a ``rationalizable'' version
of heterogeneous SCE for general games involves a number of subtleties that are beyond the
scope of this paper.

10 More precisely, this is ``independent unitary'' self-confirming equilibrium. Since this is the
primary notion we study in this paper, we omit the terms ``independent unitary.''



(1) For every (?i , bi) # Vi , ?i is a best response to bi=(a i , ? i
&i) at

information sets that are reached with positive probability under (?i , ? i
&i).

(2) Every (?i , bi) # Vi has the distribution over outcomes induced by ?̂.

In this case we refer to ?̂ as a self-confirming equilibrium and the distribu-
tion over outcomes induced by ?̂ as a self-confirming outcome.

The other notions we develop all incorporate a belief-closed requirement,
in the spirit of rationalizability. As in rationalizability, this requirement is
intended to ensure that the strategies that player i expects player j to play
could actually make sense for j to play, in the sense of being consistent with
what i knows about j $s payoffs.

Definition 2.2. A belief model is belief-closed if for every (?i , (ai , ? i
&i))

# Vi , ? i
j can be generated by a mixture over strategies in the set

[?$j | (?$j , bj) # Vj for some belief b j].11

In words, i 's beliefs about j must be consistent with the set of j 's possible
versions. Thus, the elements of the sets Vj are better viewed as ``versions
that player i might think player j is'' than as ``versions that j is likely to be.''
For example, if &j 's strategy specifies an action at some off-path informa-
tion set that is not optimal given j 's specified payoffs, the interpretation is
that this is something i plausibly thinks that j would do if that information
set is reached. As we will argue below, such beliefs can be plausible because
the fact that the off-path information set was reached can lead player i to
revise his beliefs about j 's payoffs.

To clarify that this condition is not driving any of the distinctions
between self-confirming equilibria and our main solution concept we show
that there is no loss of generality in adding the belief-closed condition to
the notion of self-confirming equilibrium.

Theorem 2.1. Profile ?̂ is a self-confirming equilibrium if and only if
there is a belief model V such that, for all players i,

(1) For every (?i , bi) # Vi , ?i is a best response to bi=(ai , ? i
&i) at

information sets that are reached with positive probability under (?i , ? i
&i).

(2) Every (?i , bi) # Vi has the distribution over outcomes induced by ?̂.

(3) V is belief closed.
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11 A behavior strategy ?j is generated by a mixture (:, 1&:) over ?$j and ?j" if for every ?& j ,
the distribution over terminal nodes induced by (?j , ?& j) equals the (:, 1&:) mixture over
the distributions induced by (?$j , ?& j) and (? j" , ?& j), respectively.



One direction of this result is obvious: If conditions (1), (2), and (3)
hold, we may pick any point (?i , bi) from each set Vi and Definition 2.1
will be satisfied. The converse is not quite as easy, as singleton sets satisfy-
ing (1) and (2) need not be belief closed. For example, player 1 might
believe that player 2's off-path play is L, while 2's strategy specifies that 2
plays R. However, the weak optimality condition 1 does not restrict off-
path play, so in this case we could add a new element to V2 corresponding
to player 1's beliefs about player 2's play. Of course, condition (1) does
restrict play along the equilibrium path, but condition (2) ensures that
beliefs about on-path play are correct. A formal proof along these lines is
straightforward, and we omit it.

SCE imposes optimality only at information sets that are reached.
Intuitively, this corresponds to the idea that the players learn the path of
play but have no information about their opponents' payoffs. For example,
in the game of Fig. 2.1, SCE allows 2 to play d so long as 2's information
set is not reached in the course of play. As noted by Selten [24], player 2
can ``threaten'' to play d, and thus induce 1 to play L. However, this threat
is not ``credible'' if I knows 2's payoff function, for then player 1 should
realize that player 2 would play u if ever her information set is reached.
For this reason, in many settings the weak rationality condition used by
Nash and self-confirming equilibrium incorporates too little information
about opponents' payoffs.

Thus, our first step towards introducing a theory in which players make
use of information about each others payoffs is to introduce a notion of
rationalizability that strengthens the optimality condition, condition 1, to
require that player i 's strategy be optimal not only along the path of play,
but at all information sets that are not precluded by that strategy.

Definition 2.3. A belief model, V, is rationalizable at reachable nodes
if for all i :

(1$) For every (?i , bi) # Vi , ?i is a best response to bi=(ai , ?i
&i) at

information sets reachable under ?i .

(3) V is belief closed.

FIGURE 2.1
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FIGURE 2.2

Definition 2.4. Profile ?̂ is a rationalizable self-confirming equilibrium
(RSCE) if there is a belief model V that is rationalizable at reachable
nodes, and such that, for all i

(2) Every (?i , bi) # Vi has the distribution over outcomes induced by ?̂.

Turning back to the game in Fig. 2.1, we see that the RSCE notions cap-
ture what we wanted: L is not part of any beliefs that are rationalizable at
reachable nodes. To see this, observe that 2's information set is always
reachable, so condition (1$) implies that the only strategy in V2 is u. From
condition (3), player 1 must believe this, and so he plays R. An important
feature of RSCE is that a strategy need not be optimal at information sets
that the strategy itself precludes. The reason that we do not wish to impose
optimality at such information sets is that this stronger requirement is not
robust to the presence of a small amount of payoff uncertainty. To see this,
consider the game in Fig. 2.2.

FIGURE 2.3

172 DEKEL, FUDENBERG, AND LEVINE



In this game the outcome L occurs in the Nash equilibrium (LD, d), but
not in any subgame-perfect equilibrium. However, in the game of incom-
plete information in Fig. 2.3, where payoffs are very likely to be as in
Fig. 2.2, the outcome L occurs in a sequential equilibrium. So requiring
optimality at all information sets rules out the outcome L in Fig. 2.2 but
not in Fig. 2.3; hence this requirement is robust to small payoff uncertain-
ties.12 It is easy to see that by construction RSCE achieves our objectives
in Fig. 2.2: since player 1's second information set is not reachable when 1
plays L, the outcome L can occur in a RSCE. In Section 4 we explore the
relationship between RSCE and solution concepts that impose optimality
at all information sets.

3. EXAMPLES

This section contains some examples that clarify the concepts defined in
the preceding section.

Example 3.1. Ordinary self-confirming equilibrium allows two players
to disagree about the play of the third. This example demonstrates the
intuitive idea that the possibilities for such disagreements are reduced when
players must believe that opponent's play is a best response at reachable
nodes. Consider the version of the extensive-form game shown in Fig. 3.1
which Fudenberg and Kreps [10] used to show that mistakes about off-
path play can lead to non-Nash outcomes: In Fig. 3.1 the outcome (A, a)
is self-confirming for any values of x and y. It is supported by player 1
believing that player 3 will play R and player 2 believing that player 3 will
play L. However, because 3's information set is reachable, this outcome is
not RSCE if both x and y have the same sign: If x, y>0 then players 1
and 2 forecast that 3 will play R, and so 2 plays d; if x, y<0 then 3 plays
L so 1 plays D. However, if x and y have opposite signs, then (A, a) is a
RSCE outcome, since players 1 and 2 are not required to have the same
beliefs about player 3's off-path assessment of the relative probability of the
two nodes in her information set, and player 1 can think that 3's assess-
ment makes R optimal, while player 2 can think that 3's assessment
induces her to play L.13
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12 Just as in previous work related to this notion of robustness, one may be able to identify
a smaller set of robust predictions if one feels confident that certain forms of payoff uncer-
tainty are much less likely than others. (We ourselves have no such confidence; we note the
point because it is often raised in seminars.)

13 This example shows that even requiring optimality at all information sets, as in the
notion of a sequentially RSCE defined in Section 4, need not be Nash.



FIGURE 3.1

Example 3.2. The next example shows that it is possible to have out-
comes that are self-confirming and rationalizable, yet fail to be RSCE. Thus
the RSCE concept does more than simply take the intersection of sets that
satisfy its constituent assumptions. Consider the extensive form game
shown in Fig. 3.2. In this example (u, d, U) is a self-confirming equilibrium
(and even a Nash equilibrium) since player 2's information set is off the
equilibrium path, and so he may play d. Moreover the following belief
model is rationalizable at reachable nodes: V1=[(u, (d, U)), (u, (d, D)),
(r, (a, U)), (r, (a, D))], V2=[(a, (r, U)), (d, (r, D)), (d, (u, D)), (a, (u, U))],
and V3=[(U, (u, a)), (U, (u, d)), (U, (r, d)), (D, (r, a))]. (Note that we
did not specify assessments, only strategies: for players 1 and 2 the
assessments are trivial; for player 3 an assessment is needed only in the
third element of V3 . Here we specify the assessment that puts probability

FIGURE 3.2
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1 on the upper node.) Thus the path (u, U) is possible according to each
set Vi .

However, the outcome (u, U) is not rationalizable self-confirming.
Intuitively, this is because player 1 should realize that player 2 knows that
player 3 is playing up and then deduce that player 2 will play a. Notice
that player 2's information set is always reachable since regardless of how
player 2 plays it can be reached unilaterally by player 1. Hence any beliefs
for player 2 that satisfy (1$) have optimization by player 2 at his informa-
tion set. Moreover, the beliefs must agree with the equilibrium path, so
player 2 must believe that 3 is playing U. So all possible b2 's have player
2 playing a. Thus ?1 must be a best response to the belief b1 in which 3
plays U (because 1 knows the equilibrium path) and in which 2 plays a
(from our discussion of V2 and the belief-closed condition), and so 1 must
play r instead of u.

This shows that the belief-closed condition does have extra power when
combined with conditions (1$) (optimality at reachable nodes) and (2)
(knowledge of the path), even though it is vacuous when combined with
conditions (1) (optimality on the path) and (2).

Example 3.3. We next consider further the fact that RSCE allows two
players to disagree about the play of a third. Fudenberg and Levine [12]
showed that in games with identified deviators the set of (unitary) SCE is
not altered by adding the requirement that players have the same beliefs
about one another. For RSCE, which incorporates the additional assump-
tion of optimality at reachable nodes, this is no longer the case. For a
particularly simple example consider the perfect-information game shown
in Fig. 3.3.

We claim first that the outcome (R, d) is RSCE. (In what follows we do
not specify assessments, as they are trivial.) To see this, let V1=((R, RR),
d, D), V2=(d, (R, RR), U) and V3=V1 _ V2 . Notice that these sets are
consistent and all have the same path. Moreover condition (3) is satisfied
since it only requires that if one player believes a second is playing a par-
ticular way, there is a version of the second player who is playing that way.
In particular, two players may disagree about the play of a third, as is the

FIGURE 3.3

175PAYOFF INFORMATION



case here. It remains to check sequential optimality for each player. Player
3 is indifferent, so is certainly playing optimally. Finally, inspection shows
that players 1 and 2 are both playing best responses to their beliefs at each
information set.

However, this outcome cannot arise in a RSCE in which player 1 and
player 2 agree about the play of player 3. With that additional requirement,
an RSCE with outcome (R, d) would need to be subgame-perfect, since
given that play there are no unreachable information sets. To see that the
outcome (R, d) is not subgame perfect, note that any randomization by
player 3 gives both player 1 or player 2 approximately the same amount,
with player 2 getting slightly more than player 1. If the amount player 1
gets is strictly greater than 5 then backwards induction implies (R, r, RR).
If the amount player 1 gets is strictly less than 5, and player 2 gets strictly
more than 0 then backwards induction implies either (L, r, RR) or
(L, r, DD). If the amount player 1 gets is equal to 5 then we can have any
mixture of (R, r, RR) and (L, r, RR). If the amount player 2 gets is strictly
smaller than 0 backwards induction implies (L, r, DD). If it is equal
to zero, player 1 must play DD, player 2 must play r, and so player 1
plays L. So (R, d) cannot occur in an RSCE when players 1 and 2 agree
about the play of player 3.

This example relies on player 3 being indifferent, but that can be avoided
by replacing 3's move with a simultaneous-move subgame between 3 and
4 that has two strict equilibria, with payoffs for 1 and 2 as in the figure.
(This is a multi-stage game with observed actions and hence has identified
deviators.) As in Example 3.2, RSCE allows players 1 and 2 to each expect
a different Nash equilibrium in the stage game between players 3 and 4.14

Example 3.4. If every path through the tree hits at most one informa-
tion set of every player, then all information sets are reachable under any
profile.15 In particular, if the game is finite and there is a unique backwards
induction solution (which is true for generic assignments of payoff vectors
to terminal nodes) then RSCE coincides with the backwards induction
solution. This is true in particular in the game shown in Fig. 3.4.

Note that players 1 and 3 have the same payoff at every terminal node:
this figure is the ``agent form'' of the game in Fig. 2.2, where player 1's
information set 1' has been assigned to an ``agent'' (player 3) with the same
payoffs. The reason RSCE makes different predictions in these two games
is that, as we show in the next section, it captures the predictions that are
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15 In this case rationalizability at reachable nodes coincides with its strengthening
to sequential rationalizability, which requires optimality at all information sets, as defined in
Section 4.



FIGURE 3.4

robust to small amounts of incomplete information provided that the
players' doubts about their opponents' payoffs are not correlated. Thus an
unexpected move by player 1 can signal that player 1's own payoffs are dif-
ferent than had been supposed, but does not change beliefs about the
payoffs of other players. We say more about this issue of correlated payoff
uncertainty below.

4. ROBUSTNESS OF RATIONALIZABLE SELF-CONFIRMING
EQUILIBRIUM

Implicit in our approach is the idea that rationality at reachable nodes
is more likely than at arbitrary nodes. The underlying reasoning behind
this is the idea that a player's own decision to deviate does not convey to
him any information about other players' rationality; while an opponent's
decision to deviate may indicate a degree of irrationality. To provide a for-
mal rationale for this reasoning, we are led to consider whether equilibrium
is robust, meaning that it is not changed significantly by small perturba-
tions in the game that is played. We do so using the model of elaborations
proposed by Fudenberg et al. [11].

An elaboration with personal types of the game consists of a finite collec-
tion 3i of types for each player. Letting 3#_i 3i , the game tree of the
elaboration has nodes (%, x) and terminal nodes (%, z). There is a probabil-
ity distribution + over types 3. Information sets in the elaboration are of
the form (%i , h) where hi is an information set in the original game. In par-
ticular (%$, x) # (%i , hi) if and only if %$i=%i and x # hi , so that each player's
own type is her private information. Payoffs in the elaboration are ui (%i , z),
and so depend only on the terminal node of the original game and the
player's type. In the elaboration, the ``normal'' types %0

i have approximately
the same payoffs as in the original game.

Let E denote the original game, and consider a sequence Ek of elabora-
tions. We say that Ek � E if
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(1) There is a uniform bound on the number of types in 3k
i .

(2) There is a uniform bound on the utility functions uk
i .

(3) limk uk
i (%0

i , z)=ui (z).

(4) limk +k (%0)=1.16

Suppose Vk
i are a sequence of sets of versions for player i. We say that

Vk
i � Vi if

(i) for every sequence (?k
i , (ak

i , ? ik
&i)) in Vk

i and every accumulation
point d of the induced sequence of distributions on terminal nodes of the
original game, D(?k, ? ik

&i), there exists some (? i , (a j , ? i
&i)) in Vk

i , with
D(?i , ?&i)=d, and

(ii) if for every (?i , (ai , ? i
&i)) in Vi , the induced distribution

D(?i , ?&i)=d is the limit of some such sequence.17

Given a solution concept, we say that the solution is robust with respect
to (independent) elaborations if whenever Ek � E, and Vk � V with Vk

satisfying the solution concept for the elaborated games, then V satisfies the
solution concept for the original game.

Theorem 4.1. (a) If the belief model V is rationalizable at reachable
nodes, then it is robust with respect to independent elaborations.

(b) If ?̂ is a RSCE, then it is robust with respect to independent
elaborations.

Remark 4.1. Theorem 4.1 does not extend to robustness to correlated
elaborations. To see this, consider the elaboration shown in Fig. 4.1 of the
game in Example 3.4 (this is essentially the same as the elaboration of
Fig. 2.2 shown in Fig. 2.3).

Here the outcome L can have probability close to 1 in a sequential equi-
librium, and so can certainly occur in a RSCE, yet the outcome is ruled out
by RSCE in the original game. Theorem 4.1 shows that RSCE is robust; we
now show that it is the smallest robust concept that is at least as large as
one requiring optimality at all information sets. The following definition
strengthens the notion of rationalizability at reachable nodes to all nodes;
equivalently it weakens the notion of sequential equilibrium for extensive-
form games to the context of rationalizability. The subsequent definition
strengthens RSCE, also by imposing optimality at all information sets.
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16 Conditions (1) and (4) together imply that as k grows the event %=%0 becomes common
p-belief for p arbitrarily near 1 (Fudenberg and Tirole [14, Theorem 14.5]).

17 This is the notion of convergence used in Dekel and Fudenberg [9].



FIGURE 4.1

Definition 4.1. The belief model V is sequential rationalizable if for all
players i:

(1") If (?i , bi) # Vi then ?i is a best response to bi=(ai , ?i
&i) at all

information sets.

(3) V is belief closed.

Definition 4.2. Profile ?̂ is a sequential rationalizable self-confirming
equilibrium if there is a belief model V that is sequentially rationalizable
and such that for all i:

(2) Every (?i , bi) # Vi has the distribution over outcomes induced by ?̂.

Greenberg [15] defines more general versions of both these concepts
that do not require the game to be common knowledge. When it is, his null
MACA is equivalent to sequential rationalizability and path MACA is
equivalent to sequentially rationalizable self-confirming equilibrium.18

Theorem 4.2. (a) If V is rationalizable at reachable nodes then there
exists a sequence of elaborations Ek � E and belief models Vk � V that are
sequentially rationalizable in the elaborations.
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18 Greenberg does not impose common knowledge of the game because his motivation is
more encompassing than ours: He ``offer[s] a way to formalize and analyze social environ-
ments in which players may ``live in different worlds'', but nevertheless, they often follow a
``mutually acceptable course of action''��each player for his own ``rational'' reasons. That is,
each player analyzes his own extensive form game that represents his word'' [15].



(b) If ?̂ is RSCE, then there exists a sequence of elaborations Ek � E
that have sequentially RSCE ?k � ?̂.

Remark 4.2. This generalizes our discussion of Figures 2.2 and 2.3
concerning the non-robustness of sequentially RSCE. As in Dekel and
Fudenberg [9], the proof constructs elaborations in which each player has
two types, the ``normal'' or ``sane'' type and a second type that is com-
pletely indifferent between all outcomes and so use whatever ``off-path''
strategy that is convenient for the proof.

5. RELATED LITERATURE

Bo� rgers [7] showed that assuming almost common knowledge of
rationality and caution yields the solution concept, S �W, that Dekel and
Fudenberg [9] were led to by considerations of robustness. (This is the set
left after first eliminating weakly dominated strategies, then applying
iterated strict dominance.) Given the results in the preceding section it is
then natural to examine and confirm the relationship between an epistemic
model and RSCE. We sketch this relationship below, omitting the formal
details; see Bo� rgers and references therein for formal definitions of the
concepts we use, such as Monderer and Samet's notion [19] of almost
common knowledge.

Caution means that players only use strategies that are a best reply to
a full support belief. This rules out weakly dominated strategies, while
RSCE, like sequential equilibrium, permits some weakly dominated
strategies. Thus to obtain an equivalence with a solution concept that
satisfies almost common knowledge of caution and of rationality we must
strengthen RSCE as follows. A belief model, V, is perfectly rationalizable at
reachable nodes if condition (1) in Definition 2.3 is strengthened so that
not only is ?i a best response to bi at reachable nodes, but it is also a best
response to the sequence ? i, m

&i that makes bi consistent at those information
sets. Similarly, an outcome ?̂ is a perfectly RSCE if in addition it satisfies
condition (2), that the distribution induced by the versions (? i , bi) # Vi

have the distribution over outcomes induced by ?̂.19

The only remaining difference between strategies in a belief model that is
perfectly rationalizable at reachable nodes and those in S�W arises
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19 One might wonder whether the additional requirement of perfection is robust with
respect to elaborations. It is, if we weaken the notion of elaboration by strengthening condi-
tion 3 in the definition above of convergence of an elaboration to require that uk

i (%0
i , z)=ui (z)

instead of limk uk
i (%0

i , z)=ui (z). Without strengthening the notion of convergence, the impact
of the trembles in breaking ties can be undone by small perturbations in the payoffs. (See
Dekel and Fudenberg [9].)



because Bo� rgers allows for correlation while we do not. In particular, the
two coincide for two-person games. The effect of correlation is twofold. In
Example 3.4, a game of perfect information where each player moves only
once, rationalizability at reachable nodes rules out the outcome L, but this
outcome survives S�W, since even after D is deleted for player 3 by weak
dominance, 2's choice of d is not strictly dominated. Intuitively, this reflects
the fact that L can be justified by an elaboration with correlated types, so
that a deviation by player 1 could convince player 2 that player 3's payoff
function is different than had been originally supposed. In addition to the
possibility of correlated perturbations, S�W also allows players to believe
that their opponents' play is correlated. It is well known that allowing for
this larger set of beliefs results in different and larger solution sets.20 Since
this and other effects of correlation are well understood, we have chosen
not to develop them formally here. The characterization of perfectly RSCE
results from adding the requirement that the distribution over outcomes is
almost common knowledge.

Rubinstein and Wolinsky [23] define a related solution concept,
rationalizable conjectural equilibrium, or RCE, for games in strategic form.
The main distinction between RCE and this paper is our focus on the
extensive form: Our model therefore restricts behavior at (some) off-path
information sets, which theirs does not. In addition they allow for correla-
tion, while we assume independence. Finally, the papers use different for-
mulations of the idea that beliefs must accord with observed play: Where
we suppose that players observe terminal nodes, they allow observations to
be generated by more general ``signal functions''; on the other hand, we
allow players to observe distributions, while they consider only deter-
ministic observations. To best see the relationship between their work and
ours consider two-person games, to set aside the difference due to correla-
tion, and restrict attention to the common case where a deterministic path
is observed. In this case their solution concept is the same as Battigalli and
Guatoli's conjectural equilibrium (CE) [2] and self-confirming equi-
librium, both of which assume only rationality rather than common cer-
tainty of rationality. Our focus in this paper was to add to self-confirming
equilibrium (robust) elements of common knowledge of extensive-form
rationality, which obviously are not contained at all in Rubinstein and
Wolinsky's RCE, and a fortiori in Battigalli and Guatoli's CE.
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20 For example, consider the three-player game in Fudenberg and Kreps [10], where player
1 has a choice of either playing ``out'' and ending the game or playing a simultaneous-move
subgame with players 2 and 3. If ``out'' is not a best response to any strategy profile of 2 and
3, yet ``out'' is a best response to a correlated strategy, then ``out'' cannot be played in any
self-confirming equilibrium with independent beliefs, but it can be played if correlated beliefs
are permitted. Fudenberg and Kreps also discuss the interpretation of correlated beliefs in the
context of learning in games.



TABLE 1

Rationality (Almost)a ACC of rationality and
Common certainty caution

of rationality

No observation S S� b S�W=perfectly
rationalizable at reachable

nodesc

Paths are publicly Self confirming equilibria=CEd Perfect RSCE
observed. =rationalizable CEe

a The parentheses around almost are meant to indicate that in this column the result does
not depend on whether or not almost is included; the column on the right requires the restric-
tion to almost common certainty since caution is introduced.

b See Bernheim [4], Pearce [20], and Tan and Werlang [25].
c See Bo� rgers [7].
d See Battigalli and Guatoli [2].
e See Rubinstein and Wolinsky [23].

To summarize we present Table 1 relating the solution concepts dis-
cussed in this section for the case of two-person games when deterministic
paths of play in the extensive-form are observable.

APPENDIX

Theorem 4.1. (a) If the belief model V is rationalizable at reachable
nodes, then it is robust with respect to independent elaborations.

(b) If ?̂ is a RSCE, then it is robust with respect to independent
elaborations.

Proof. (a) Suppose that E k � E, and Vk � V where Vk is rational-
izable at reachable nodes. We will show that the V 's are consistent and
satisfy (1"). Condition (3) is obviously preserved in the limit.

First observe that the consistency of Vi is immediate, since we can take
a diagonalization of the sequences of full-support sequences corresponding
to the Vk

i 's. To prove (1"), suppose that (?i , (ai , ? i
&i)) # Vi and ?i is not a

best response to (?i , (ai , ? i
&i)) at some hi that is reachable under ? i . Since

Vk � V, ? i is a limit point of a sequence [?k] with (?i , (ai , ? i
&i)) # V k

i ;
moreover if hi is reachable under ?i , then it is reachable under ?k. We
claim that the conditional probability prk (%0

i | hi , ?k) that i is ``normal'' at
such an hi must converge to 1 in any sequence of consistent assessments.
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Because the game has perfect recall, if hi is not reached under ?k but is
reachable for player i, there is no strategy for player i such that hi is
reached under ?k

&i . Consequently prk (%0
i | hi , ?k)=+k (%0

i ) � 1. But then the
fact that ?k

i | hi is optimal in the subtree that describes the game from hi on
given beliefs bk

i implies that ?i | hi is optimal with respect to bi following hi ,
so that the property of being rationalizable at reachable nodes is robust.

(b) Fix a profile ?̂ that is a RSCE or a heterogeneous RSCE, and
suppose that Ek � E. Let Vk � V be sets that satisfy (1"), (2), and (3). Part
(a) shows that (1") and (3) are preserved in the limit, and it is obvious that
(2) is as well. K

Theorem 4.2. (a) If V is rationalizable at reachable nodes then there
exists a sequence of elaborations Ek � E and belief models Vk � V that are
sequentially rationalizable in the elaborations.

(b) If ?̂ is RSCE, then there exists a sequence of elaborations Ek � E
that have sequentially RSCE ?k � ?̂.

Proof. (a) Let V be rationalizable at reachable nodes. We will con-
sider elaborations Ek in which each player has one alternative type who is
completely indifferent over outcomes. We construct Vk

i in two steps. First,
we modify &i #(?i , (ai , ? i

&i)) # Vi so that it is sequentially rational at all
information sets in the elaborations Vk

i : the rational type's play is modified
at all unreachable information sets so as to be sequentially rational given
bi=(ai , ? i

&i); the indifferent type plays ?. This gives rise to a strategy ?~ k
i (&i)

in the elaborated game.
We now construct the Vk

i . Given &i #(?, (ai , ? i
&i)) # Vi and j we can find

(due to condition (3)) a probability distribution pj ( } | &i) over Vj consistent
with ? i

&i . We may also combine the behavior strategies ?~ k
j (&j) using the

weights pj ( } | &j) to get behavior strategies ?� ik
j for k th elaboration. The set

Vk
i will consist of all (ak

i , ?k) that are generated by some &i=(?i , (ai , ? i
&i))

in Vi , where (i) ?k
j =?� k

j for j{i, (ii) ?k
i =?~ k

i (&i), and (iii) ak
i is defined as

follows. Let ?n
&i be the full support beliefs that makes the assessment ai

consistent. Let ?k, n
&i be a strategy profile for i 's opponents in the elaboration

given by the sane opponents playing their sequentially rational strategies
(the ?~ k

j (&j)) and the indifferent types playing ?n
&i . Finally, note that while

?k, n
&i does not have full support, it is the case that against ?k, n

&i every infor-
mation set of i can be reached by some strategy of i, and therefore (under
perfect recall) ?k, n

&i uniquely determines an assessment for i.
That the sets V k

i are sequentially rationalizable follows immediately from
their construction.

(b) Suppose now that ?̂ is RSCE. Then there is a belief model V that
is rationalizable at reachable nodes and also satisfies condition (2) or (2$).
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Construct the elaborations and the sets Vk � V as above. Since the same
type's play along the path of ?̂ is the same in the elaborations as in the
original game, and the indifferent type's play in each ?~ k

i (&i) is the same as
in the strategy ?i that generated it, the path of play is ?̂ in each of the
elaborations. In other words conditions (2) and (2$) are inherited by the
beliefs constructed in the elaborations. K
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