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Abstract

We consider discrete versions of first-price auctions. We present a condition on beliefs about
players’ values such that, with any fixed finite set of possible bids and sufficiently many players,
only bidding the bid closest from below to one’s true value survives iterative deletion of bids that are
dominated, where the dominance is evaluated using beliefs that satisfy the condition. The condition
holds in an asymmetric conditionally independent environment so long as the likelihood of each type
is bounded from below. In particular, with many players, common knowledge of rationality and that
all types are possible in an independent and private values auction implies that players will bid just
below their true value.
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1. Introduction

We consider first-price auctions with private values and with many players. It is well
known that in the unique equilibrium of the symmetric model (with independent values)
the bids converge to the true values as the number of bidders is made large and hence
the price converges to the highest value. Our analysis here presents a sense in which this

Y This material is based upon work supported by the National Science Foundation under Grants 9911761,
SES-9730493, and SES-0111830.
* Corresponding author.
E-mail addresses: dekel@northwestern.edu (E. Dekel), a-wolinsky@northwestern.edu (A. Wolinsky).

0899-8256/03/$ — see front mattér 2003 Elsevier Science (USA). All rights reserved.
doi:10.1016/S0899-8256(03)00016-2



176 E. Dekel, A. Wolinsky / Games and Economic Behavior 43 (2003) 175-188

result is robust to relaxing the solution concept and the assumption that the distribution of
types is common knowledge. We assume that the set of valuations and the set of allowable
bids are finite and show that in large auctions bidders bid (almost) their true value when
it is common knowledge only that players are rational and that the joint distribution of
the values satisfies a certain condition. This condition is satisfied, for example, if the
distribution of the values is conditionally independent and the likelihood of every value in
each state is bounded above zero. Thus, with many bidders (in this discrete environment),
the object goes to the bidder with the highest value (efficiency), and almost surely the price
is (almost) the highest value, even without imposing the equilibrium assumptions.

Our analysis concerns a special instance of a general issue in auction theory. Since
various results on auctions rely on Nash equilibrium as the solution concept, and in
addition many of these are sensitive to the specific distribution of values, it is important
to investigate the robustness of results to the solution concept and to the assumption of a
commonly known distribution of values. In this vein it is often shown in second-price and
in ascending auction mechanisms that the Nash equilibria of interesst post equilibria,

i.e., the strategies select best replies against the realized outcomes, so that the results are not
sensitive to the distribution of values. However, in first-price auctions such as we analyze
here, the literature considers Nash equilibria that arenpbst equilibria. Moreover, other

than the well-known result that bidding one’s value is weakly dominant in private-and-
independent value second-price auctions, we know of only two papers in auction theory
whose results do not rely on Nash equilibrium.

Chung and Ely (2000) show that in two-person auctions iterated deletioex of
post weakly dominated strategies selects the efficient equilibrium of a Vickrey—Clark—
Groves auction even when values are interdependémia paper very closely related
to ours, Battigalli and Siniscalchi (2000) study the implications of common knowledge
of rationality (rationalizability) in a first price auction with private independent values.
Unlike our model, they adopt the standard (for auction theory) setup of continuum sets of
bids and values. They show that any positive bid up to some level strictly above the Nash
equilibrium bid is rationalizable. Therefore, in particular, the set of rationalizable strategies
in their model does not approach the competitive equilibrium when the number of bidders
becomes largé Thus, their result stands in sharp contrast to ours. We will discuss further
the difference between these results in the concluding section.

A more distantly related literature explores the eductive justification of the competitive
equilibrium. Guesnerie (1992) looks at the set of rationalizable outcomes in a game in
which a continuum of suppliers decide simultaneously on the quantities of a homogenous
product that they supply and then the price is determined by an exogenously given demand
function. He shows that when the supply curve is steeper than the demand curve (in the
traditional labeling of price on the vertical axis), then the rationalizable set contains only

1 A strategy isex post weakly dominated by another if, for every type and action profile of the opponents,
the dominated strategy does no better and for some such profile it does strictly worse. We discuss notions of
dominance further in Section 4.1 below.

2 The upper bound does converge to the Nash, hence competitive equilibrium. This follows from the facts that
the upper bound cannot be greater than the bidder’s value for the object (see also footnote 4 below and the related
discussion in the text), and the Nash equilibrium converges to this value.
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the competitive equilibrium. One may think of course of the mirror image of that model

in which the supply curve is fixed and the buyers decide strategically on their quantities.
The corresponding condition in that variation is that the demand curve is steeper than the
supply curve. The auction model is not a special case of that variation, since it designates
prices rather than quantities as the strategic variables. But, in any case, the condition on the
relative slopes does not hold in the auction model, since the supply curve is inelastic at one
unit. Thus, the competitive prediction of Guesnerie’s model does not apply in the auction
model.

We present the model and solution concept in the next section. The results are stated and
proven in the following section. The last section discusses the interpretation and further
aspects concerning our solution concept and results, and more detail on the relationship of
this work to the literature.

2. Themode

As mentioned, we consider a first-price auction with private values. Each player
i €{1,2,...,n}isinformed of her private value (type),, of the object, and then submits
a bid. The object is awarded to the highest bidder who then pays her bid; in the case of ties,
the object is awarded with equal probability to one of the tied highest bidders (and only the
winner pays the winning bid). We assume that values and bids are on a discrete grid, say
V={0,1/m,2/m,...,1—1/m, 1}, and we denote the size of the grid &y= 1/m.

An ex ante strategy for player in this environments; € S;, is then a function froni’s
possible valuesy, into the possible bidsy, and a strategy profile € S is ann-tuple of
such functions. For our purposes it is more useful to thinikiefim strategies that specify
the bid of a player with a particular value. This bid is thus an element @nd an interim
strategy profile is then &n + 1) x n-tuple specifying what bid each type of each player
chooses. Let; (v, b;, b_;) denote playei’s expected utility wher is of typev, i chooses
bid b;, andi’s opponents bid_;. (Recall that since we assume private valu&spayoffs
depend only ori’s type.)

We solve the game using iterated deletion of dominated strategies. The version of
dominance we use allows the players’ beliefs about their opponents’ types not to be
common knowledge, while at the same time some restriction on these lgtiefamonly
known3 Formally, the conditional beliefs of playerf type v over the types of all other
players is a probability measune (- | vi = v) € A(V"1), where A(X) is the set of
probability distributions over the séf. Restrictions on beliefs for a typeare captured
by considering only probabilities in subsets denotedrpyc A(V"~1). We first define
the subset of beliefs to which we restrict attention, and then define the resulting notion
of dominance. The relationship between this notion of dominance and other concepts is
discussed in the last section.

3 Formally, what we present here is a “situation” rather than a Bayesian game, since we do not specify
commonly-known beliefs. Obviously, we can turn it into a Bayesian game by enriching the sets of possible
types, specifying the priors over them and completing it with the assumption that the expanded model is common
knowledge. For simplicity we do not take this extra step.
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Definition 1. P, ¢ A(V"~1) is the collection of subsets of beliefs for each tymatisfying
the following two conditions:

Condition 1. Each player believeswith positive probability that he might have the highest
valuation: for any p; (- | v; = v) € Py,

pi(vi<vVj#ilvi=v)>0 VYv>0 and
pi(vj=0Vj#i|v;=0)>0. 1)

Condition 2. For sufficiently large n, player i type v assignsa “ small” probability to the
event that only m or fewer of the bidders have values v aswell, conditional on all n having
valuations smaller or equal to v:

Thereexists N suchthat, Vn > N, i,and v andany p; (- | v; = v) € Py,

1

nm—1)+1" (2)

pi(#{j: vj=v}<m ‘ vy <vVj, vy :v) <

As we show at the end of the next section, if this are (conditionally) independently
distributed and the (conditional) probability of = 1 is greater than som& > 0, for
all i, thenp;(#j: v =v}<m|v; <1Vj, v; =1) is bounded by an expression on
the order of»™ (1 — 8)". Therefore, in this case Condition 2 is satisfied since, for large
n™(1—38)" <1/(n(m — 1) + 1).

Let P denote the collection of the sel, for each possible type, i.6R £ (P,)yey C
[A(v*HY.

Definition 2. The bidb; is P-dominated for type of player: by b; given that opponents’
strategies are restricted $0; C S_; £ {s_; : V"1 > v*Lifforall p;(- |vi=v) € P,
andalls_; € S_;,

> pitosifvi =v)ui(v, b}, s-i(v-0))
U,,'Eanl
> Y piloi |y =vui(v,bi, s (v-)).

v_jevn-1
Wheni's type and the set to which opponents’ strategies are restricted is obvious we will
simply say thab; is P-dominated by b;, and if it is dominated by somig € V we will just
say that it isP-dominated.
3. Theresults

3.1. Playersbid the highest bid below their value

Our first result is that the only bid that survives iterated deletioR-afominated bids is
v —d. That is, each bidder bids the highest price that is still below her valuation. We then
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prove that beliefs are i? when bidders’ types are drawn from a conditionally independent
and symmetric distribution in which the probability of each type is bounded away from
zero.

Proposition 1. There exists N such that, for all » > N, the bid v — d isthe only bid for a
player of type v > 0 that survivesiterated elimination of P-dominated bids.

The intuition for this result is as follows. First, we observe that bidders with positive
valuations will bid strictly below their valuations. This follows from Condition 1 and
iterated deletion of bids at or above a bidder’'s own value (starting from thosevwthh
and proceeding inductively to those with lower valuations). Second, we observe that, for
sufficiently largen, the bidv — d dominates all lower bids for a type Consider the type
v =1 and assume that some bid< 1 — d is the lowest bid that survived iteratg@-
dominance for any player with this type. Biddithgs clearly not best if other players of
typev = 1 are around and are bidding more thant is also not best if there are many
other players of type = 1 who are bidding. It may be best otherwise, that is, if there
are few enough players of type 1 and they all bidVe show that, fon large enough,
Condition 2 implies that the loss in expected payoff from biddingd instead of in the
otherwise event is smaller than the gain in expected payoff from bidding Instead of
b in the preceding two events.

Proof. We iteratively delete strategies that are dominated, where in each iteration we
consider a situation that remains after the preceding dominated strategies have been
deleted. For any bidder bidding 1 is dominated by bidding O for all types< 1 since a
bid of 1 may win, and then such a type will end up with a negative pdyiixt, bidding
1 is dominated by bidding % 4 for v; = 1, because bidding 1 yields a payoff of 0 and, by
Condition 1 and the previous step, bidding ¥ can yield a positive payoff. Now bidding
1—d is dominated by bidding zero for all types < 1 — d, and therefore bidding + d
is dominated by bidding + 24 for v; =1 —d. Iterating we conclude that it is dominated
for any typev; of any bidderi to bid more than; — d, except type zero who bids zero.
Notice that the foregoing argument uses (informally) only the assumption that Condition 1
is common knowledge.

Let b, be the lowest bid that survives iterated deletiorfolominated bids, for any
bidder with typev = 1, when there are bidders. We now argue that farlarge enough
b, = 1—d. Assume to the contrary thaf, < 1 — d. We show that, for large, the bid
1-—d P-dominates,, for each bidder, in contradiction to the definitionigf

Consider some biddet, a distribution p; (v—; | v; = v) € P,, and a collection of
strategies_; : V"~1 — v~ that survive iterated elimination ¢*-dominated bids (more
precisely, strategies such thatif; = s_;(0_;) then every element of_; survived
the iterated deletion procedure). In particular, for; in which v; = 1 for some j,
the jth element ofs_; (v_;) contains only bids greater than or equalig For these

4 Bidding more thar is not necessarily dominated since one can believe that all types are bidding even more,
so that one gets a payoff of zero in any case.
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pi(v—; |v; =v) ands_;’s, let g(k | £) denote the probability that bidders other thamn
with valuesv = 1 bid b,, conditional on there being > k bidders other thawn of type
v = 1. The profit to bidder with v; = 1 from bidding 1— d is at least

L2dx <p,»(u,~<1,v]';ei|u,~=1)

n—1
1
 (# =1 = ,_1§ 3
+£§1p #isty=1=(]v koq(kmz k+1> ®)

This is the benefit from winning with bid 4 4 times a lower bound on the probability
of winning with this bid. The probability of winning (conditional an = 1) is at least the
probability of everyone else having value< 1 plus a lower bound on the probability of
winning in the event that there are some players with typel. The latter bound is a sum
of probabilities of there being players with typev = 1 times the probability; (k | £) that
k of those players bi@, times the probability of winning if the remaining— & are also
bidding 1— d. This is a lower bound since some of thdse k players who bid abovag,
may still bid below 1—d.

The profit from biddingy,, is at most

U=2(@1-by,) x (Pi(vj <l Vj#ilv=1

n—1
1
+Y pi#j#isty =1 =¢|uv —1)q(2|fz)—) (4)
=1
Again this is the benefit of winning times an upper bound on the probability of winning.
The probability of winning is at most the probability that everyone else has vaké
plus the probability of there beingplayers with typev = 1 times the probability (¢ | £)
that all those players bitl,, divided by¢ + 1 and summed over all possible value< of
This is an upper bound because even when everyone haswalde they may bid more
thanb,.

We want to argue that > U for largen. To this end, we partition the summations in
(3) and (4) into’s that are no more thain, and those that are greater thanand weaken
the bounds further. First, since

q(m)— Zq(kw)Z k+1

we have

d x (p,'(vj <L Vj#i|lv=1

+Zp, (#j#istv;=1=¢]v=1) Zq(klﬁ)e k+1)

(=1
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>d x (p,-(vj <1l Vj#i|lvi=1)

¢ ., RPN
+;pi(#{]7élS.t.vj=1}=Z|v,-=1)q(€|£)e+—1>:Ll. (5)

Second, since

4
1 1
q(£|€)+(1—q(‘3|‘3))“_—1 <k§)q(k|£)e_k+1’
n—1 ¢ 1
d( Z pi(#j#istv=1=¢|v =1)Zq(klﬂ)m)
{=m+1 k=0

n—1
>d< D piHi#istvi=1=(]v=1)

{=m+1

1 A
x (q(z 1)+ (1—q| e>)m>> 2y,

Define

U2 (1—by) x <p,»(v,-<1, Vi#ilv=1

= . 1
+;pi(#{] #istvi=1=¢]|vy =1)q(€|€)m>, (6)

and

n—1
a .. o o 1
Us 2 (1—by) x <e:'§_lp,(#{] #iandv; =1} =¢ | v; —1)q(Z|Z)—e+1>.

ClearlyL — U > (L1 — U1) + (L2 — Uz). Observe from (5) and (6) that

Li—Uyp = (=14+b,+d) x (p,»(uj<1, Vji#ilv=1)

¢ . 1
+e§pi(#{] £ S.t.vj=1}=Z|vi=1)q(Z|Z)m>

> —(1-d)x pi#{j#istvj=1<m|v=1). @)
Sinceb,, < 1—d we haveL1 — U1 < 0. On the other hand, we now show tliat— U, > 0.

n—1

La—Up= Y pi#j#isty=1=(|v=1)
{=m+1
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1—
x (d(q(e 0+ M) — (-l ”)

t+1 t+1
n—1 1
= Y pi#istvy=1=t|n=1)—
=m+1 t+1

1—b,
x<d+%q@|&(d— ; )).

Since? > m, we haved — (1 — b,)/¢ > 0. Therefore,Lo — U2 > 0 and Ly — Us is
minimized whery (¢ | £) = 0. Sincel < n, we also have

d
Ly—Uzy>—(1—pi(#j#istvj=1<m|vi=1))>0. (8)
n
We want to show that, if,, < 1 — d, then biddet with v; = 1 would prefer bidding + d
tob,,i.e., thatL, — Uy > — (L1 — U1). From Condition 2
1
nm—-1)+1’

and sincgl — d) = (m — 1)d, it follows from (7) and (8) thal., — Uz > — (L1 — U1).

We have therefore shown that, farlarge enough, the following holds. For any
any p;(v—; | v; = 1) € P; and any strategies_;, which only prescribe bids that survived
iterated elimination of?-dominated bids, we have

Z pi(—i | vi = Dui(1, by, s—i(vy))
U,,'Eanl

< Y pitoilv=Dui(L1-d,s-i(v-).

V€ yn-1

pi(#{j;éis.t.vjzl}gm|v,~=1)<

That is, the bid - 4 P-dominates,, contrary to the supposition. Therefore, fofarge
enough, the minimal bid that survives the iterated elimination procedure for any bidder
withv=1is1—d.

Consider next type = 1 — d. Since for this type, only bids less than-1d survive
iterated elimination, this type only wins if no players are of type 1. Hence, their bidding
behavior can be analyzed conditional on there being no players of typk. But then the
analysis above implies that, farlarge enough, the only bid that survives iterated deletion
of P-dominated bids i® — 2d. Continuing in this way shows that iterated deletion yields
the outcome described in the propositiom

3.2. Aversion of the standard i.i.d. private-values model satisfies Conditions 1 and 2

We now describe a familiar environment in which the beliefs belong to the collegtion
defined in Definition 1. Consider the above auction environment with the following special
features: the bidders are symmetric; the bidders’ types are conditionally independent; and
the probability of each type in each state is bounded away from zero. The following
proposition establishes that the beliefs in the Bayesian game that describes this case belong
to the collectiorP.
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Proposition 2. Suppose that there are k states of nature 64, ...,6; occurring with
probabilities o1, ...,0r and that conditional on 6; the valuations of the bidders are
symmetrically distributed according to i.i.d. random variables such that Pr(v; = v | 6;) >
8 > Ofor all v, i and j. The beliefs in the Bayesian game that describes this case satisfy
Conditions 1 and 2.

Proof. Condition 1 is clearly satisfied. Considering then Condition 2y}et Pr(v; = 1|
6;) and observe that in this case

pi(#{j;éis.t.vjzl}gm|v,~=1)

k m
-1
=) Pro; lvi=1) ((1 —y)" 4 (” . )(1 - y;)"‘”yf)
=1

j=1

k m
o] -1
— 2 : Vjoj <(1_ J/j)nfl + Z (n , )(1_ yj)"leyf) (9)
=1

i vort e Yok

Each one of the bracketed terms is bounded as follows
m
_ n—1 1 o
A—y)" 1+Z< . )(1— yi)" Tt < 4+ D (@ -yt
=1

< (m +1)nm(1_8)n—m—1. (10)

Observe that, for sufficiently largeg
1
nm—1)+1"
This can be verified by multiplying both sides byn — 1) + 1, writing (1 — 8)""~! as
1/(1/(1—8))"~"~1 and applying L'Hopital rule repeatedhy + 1 times to this expression
to conclude that the left-hand side after multiplication converges to zer@esns.
Now (9)—(11) together imply that there is a levélsuch that, for alk > N,

1
nm—1)+1
Essentially the same argumentis used to establish

(m+Dn™@A—-8)" "1 < (11)

pi(#{j;éis.t.vjzl}gm|v,~=1)<

1
nm—1)+1
for anyv. It follows that, in the symmetric model, if the s are conditionally independent
with full support in the sense described above, thgin| v; =v) € P,. O

pl(#{] UjZU}Sm‘Ujéij,vi:v)<

4. Discussion
4.1. The solution concept

The solution concept employed above is iterated deletioR-ofominated strategies.
In the following discussion we relate it to other notions of dominance in general
games of incomplete information. We also relate this to Battigalli's (1999) notions of
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rationalizability in such games, and use this to argue that common knowledge of rationality
and of the fact that the beliefs belongfamply that only bids that survive iterated deletion
of P-dominated strategies will be used.

Clearly the definition ofP-domination applies to any restriction on beliefs, not only
to the particular sefP we defined. To present the general version of this definition,
consider a game of incomplete information with player Betype spaceqd; for each
playeri, action spaces\; for each playei, and utility functionsu;: A x T — R. As
usual,r € T andr_; € T_; are, respectively, profiles of types for all players and for
players other tham; the same convention is used fere A anda_; € A_;. As before,
let S_; c S_; £ {s_;: T_; - A_;} be a subset of strategies fis opponents. Denote
mixed actions foi by «; € A(A;), and letP, C A(T—;) be a subset of playeéis possible
beliefs as type;. (As is standard we extend the utility function to mixed strategies using
linearity, writing u; («;, a—;, t) for i’s expected utility from playingy; againsta_; when
types are.) The definition below extends our earlier definition to general games with any,
not necessarily symmetric, restrictions on players’ beliefs.

Definition 3. The actiong; is P;-dominated for; by «;, given that opponents’ strategies
are restricted t&_;, if forall p;(-|; =;) € P; and alls_; € S_;,

Z pit—i |t =t)ui (e, s—i (1), 1) > Z pit—i | ti =t)ui(ai,s—i(t—;).1).

t_;jeT_; t_;jeT_;

In this general definition the domination can berhixed actions, whereas Definition 2
in Section 2 admits only domination by pure actions. While domination via mixed actions
is clearly the appropriate concept, the weaker notion of Definition 2 is both somewhat
simpler and sufficient for our main result.

Remark 1 (Dominance and never a best reply). While we define our solution concept in
terms of dominated strategies, we could equivalently define it in terms of iterative deletion
of strategies that are never best replies to any beliefs about opponents and any beliefs
satisfying conditiorP. Formally, the actior; is never aP; -best reply forz;, given that
opponents’ strategies are restrictedtg, if forall p;(- | ; =1;) € P, andallo_; € A(S—;)

there exists/(p;, o—;) S.t.

D pitti |t =)ui(af(pi, o), 0-i(t-), 1)

t_;jeT_;

> Z pili—i | ti =tui(ai, 0-;(t-;).1).

t_;jeT_;

If P; is convex thery; is never aP; -best reply forz; if and only if it is P;-dominated

for 7;. To see this consider the agent game where each type is a player, and Nature is a
player choosing which “type” will get to play. The equivalence then follows from the usual
arguments (see Pearce (1984, Lemma 3), van Damme (1987, Lemma 3.2.1) or Myerson
(1991, Theorem 1.6)) so long & is convex. Note that wheH;, is not convex, never best
replies may be undominated. (This can be seen in the game in Remark 3 below, but with
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Prow containing the two extreme beliefs that the column player is either the left type or the
right type for sure. In this situatioP is undominated but it is never a best reply—either
or M is better, depending on the belief Byw.)

Using the above equivalence it is easy to see that our solution concept is the same as
(a static, correlated;-person version of) Battigalli's (1999) notion of weak (and strong)
A-rationalizability (whereA is the counterpart of ouP;,). Battigalli argues that thei-
rationalizable set is the set implied by common knowledge of rationality and of the beliefs
satisfyingA. This then means that the actions surviving iterated deletidh edominated
strategies are those corresponding to common knowledge of rationality and of the beliefs
being contained irP.

We can now rephrase the main result in terms of this interpretation.

Corollary 1. For sufficiently large n only the strategy profile of bidding just below one’s
valueis consistent with common knowledge of rationality and that beliefsarein P.

Remark 2 (Interim and ex post dominance). H, is a singleton, say;, theng; is P;;-
dominated if and only if it iSnterim dominated. At the other extreme, if_; C P;, (where
we abuse notation by writing.; for the measure imA\(7—;) that assigns probability one
to the pointr_;) thenga; is P,-dominated if and only ilz; is ex post dominatecP, (This
follows from the immediate observation thatis P,,-dominated if and only if it is c@P;, )-
dominated, where ¢@;,;) denotes the convex hull @, .) Thus, P,,-dominance is interme-
diate betweemx post dominance andhterim dominance. Moreover, using the interpreta-
tion discussed above, it also follows that iterated deletioexqfost dominated strategies
corresponds to common knowledge of rationality (with no restrictions whatsoever on be-
liefs). This is the obvious analog to the characterization of iterated deletiotedim dom-
inated strategies in a game of incomplete information gitlen beliefs p; as equivalent
to common knowledge of rationality and of the game, hence also of those beliefs.

Remark 3 (Private values). A game with private values is such that;,s_; (1—;), t)
depends directly only on rather than the entire vector of typesn games with private
values, ifS_; = S_;, so that all possible opponents’ strategies are allowed, then the set
of P,-dominated strategies is the same forBJl. In particular, the set of (un)dominated
strategies is the same fex post andinterim dominance. However, in subsequent rounds
of iterated deletior§_; C S_;, and this independence &, is no longer true in general.

To see this consider the private-values game below, in which the column player has
two types. After deleting dominated strategies for the column player, the actisnP-
dominated if and only if alp € P assign the left type of the column player probability less
than 2/35

5 As mentioned, Chung and Ely (2000) analyze iterated deletion of strategies that are weaidst
dominated in an auction context.

6 If we interpret the two games as different types of ther player then this is like the example used by
Fudenberg and Tirole (1991, p. 229) to demonstrate the relationship betweste and interim dominance:
UM is ex ante dominated but nointerim dominated for the belief that assigns equal probability to both types of
the row player.
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L R L R
U 31 00 U 30 01
M 0,1 30 M 0,0 31
D 2,1 20 D 20 21

9 J

Remark 4 (Correlation). A form of correlation, or communication, is implicit in the
definition above. It allows playerto believe that the strategy of playgcan depend on the

type of player. If one requires that_; = ]’[#i S;, so that such correlation is prohibited,

then, in general, more strategies are dominated (since they need be worse against a smaller
set—those that are not correlated in this manner—of opponents’ strategies). Nevertheless,
there are two conditions under which it is irrelevant whether or not one allows for this form

of correlation. If we consideax post dominancel_; C P;;) thenitis clearly irrelevant. Itis

slightly less obvious and more interesting to observe that this restriction is also irrelevant
in games with private values. We did not impose this restriction above as it would not
simplify the proof or notation.

To see why this restriction is irrelevant in private-values games, argue by contradiction.
Assume thata; is P,-dominated byo; when this correlation is prohibited, so that
Doiser, Pilt—i | i = tui(e, s—i(1=i) 1) > D, er , Pilt—i |t = ti)ui(a;, s—i(t—;), ;)
forall s_; C ]_[#i S;andallp;(t—; | t; =1;) € P;, and thatz; is not P; -dominated byy;
when this correlation is permitted, so that

it =wui(on, ¥ (). B) < Y prG |t =H)ui(ai sF (t20), i)

t_;jeT_; t_;jeT_;

for somes*;:T_; — A_;, s*, ¢ ]’[,.#,. S;, and somep;(t_; | t; = 1;) € P;. Therefore,
wio, s*;(t% ), 1) <wilag, s*;(t*)), t;) for somer*,, so fors_; = s*,(t*;) € [, S; the
first inequality is not satisfied. '

4.2. Alternative sufficient conditions

Proposition 2 shows that beliefs in a symmetric model with (conditionally) independent
values whose likelihoods are bounded away from zero satisfy Conditions 1 and 2. It is
easy to see that the result holds as stated also when there are infinitely many states of
nature. Furthermore, it is clear that in the finite-state case the bounds on the likelihoods
of the values are not needed for the conclusion that, in the limit, almost surely, the
winning bid is 1— d.” Furthermore, symmetry does not play an important role in the
proof of Proposition 2: an asymmetric model of conditional independence that assumes
Pr(v; =v | 6;) £ vjiv =6 >0forallv, i andj, would generate the same reUthus,
the assumption of our general model that it is commonly known that the bidders’ beliefs
belong to the seP, holds in a situation in which it is commonly known that the underlying
structure satisfies conditional independence andthdl-support requirement.

7 Lets =min{y: 1 > 0}, and note that fof such thaty; = 0 the terms in the summation are zero.
8 The only difference is that in Egs. (9)—(11) expressions (ike- yj)h and y;‘ will be replaced by products
like (1= jip,0) X Q= Vjig,w) X == X L=y}, 0) ANV} i1 v X Vjig,v X+ X Vjiiyv-
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Can the model be generalized further? The preceding discussion suggests the following
conjecture: if the values of the players are exchangeable anrg|Ry;) is bounded away
from O, for alli andj, then Conditions 1 and 2. The basis for this conjecture is de Finetti’s
Theorem. It implies that, if the values of the players are exchangeable, then their joint
distribution is as that of a collection of conditionally independent and symmetric random
variables like those described in the hypothesis of Proposition 2 (except that in general
there will be infinitely many conditioning’s). However, to invoke Proposition 2, it is also
required that Rw; | 0) be bounded away from O, for &l| since this property is used in the
proof. But the fact that FRv; | v;) is bounded away from O does not imply the boundedness
of Pr(v; | 6) for all 6, and we have not been able to modify the proof of Proposition 2 in a
manner that circumvents this problem.

4.3. The number of iterations and of players needed

Since iterated dominance arguments may appear to be stronger as they rely on fewer
iterations, it is natural to comment on the number of iterations needed for our main result.
The first step of the iterative deletion process shows that aidygayer will bid at most
v —d; this step requires as many iterations as the number of possible bids minus one. (Note
that only one iteration is needed to conclude that typéayers bid at most — d if weakly
dominated strategies are deleted.) The second step of the deletion process shows that for
large enough, bidding below— d is dominated by — d. The number of iteration used in
the proof above to establish this step equals the number of possibl2 Himlsever, only
one iteration is needed to show that, in the limit, almost surely, the winning bid-ig.1

Thus the number of iterations required for the result is roughly linear in the number of
possible bids, and this can be reduced to two if the solution concept is strengthened to be
based on weak dominance and the conclusion is weakened to hold with high probability
for the winning bid.

It is also worth noting that the bounds that the propositions yield regarding the number
of players needed are loose. For instance, consider the standard independent private-
value model with a uniform distribution. Then for Eq. (11) to be satisfied whes 2,
approximatelyr > 30 is necessary. However, it is easy to see that2 implies that a
player with value 1 bids 12.

4.4. Finiteness

A key assumption for our results is the finiteness of the set of possible bids. To
understand the role of finiteness, consider the case where bids musBbe {4/i: i =
1,2,...}, and let the values be distributed uniformly on the unit interval. In this case it
is easy to see that fany m large enough, the bid = 1/m survives iterated deletion
of P-dominated bids for all types with > 1/(m — 1). (The bidd is a best reply to
the strategy profile in which everyone with> 1/m bids 1/(m + 1), and so on, so

9 The proof does not delete as many strategies as possible in each step so the result may require fewer
iterations.
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survives iterative deletion.) As another example, observe that in the symmetric model with
independent values and a continuum of typebjdding half the Nash equilibrium bid is

not iteratively dominated. (This strategy is a best reply to types belbidding half their

Nash equilibrium bids, and those above bidding their Nash equilibrium bids, so will never
be deleted.)

Battigalli and Siniscalchi (2000) analyze the case where the bids and values are noton a
grid (thus are any number {i®, 1]) and allow for any: (not necessarily large). As follows
from the above examples, they show that any small positive bid is rationalizable. They also
go beyond this intuition and show that the rationalizable set includes any bid between 0 and
some bid that is strictly greater than the Nash equilibrium bid, and they provide methods
for calculating the upper bound precisely.

Thus, the finiteness of the possible bids is crucial. However, the finiteness of the type
space does not seem crucial. It seems obvious, though we have not verified all the details,
that our analysis carries through also when only the bids are restricted to a finite grid, and it
is commonly known that the values are distributed according to some distribution function
with density at leas$ on [0,1]. The result would then be that for amy n € (0, 1/m),
andsé > 0 there existsV(m, n, §)such that for any: > N(m, n, §) only the bidk/m will
survive iterated deletion aP-dominated strategies for any types [k/m + 7, (k+1)/m].
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