
CHAPTER 5

Rationality and knowledge in game theory

Eddie Dekel and Faruk Gul

1 INTRODUCTION

The concepts of knowledge and rationality have been explicitly applied by
economists and game theorists to obtain no-trade results and to character-
ize solution concepts of games. Implicitly these two concepts underlie much
recent work in these fields, ranging from information economics through
refinements to attempts to model bounded rationality. Our discussion of
the game theoretic and economic literatures on knowledge and rationality
will focus on these foundational issues and on the characterizations of
solution concepts. Our discussion builds on Harsanyi's (1967) foundation
for games of incomplete information and Aumann's (1976) model of
common knowledge, on the one hand, and, on the other hand, Bernheim's
(1984) and Pearce's (1984) characterization result that, if rationality is
common knowledge, then in normal-form games players will choose
strategies that survive iterated deletion of strongly dominated strategies.1

We begin in section 2 by responding to recent explicit and implicit
criticisms of this research agenda. These criticisms are based on the idea
that various paradoxes demonstrate that common knowledge of rationality
is a problematic notion. We argue instead that these paradoxes are the
result of confusing the conclusions that arise from (equilibrium) analysis
with assumptions about behavior.2 A simple example concerns the paradox
of cooperation in the Prisoners' Dilemma. Clearly the outcome of the PD
will be symmetric. Thus, some have argued, the non-cooperative outcome
cannot be the consequence of common knowledge of rationality since, by
symmetry, if a player chooses to cooperate so will her opponent. This
confuses the conclusion that equilibrium play is symmetric, with the
presumption that when a player considers deviating from equilibrium she
can assume that all others will symmetrically deviate with her.3 The section
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examines this and other paradoxes in more detail. We do not intend to
argue that rationality is an uncontroversial assumption, and we agree that
an important agenda is to understand its role better and to consider
alternative assumptions. Nevertheless, we do claim that rationality is a
fruitful assumption and that, in fact, it sheds much light on these paradoxes.

The second fundamental issue we examine is the underpinnings for the
basic model of asymmetric information in economics and game theory. (This
is the topic of section 3; this section is rather abstract and, except for
subsection 3.1 and 3.3.1, can be skipped with (almost) no loss of continuity.)
The very definition of common knowledge, and hence its applications to
characterizations of solution concepts, requires that there is a model of the
environment, including a state space and information partitions, that is
common knowledge among the players. We ask what are the justifications
for this assumption and what are the limitations of these justifications. We
address these questions using both the Bayesian model familiar to econom-
ists, and the syntactic models which have been recently introduced into
economics; we also examine the connection between the syntactic view of
knowledge as information and the Bayesian notion of knowledge, belief with
probability 1, which we call certainty. One limitation we point out is that the
justifications for assuming a commonly known model do not imply that the
assumption that players have a prior belief on the state space is warranted.
Thus, we raise a concern with notions such as ex ante efficiency and the
common prior assumption (CP A), which rely on the existence of such a prior.

Sections 4 through 6.2 are the heart of the chapter; here we characterize
solution concepts, using the model of knowledge and certainty developed in
section 3, in terms of assumptions concerning the players' knowl-
edge/certainty about one another and their rationality. We begin in section
4 by appending normal-form games to the model of knowledge and
certainty and we review both the equivalence between common knowledge
of rationality and iterated deletion of strongly dominated strategies, and
characterizations of other equilibrium concepts. Due to our concerns about
the CPA and other assumptions, and their necessity in some characteriz-
ations, we conclude with dissatisfaction with these epistemic justification of
certain solution concepts, such as Nash equilibrium.

Section 5 examines extensive-form games. Several papers have obtained
different, apparently contradictory, conclusions concerning the implica-
tions of assuming common knowledge/certainty of rationality in extensive-
form games. These conclusions include that standard models are incom-
plete (Binmore (1987-8), Samet (1993), Stalnaker (1994)), that common
knowledge of rationality is problematic or inconsistent in extensive-form
games (Basu (1990), Bicchieri (1989), Bonanno (1991)), that backwards
induction is implied by common knowledge of rationality (Aumann
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Rationality and knowledge in game theory 89

(1995a)), and that backwards induction is not implied by common certainty
of rationality (Reny (1993), Ben Porath (1994)). We show that the model of
knowledge and belief from section 3 is sufficient to provide a unified
framework for examining these results, and we present several characteriz-
ations. These characterizations shed light on the elusive issue of what are
the implications of common knowledge and certainty of rationality in
extensive-form games. We feel that the most natural assumption is common
certainty of rationality; this assumption characterizes the solution obtained
by applying one round of deletion of weakly dominated strategies and then
iterated deletion of strongly dominated strategies, which we call rationaliz-
ability with caution (see Ben Porath (1994) and Gul (1995b)).

Section 6 examines what happens if common certainty is weakened to
various notions of almost common certainty. Not only does this allow us to
investigate the robustness of different solution concepts and characteriz-
ations when replacing common certainty with these various notions, but it
also enables us to characterize some refinements. In section 4 we observe
that refinements and common certainty are inconsistent. In particular, this
suggests that the idea that iterated deletion of weakly dominated strategies
follows from some basic premise concerning caution and common knowl-
edge (see, e.g., Kohlberg and Mertens (1985)) is flawed. In section 6.2 we
show that the closest result one can get is that almost common certainty of
caution and rationality characterizes rationalizability with caution - the
same solution concept as results from common certainty of rationality in
extensive-form games.

Section 6.3 uses the notion of almost common knowledge to raise
concerns about refinements of Nash equilibrium, and to obtain new
"refinements." We consider two notions of robustness for solution con-
cepts. In the spirit of Fudenberg, Kreps, and Levine(1988), we first consider
the following requirement. A solution concept is robust if, given a game G,
the solution of G does not exclude any outcomes that it would accept if
applied to some game in which G is almost common certainty. Rationaliza-
bility with caution is the tightest refinement of iterated deletion of strongly
dominated strategies that is robust in this sense. Kajii and Morris (1995)
and Monderer and Samet (1989) investigate a related notion of robustness:
a solution concept is robust in their sense if any predicted outcome of G is a
prediction in all games where G is almost common certainty. Different
notions of almost common certainty lead to different conclusions concern-
ing which solution concepts are robust. Monderer and Samet (1989) show
that £-Nash equilibrium is robust using a strong notion of almost common
certainty; Kajii and Morris (1995) use a weaker notion and show that the
only standard solution concept that is robust in their sense is that of a
unique correlated equilibrium.
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Section 7 considers models of asymmetric information where the
information structure need not take the form of a partition. The connection
between this and weakening the notion of knowledge is discussed, and the
implications of these weakenings are explored. The section concludes with a
discussion of the problems of this literature.

We need to make one final organizational point. The discussion of various
interesting issues, that are related to our presentation, would be disruptive if
included within the main body of the text. In addition to simply ignoring
many issues, we adopt a non-standard use of footnotes to deal with this
problem: we include formal statements and proof sketches within some
footnotes.

Many disclaimers are appropriate; the following three are necessary.
First, we describe ourselves as presenting and showing various results, but it
should be understood that most of the chapter reviews existing work and
these terms do not imply any originality. Second, while we make sure to
reference the source of all results, and attempt to mention and cite most
related research, for brevity we tend to cite the relevant work once rather
than on every occasion. Finally, studying a large number of concepts and
theorems formulated in different settings within a single framework, as we
do here, has its costs. We cannot expect to do full justice to original
arguments or hope to convey the full strength of the authors' insights. Thus,
we do not expect to provide a perfect substitute for the authors' original
treatment of the issues discussed below. However, a unified treatment and
the comparisons it enables has benefits that hopefully will offset the
inevitable loss such a treatment entails in the analysis of each individual
theorem.

2 A RATIONAL VIEW OF SOME PARADOXES OF
RATIONALITY

The purpose of this section is to provide a single "explanation" of some
familiar and some new paradoxes of rationality. We begin with an informal
review of the paradoxes, and then offer our resolution.

2.1 The paradoxes

2.1.1 The Prisoners'Dilemma

The term paradox refers either to a logical inconsistency or a counter-
intuitive conclusion. For most game theorists and economists the
Prisoners' Dilemma poses neither of these. Instead, it offers a simple and
valid insight, perhaps the most basic insight of game theory; the conflict
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between individual and group incentives and the resulting inefficiency. For
non-game theorists, the Prisoners' Dilemma is apparently much more
problematic (see Campbell and Sowden (1985)) and thus it serves as the
ideal starting point for our analysis. The argument is the following. The
obvious symmetry of the problem faced by the two agents is sufficient for
anyone analyzing the problem (including the players themselves) to
conclude that both agents will take the same action. Hence, player 1 knows
that the outcome will be either cooperate-cooperate or defect-defect. It
follows that if player 1 cooperates then cooperate-cooperate will be the
outcome whereas if he defects then defect-defect will be the outcome. Since
the former yields a higher payoff than the latter, rationality should lead
player 1 to cooperate. This conflicts with the obvious dominance argument
in favor of defecting. Most economists not working on epistemic founda-
tions of rationality will probably dismiss the above argument for cooperat-
ing by saying that the assertion that both agents will take the "same" action
is true only in equilibrium which according to the dominance argument
specifies that both agents will defect. If player one chooses to cooperate (or
contemplates cooperation) this is a deviation and hence the equilibrium
hypothesis, that both agents will take the "same" action, is no longer valid.4

2.7.2 Newcombe's Paradox

Closely related to the preceding discussion is the well-known Newcombe's
Paradox. Suppose that a person is faced with two boxes: box A contains
$1,000 and box B contains either zero or one million dollars. The person
can choose either box B or both boxes. The prizes are placed by a genie who
has profound insight into the psyche of the person and thus knows whether
the person will choose both boxes or just one. If the person is to choose both
boxes than the genie will put zero dollars into box B. If the person is to
choose only box B, then the genie will put one million dollars into box B. By
the time the person makes a choice he knows the genie has already made his
decision as to how much money should go into box B. Thus, as in the above
analysis of the Prisoners' Dilemma, a simple dominance argument suggests
that the person should take both boxes. However, the infallibility of the
genie suggests that the decision to choose box B alone yields one million
dollars while the decision to choose both yields $1,000. Hence the person
should choose box B alone.5

2.1.3 The paradox of backward induction

In the three stage take-it-or-leave-it game (see figure 5.1), the finitely
repeated Prisoners' Dilemma, and other similar games, the apparently
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Figure 5.1 The three-stage take-it-or-leave-it game

compelling logic of backward induction suggests a solution that appears
unintuitive. Yet, until recently, the strategy of always defecting in the
repeated Prisoners' Dilemma was viewed to be the only "correct" solution
that intuitively satisfies common knowledge of rationality. The issue of
extensive-form games is discussed in more depth in section 5, where we
show that a formal model of common knowledge of rationality does not
yield the backward-induction outcome.

2.1.4 Bonanno's Paradox

In a recent paper (discussed further in section 5 below), Bonanno (1991)
provides a more precise statement of the following paradox: Let R be the set
of all propositions of the form

{((PJ -> {n > x)) and ((Pp) ̂ (n< y)) and (x > y)} - i ( P , ) ,

where objects in parenthesis correspond to propositions as follows: (Pa) is
the proposition that "the agent chooses a"; (n > x) is, "the agent receives
utility no less than x;" (Pp) and (n < y) are defined in an analogous manner;
and, finally, (x > y) is the proposition "x is strictly greater than y" Thus R is
the proposition that an agent faced with these choice of a or p is rational.
Suppose, for instance, that the agent faces a choice between a and b where a
will yield 100 dollars and b will yield zero dollars. Thus, we have (Pa or Pb)
and ~~i(Pa and Pb). Suppose we postulate R to capture the hypothesis that
the agent is rational. Then we conclude from the parameters above and the
assumption of rationality that the agent does not choose b. It follows that
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Figure 5.2 The game of the absent-minded driver

the proposition (Pb -+(n> 1000)) is true by virtue of the fact that (Pb) is
false. Then applying R again to (Pb-+(n > 1000)) and (Pa^(n < 100))
yields —I (Pa) which, together with —i (Pb\ contradicts the fact that the agent
had to choose either a or b. Thus rationality is impossible in this
formulation.

2.1.5 Piccione and Rubinstein's Paradox

Consider the problem described in figure 5.2. A person with imperfect
recall is faced with the choice of choosing JR or D. If he turns out to be in
node 1, R will have very unpleasant consequences. Choosing D at node 1
leads to node 2 which, owing to imperfect recall, is a situation that the
decisionmaker considers indistinguishable from node 1. Choosing R at
node 2 yields the most desirable outcome while choosing D a. second time
yields an intermediate outcome. The optimization problem faced by the
decisionmaker is the following. He must choose a probability p with which
to play the action D (and hence R is played with probability 1 — p). By
imperfect recall, the same p must be used at each information set. Hence
the decisionmaker must maximize 4p(l — p) + p2, yielding p = 2/3. The
first observation here is that the optimal strategy is unique but not a pure
strategy. Second, and this is what Piccione and Rubinstein (1995) consider
paradoxical, if the decisionmaker were Bayesian and assign a probability a
to the event of being at node 1, then his decision problem would be to
maximize a[4p(l — p) -f p2] + (1 — a)[p -1-4(1 — p)]. It is easy to verify
that, for any value of a other than 1, the solution of the second optimiz-
ation yields an answer different from 2/3. Thus, we are either forced to
insist that a Bayesian agent facing this problem must always assign
probability 1 to being at node 1, or we must accept that the ex ante
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solution differs from the Bayesian solution. That is, if we want to allow the
probability of being at node 1 to be less than 1, we must accept the
dynamic inconsistency.

2.2 The resolution

The purpose of this section is to isolate a "common cause" for each of these
paradoxes. Whether this counts as a "resolution" is not at all clear. If by
paradox we mean unexpected or surprising result then we may continue to
believe that the results are surprising even if we agree as to what the main
cause of the paradox is. On the other hand, if by a paradox we mean a
logical inconsistency then understanding the cause certainly does not
remove the original inconsistency. Of course, we hope that the reader will
agree that the same "cause" underlies all of these paradoxes and, having
identified this cause, will find the paradox less surprising or the inconsist-
ency less troublesome as a comment on rationality.

Let us start with the Prisoners' Dilemma which is likely to be the least
controversial for game theorists and economists. Most game theorists
would agree that the rational course of action in the Prisoners' Dilemma is
to defect. But then what happens to the claim that the two agents will
choose the same action? This is still satisfied if both agents defect and will be
satisfied only if agents behave as they are supposed to, i.e., in equilibrium.
That is, we are investigating what outcomes are consistent with the given
assumptions: that the players are rational and the outcome is symmetric.
The reason that economists and game theorists are not puzzled by the
paradox of the Prisoners' Dilemma as perceived by philosophers is that this
kind of reasoning is very familiar from (Nash and competitive) equilibrium
analysis. Whenever we investigate the implications of a set of assumptions
including the assumption that each agent is rational, we are forced to justify
the rationality of a given agent by comparing what he expects to receive if he
behaves as we predict with what he expects to receive if he behaves
otherwise. But when he contemplates behaving otherwise he cannot expect
that assumptions made about his own behavior will continue to hold, even
if these were very reasonable assumptions to begin with. If we insist that the
rational agent will expect assumptions about his own behavior to continue
to hold even as he deviates, then we will be confronted with paradoxes.

The application of this idea to the Prisoners' Dilemma is clear. The
defense of the cooperate-cooperate outcome relies on showing than
defect-defect cannot be the answer since by deviating an agent can conclude
(by using the assertion that he and his opponent will take the same course of
action) that cooperating leads to cooperate-cooperate which is better that
defect-defect. But clearly, in this argument we are using the fact that player
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1 knows that player 2 will choose the same course of action even as 1
contemplates deviating. Hence the contradiction.

The analysis of Newcombe's paradox is similar. If we were confronting
this genie, then we would surely take both boxes. So, if the genie is as
knowledgeable as claimed, he will put nothing in box B. If we were to
deviate, then the genie would be wrong (but of course we would not gain
from this deviation). If we hypothesize the existence of a genie that is always
right, even when somebody deviates, then we will get a contradiction.

The fact that the same factor is behind the backward induction paradox
is more difficult to see for three reasons. First, the dynamic nature of the
strategic interaction forces us, the analysts, to discuss not only the
possibility that a player may contemplate deviating, but also the fact that if
he does deviate, then some other player will get a chance to observe this
deviation. Hence, we are forced to analyze the deviating player's analysis of
some other player's reactions to the deviation. Second, in the backward-
induction paradox, unlike the remaining paradoxes discussed in this
section, identifying the cause does not immediately suggest an alternative
model that is immune to the problem identified. This can be seen from the
fact that a number of other game-theoretic solution concepts, such as Nash
equilibrium or iterative removal of weakly dominated strategies, yield the
same backward-induction outcomes in the well-known examples such as
the take-it-or-leave-it game or the repeated chain store paradox or the
repeated Prisoners' Dilemma. Nevertheless, identifying the cause is the first
step to the more sophisticated non-backward induction theories and the
more elaborate arguments for backward induction that will be discussed in
section 5. The task of evaluating other concepts, such as Nash equilibrium
or iterative weak dominance, need not concern us here. As we will discuss in
section 5, the cause of the backward-induction paradox is by now well
understood. Implicit in the backward-induction argument is the assump-
tion that, if the second information set were reached in the game depicted in
figure 5.1, then player 2 continues to be certain that player 1 is rational even
though this is precisely the assumption utilized in concluding that the
second information set will not be reached.

Once again, the difficulty stems from insisting on apparently plausible
assumptions regarding the behavior of some player even in the face of
deviations. (In particular, the assumption that rationality is common
knowledge and the conjecture that this implies the backwards-induction
solution are upheld in the face of behavior that conflicts with the
combination of these two statements.) The added difficulty of the paradox
comes into play at this stage: we know where the difficulty is but the
resolution - unlike those discussed above - is not agreed upon by game
theorists. Some authors have concluded at this stage, that we must give up
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on backward induction while others have suggested stronger notions of
rationality for extensive-form games. Yet others have argued that, while we
must give up on backward induction as a consequence of common
knowledge of rationality, alternative plausible assumptions about behavior
may (in certain games) yield backward induction. Some of the work along
these lines will be discussed in section 5. Our current objective is only to
note that the origin of the paradox is the same in all the cases studied in this
section.

In Bonanno's Paradox we can see the same effect coming in through the
fact that rationality is postulated throughout the model, and not used as a
test of outcomes. Thus, even as the agent contemplates (or chooses) the
irrational b, the proposition "the agent is rational" is maintained. Hence, by
making the irrational choice the agent can create a falsehood. But a false
proposition can imply anything, in particular it can imply that the agent
receives an infeasible level of utility. Which makes the irrational action very
rewarding and yields the contradiction.6

The Piccione-Rubinstein Paradox is more subtle but also similar.
Consider the calculation that the Bayesian rational person is to undertake:
choose p so as to maximize a[4p(l — p) + p2'] + (1 — a)[/? + 4(1 — p)].
Implicit in this calculation is the assumption that whatever p is chosen
today will be implemented tomorrow as well, even if the choice of p reflects
some sort of deviation or irrationality. Setting aside the question of whether
giving a memoryless agent this implicit ability to recall past actions is a
good modeling choice, we note that the absence of perfect recall presumably
means that the agent cannot systematically implement different plans at the
two nodes. It does not mean that the actions chosen at the two nodes are by
logical necessity the same. To see this note that if the actions are by logical
necessity the same then the agent's decision to change his mind, and choose
p 7̂  2/3, would have no meaning were he, in fact, at the second node.
Alternatively put, when the agent makes a choice, since he does not know at
which node he is located, his deviation must assume that whatever he
planned to do originally - in this case p = 2/3 - stills holds elsewhere. As in
the other paradoxes above, the analysis of the agent's rationality requires
the analyst to assume that everything else that the agent cannot change is
held constant.

This resolution, based on dropping the logical equivalence between the
agent's choices at both nodes, is discussed by Piccione and Rubinstein
(1995) in the section entitled "Multi-selves approaches." The analysis there
proceeds as follows. First, they fix p and compute a(p), the long-run relative
frequency of visiting the first node for an agent that exits with probability p
at each node. Next, they ask what should p be so that p' = p maximizes
P'[«(P)P + 4(1 - p) + (1 - a(p))] + (1 - pf)A{\ - a(p)). They show that for
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Figure 5.3

p = 2/3 - which is the value of p that maximizes expected utility when ex
ante commitment is possible - any /?', in particular p' = p = 2/3, is a
maximizer. Thus, they observe that having the decisionmaker view his
"other" self as a distinct agent resolves the paradox. They find this
resolution unconvincing, however, noting that treating a rational decision-
maker as a collection of agents allows for the possibility that (/, L) is a
solution to the single-person decision problem described in figure 5.3. They
state that this way of dealing with imperfect recall ignores the fundamental
difference between single-person and multi-person situations. They argue
that it should be possible for a rational decisionmaker to change his
strategy, not just at the current information set but also in the future. By
contrast, we think that this resolution of their paradox does not require that
agents are stuck with arbitrary and inefficient behavior in the future. It is
only required that the agent should not assume that changing his mind now
(i.e., deviating) will generate a corresponding change later in the same
information set. To get back to the theme of this section, if at node 2, the
agent cannot remember whether he has been to node 1 or not and hence
what he has done at node 1, then the requirement that he take the same
action at both nodes can hold only if he does what he is supposed to do; not
if he deviates. This is not an endorsement of a full-blown, non-cooperative
(multi-agent) equilibrium approach to the problem of imperfect recall. We
may rule out (l,L) as a possible solution to the problem described in figure
5.3 because we find this to be an unacceptable plan for the agent given that
r, R) is also a feasible plan. It does not follow from this that a decisionmaker
implementing the plan p = 2/3 in figure 5.2, when faced with the actual
implementation, can assume that if he were to choose to go down without
randomizing, he would end up with a payoff of 1 for sure. Modeling the
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problem of imperfect recall in this manner (i.e., by postulating that a
deviation at one node guarantees a similar deviation at a subsequent node)
causes the paradox noted by Piccione and Rubinstein.

What is worth emphasizing in all of the paradoxes discussed above is that
the driving force behind each of them is a statement that most of us would
find a priori quite plausible (hence the paradox): it certainly makes sense
that both players should take the same action in the Prisoners' Dilemma,
especially since the same action is dominant for both of them; in New-
combe's Paradox the agent has a dominant action so it makes sense that a
genie would know how she will behave, the simple argument for backward
induction is very intuitive and compelling, postulating that a rational agent
will choose the higher payoff is certainly not far-fetched, and it is almost by
definition that an agent who cannot distinguish between two nodes should
not be able to implement different actions at these two nodes. The purpose
of this section has been to use an idea very familiar to economists to suggest
a way of resolving all of these paradoxes. We certainly do not wish to claim
that all logical inconsistencies can be removed in this manner. We only
suggest an informal modeling idea that might help in avoiding these and
other paradoxes of rationality. We feel that our resolution is implicit in the
epistemic models that we discuss in sections 4, 5, and 6.7

3 WHAT IS A STATE O F T H E W O R L D AND IS T H E
M O D E L C O M M O N K N O W L E D G E ?

We outline here the topics of the subsections to follow. In subsection 3.1 we
briefly review the basic model of asymmetric information used in economics
and game theory, and discuss the connection with a model commonly used
in other fields, called a Kripke model. We formally define a knowledge
operator, discuss its relation with the partition model of information, and
review the formal definition of common knowledge.8 The main conclusion
is that the standard interpretation of the definition of common knowledge
implicitly assumes that the model itself is common "knowledge." In some
contexts, where knowledge or information arises through a physical
process, prior to which agents have identical information, the meaning of
this assumption is clear. Moreover, in such contexts it is conceivable that
the model (i.e., the description of the information-acquisition process) is
commonly "known." In subsection 3.2 we take as a starting point a
situation of incomplete information, where players' knowledge and beliefs
are already formed and a real ex ante situation does not exist. In this case
the choice of model to represent these beliefs and knowledge is not clear.
Moreover, it is not clear a priori that a model chosen to represent these
beliefs can be assumed to be common "knowledge." So in this case such an
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assumption needs justification. We provide such a justification by present-
ing two ways to construct a commonly known model, using first a syntactic
approach for modeling knowledge, and then Harsanyi's (1967) Bayesian
approach, which is based on a probabilistic notion of knowledge that we
call certainty. Subsection 3.3 discusses the relationship between knowledge
and certainty. Finally, subsection 3.4 discusses the limitations of these two
solutions to the problem. While they both construct a commonly known ex
ante model, the construction does not generate a prior. Hence we argue that
ex ante notions of efficiency and assumptions such as the common prior
assumption, are not sensible in contexts where a real physical ex ante stage
does not exist, that is, in all situations where Harsanyi's justification of the
model of incomplete information is needed.

3.1 The issue

In order to understand the first issue that we will discuss, it is necessary to
review the basic definition of knowledge and common knowledge in an
environment of asymmetric information. An information structure is a
collection </ = (Q, {JFb Pi)ieN). The finite set Q is the set of states of the world.
Each player i e N, where N is the finite set of players, has a possibility
correspondence 3F •;. Q -• 2Q, where #\-(co) is the set of states i considers
possible when the true state is co. We abuse notation and also denote by 3F{

the set of possible information cells {Ft a Q: Ft = #\{co) for some co}. The
standard interpretation in economics is that when the true state is co, i is
informed that one of the states in #\-(co) occurred. For now J%- is assumed to
be a partition of Q; justifications for this assumption will be presented
below, and weakenings will be presented in section 7. Finally, pt e A(Q) is a
prior over Q. We will usually assume that each cell in #" • has strictly positive
probability, so that conditional probabilities pt{-1 #\(co)) are well defined. In
cases where p^ico)) = 0 for some state co, we (implicitly) assume that the
model is extended to some specification of all the conditional probabilities,

f
In most economic models, a state co describes something about the real

world, for example, the different states might correspond to different
preferences for one of the players. Thus, a model will specify, for each state,
the value of the relevant parameters of the real world. For example, f s
utility function at co can be denoted by ut(co); the event that fs utility
function is some particular w. is denoted by [wj = {co e Q: u^co) = wt}. This
is clarified further and formalized in subsection 3.2.1 below. A model of
asymmetric information, J, combined with such a specification, will be
called a Kripke model (see, e.g., Fagin et al. (1995, chapter 2.5)). Throughout
section 3 the term model refers to a model of asymmetric information, J>,
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100 Eddie Dekel and Faruk Gul

either on its own, or appended with such a specification, i.e., a Kripke
model. (The context will clarify the appropriate notion.)

We say that agent i knows an event AeClat state co, if f s information in
state co implies that some state in A must be true: #^(co) a A. Therefore, the
set of states in which, say, 2 knows A is K2(A) = {co: 3P\(co) a A}; similarly
the set of states at which 2 knows that fs utility function is ut is K2([uJ). So,
at state co, 1 knows that 2 knows A if &* x{to) a K2(A). Continuing in this
way Aumann (1976) showed that at a state co the event A is common
knowledge - in the sense that all players know it, know they know it, etc. - if
and only if there is an event F in the meet of the partitions with
^iico) c F c A. The meet of a collection of partitions is the finest partition
that is a coarsening of all partitions in the collection, denoted by A ^ J 2 ^ . It is
easy to see that the meet is a partition that includes all the smallest events
that are self evident, where self-evident events are those that are known to
have occurred whenever they occur: F is self evident if for all i and all
coeF,^^co) a F. (Clearly the union of disjoint self-evident sets is self
evident and will not be in the meet; hence the qualification to smallest
events.)

To summarize and further develop the above argument, given the
possibility correspondences !F{ we have derived operators K{. 2n -> 2n

which tell us the set of states at which i knows an event A;
Kt(A) = {co'.^^co) <= A}. This construction then tells us, for each state of
the world co, what each player knows, what each player knows about what
each player knows, etc. This operator satisfies the properties below.

T Kt(A) a A: if i knows A then A is true;
MC K-(A) n Kt(B) = Kt{A n B): knowing A and B is equivalent to

knowing A and knowing B;
N Kt(Q) = Q: player i always knows anything that is true in all states

of the world;
4 K^A) c= K^K^A)): if i knows A then i knows that i knows A;
5 —iKi(A) cz X^—iK^)), where—i denotes complements: not know-

ing A implies knowing that A is not known.

These properties can be used to axiomatically characterize knowledge
and partitions. That is, instead of starting with partitions #\., and deriving a
knowledge operator Kt which satisfies these properties, we could have
started with such an operator Kt and derived the partitions. Formally,
given any operator Kt satisfying these properties, one can define a
possibility correspondence J%:Q -> 2Q by #\(a>) = n{A c Q:coeXI(A)},
and such a possibility correspondence in turn would generate the same Kt

according to the definition above. In fact, the only properties needed for this
result are [MC] and [N]. (We allow <F\ = 0; if we wanted to rule this out we
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would need to add the axiom K$) = 0.) It is straightforward to check that
properties [T], [4], and [5] imply that ^ will be a partition. We can now
define KM(A) to be the event that all i in M c: N know
A, KM(A) = nieMK£A), and then the event that A is common knowledge is
simply CK(A) = n^= ^^(A), where Kn

N denotes n iterations of the KN

operator. In his discussion of reachability, Aumann (1976) shows that
CK(A) = u {F:Fe Al€iVJ% F c A}; the interpretation of this result is that A
is common knowledge at co if the member of the meet of the partitions at co is
contained in A.

But, as Aumann (1976) pointed out, for this interpretation we must
assume that 1 "knows" 2's information partition, since this is needed to
interpret the set of states Kl(K2(A)) as the set in which 1 knows that 2 knows
A. Moreover, we will need to assume that the partitions are common
"knowledge" among the players. We use quotes around the words know
and knowledge since it is not the formal term defined earlier; it is a meta
notion of knowledge that lies outside our formal model. But the fact that
this knowledge is not formally within the model is not the main issue. Our
concern is whether it is reasonable to assume that the information structure
is common "knowledge," informally or otherwise.

The assumption that the information structure is common "knowledge"
is easy to interpret if there is an actual ex ante situation and "physical"
procedure that leads to asymmetric information. For example, this is the
case if the underlying uncertainty Q is the amount of oil in some tract, and
each of two firms is entitled to take one soil sample, and there is a thorough
understanding based on published experiments of both the prior likelihood
of oil and of the distribution of possible soil samples as a function of the oil
in the tract. In contrast, consider the case where the agents already have
their perceptions (i.e., knowledge or beliefs) about the world, and there was
no ex ante commonly known physical environment which generated their
perceptions. Following Harsanyi (1967), we call this a situation of incom-
plete information. Can we model this situation of incomplete information
as one that arises from a commonly "known" starting point (i.e., as i/we are
at the interim stage of a commonly "known" physical procedure such as the
oil-tract story above)?9

Before discussing the way this issue has been addressed, it is worth
clarifying why it is an issue at all. Clearly, if the model that we write down is
not common "knowledge," then it is not a complete description of the
players' views of the world. So, in a basic sense the model is incomplete.
While this is a concern, there is a more disturbing issue. If the model is not
commonly "known," we can no longer justify solution concepts, or any
other conclusions that rely on the hypothesis that some event is common
knowledge, such as the no-trade results. How can one interpret an
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assumption that rationality, or anything else, is commonly known when
there is no commonly "known" model within which to define common
knowledge?10

Thus, our objective in the next subsection is to start with a description of
an arbitrary situation of incomplete information, and develop a model and
a state co* e ft, such that if the model is commonly "known," the knowledge
(according to the Kt operators) of the agents at a>* coincides with the
knowledge contained in the original description of the incomplete-informa-
tion situation.

3.2 Constructing a model that is commonly "known"

Aumann (1976) argued that, if the model is complete, in that each state co is a
complete description of the state of the world, then the model is common
"knowledge" (at least so long as Q is common knowledge). This is because a
complete specification of a state should determine the partitions and beliefs
of all the players in that state, so if the set of states is common "knowledge"
then the partition cell (and beliefs corresponding to that cell) for each state
will be common "knowledge."

While this seems compelling, it does not say, for example, that a complete
model exists, nor does it say how, from a complete description of a situation
which is not common knowledge, a commonly "known" model can be
constructed. Understanding the construction is important, since, if we are
going to impose assumptions on the constructed space, we need to know
how to interpret these assumptions in terms of our starting point, which is a
situation of incomplete information and not a commonly "known" model.

Thus, the first question that we will consider is what is a state of the
world; what constitutes a complete description. Naturally, it will include
two aspects: what is true about the physical world, and what is true about
the epistemic world, i.e., what players know.

A preliminary example Assume that a description of the state of the world
included the following: (1) a description of the true physical world, which
can be either p or —\p, and (2) what each player knows about p and —\p. In
particular, say, a state could be the specification p, player 1 knows p holds,
and knows that it is not the case that —\p holds, and player 2 does not know
whether it is p or —i p that holds, but 2 knows that either p or —I p holds. If we
do not say anything further there are many models which would generate
this knowledge. For example, consider figure 5.4, where ovals are l's
partition and rectangles are 2's partition, and co* indicates the true state of
the world. In model (a\ ft = {co*,co}, # \ = {{a>*},{co}}, #"2 = {{co*,co}}.
In the second model (b\ ft = {co*,co,co',co } , 3P\ = {{co*,a/},{a>,co"}},
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Figure 5.4 Two information structures, which at co*, coincide insofar
as our partial description of a situation can determine, but differ in
terms of the knowledge they imply if they are assumed to be common
"knowledge"

J^2 = {{co*,co}, {co'}, {co"}}. In both cases to complete the (Kripke) model
we need to specify what aspects of the real world are true in the different
states: in (a), a property p is true in state co* and ~ip is true otherwise, while
in (b), p is true in states co* and co', and —tp is true otherwise. We can
immediately verify that in both of these models co*eK1(\j)~]) and
co* ^ X2([/?]), where [/?] is the set of states where p is true. Therefore, if we
assume only that the players "know" the model then the state co* does
incorporate the description above.

However, if we assume that these models are common "knowledge," then
they would generate many more statements about the players' knowledge
than our original description - in particular they clearly model different
epistemic situations. In (a), in state co* player 1 knows that 2 does not know
that p is true, while in (b) player 1 does not know this. So the assumption
that the model is common "knowledge" would be substantive, and we could
not use either model to say that given our description of a situation of
incomplete information, we can construct a commonly "known" model
with a state such that knowledge at that state coincides with the description.
How then can we construct an information structure that may be assumed
to be common "knowledge" w.l.o.g.?

It is clear what goes wrong in the example: a description needs to be
complete and should specify everything possible about the physical state of
the world and about the state of mind of the agents - including how they
perceive the state of mind of the other agents. Thus a description will be a
list of what is true of the physical world and all relevant perceptions of the
agents, including perceptions about perceptions. There will also be some
natural consistency conditions on states, for example, the description of a
state should not say that the physical world has some property and that it
does not have that property. More interesting consistency conditions arise
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concerning the perceptions of the agents, for example, it seems natural to
assume that the agent knows what she knows.

Thus, we are looking for a description of a situation of incomplete
information that is a "complete" list of "internally consistent" statements
about the agents, perceptions and the physical world. The next step is to
show that this description coincides with the knowledge at a state co* in
some commonly "known" model. This step is accomplished as follows.
With the notion of a complete description in hand, we will consider the set
of all such descriptions as a universal set of possible states, Q. Then, we
would like to find an information structure on Q which, if we assume it to be
common "knowledge," will generate in the state co* the same perceptions as
we used in describing the situation of incomplete information.11 (By
generate we mean calculate the agents' perceptions using the information
structure as if the structure is common "knowledge" - just like the
knowledge operators K( were derived from the possibility correspondences
J^- above.) Then we can say that taking this information structure to be
common knowledge yields nothing more nor less than our description. So,
we can work with models that are commonly "known," instead of with
complete descriptions.

3.2.1 The syntactic approach

The syntactic approach takes the view that a description of the world
should involve a specification of the true state, each person's knowledge
about the true state, each person's knowledge about the players' knowledge
about the true state, etc.12 Thus the syntactic approach starts with a
countable set of symbols representing the following objects: a set of basic
propositions, X = p,q,...; a set of players, i = l,2,...n; conjunction A;
negation ~~i; a constant representing truth T; and knowledge of i,kt.

13

The set of basic propositions, X, includes, for example, "it is raining," "it
is snowing," etc. Thus elements of X are not complete descriptions of the
physical world. A complete description of the physical world would be
{True, False}* - a specification for each basic proposition whether it is true
or false.

The language of sentences, L, is the smallest collection of sequences of
these symbols containing X that is closed under negation, conjunction, and
knowledge (i.e., if (/>, \jj e L then n ^ e L , (j)Ai// e L, and k^ e L). For example,
if X = {/?} then ~ipeL, as is /cfifcyp, where the latter is interpreted as i
knows that j does not know p. Since L is the smallest such collection, all
sentences have finitely many symbols. There is an alternative approach that
mirrors our construction in the next subsection; this approach builds up
longer and longer sentences starting from the basic propositions, X.
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Roughly speaking, the first step has two ingredients: (i) extending the set of
sentences from X to the set of all sentences that is closed under conjunction
and negation; and (ii) allowing knowledge to operate once on elements of
this closure of X. Then, inductively, consider the closure under conjunction
and negation of the just constructed set of sentences, and add one more level
of knowledge. In this way the language would be indexed by the depth of
knowledge one wants to consider. (For a precise development, see, for
example, Fagin, Halpern, and Vardi (1991).) This approach has the obvious
additional advantage of allowing sentences with infinitely many symbols
(by extending the depth of knowledge in the sentences transfinitely).
However, the notational complexity does not warrant an explicit develop-
ment, and we will informally discuss sentences with infinitely many symbols
where relevant.

The following axioms will be used to impose consistency in the definition
of a state.

T kt{A)->A, where the symbol 0 - > ^ stands for —i (</>/\—11/̂ ): if i
knows A then A is true;

MC k^A)/\kjfi) <-> ki(AAB): knowing A and B is equivalent to knowing
A and knowing B;

N ktT: agent i knows the truth constant;
4 kt(A) -• k^k^A)): if i knows A then i knows that i knows A;
5 —i ki(A) -> kt(—i kt{A)): not knowing A implies knowing that A is not

known.

Note the similarity to the assumptions on K( above. We will see that these
assumptions on kt generate partitions over states, just like the same
assumptions on Kt generated partitions #\. in subsection 3.1. The difference
is that Kt is an operator on exogenously given states, assuming that there is
some commonly "known" model. On the other hand, kt is a primitive
symbol for describing the players' knowledge in some situation of incom-
plete information; we will now show how it is used to construct a commonly
"known" model of a set of states and partitions.

In constructing the commonly "known" model the first step is to define
the set of states as all complete and consistent descriptions within our
language. To formalize this, a useful notion is that of a theorem: these are all
sentences that are true in every state. Formally, these include T and all
sentences that can be derived from the five axioms above using two rules of
inference: [MP] if (f) and 0 -> \jj are theorems then so is i//; and [RE] if (j) <-> ij/
is a theorem then so is k^ <-• k^. A complete and consistent description of a
state of the world is a subset of sentences in L that includes all theorems,
includes <j> if and only if it does not include —i (/>, and is closed under the
usual rule of logic, [MP], namely if the formulas (j) and 0 -* \j/ are in the
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state then so is ij/. A state of the world is thus a list of sentences that are
interpreted as true in that state, where the sentences fall into two categories:
sentences concerning only basic propositions in X and epistemic sentences
concerning knowledge (i.e., involving kt). Such states are artificial con-
structs describing imaginable situations of incomplete information.14 How
then do we construct a commonly "known" model? Consider the set of all
states of the world as just constructed. In each state co we can identify the set
of sentences that each individual knows: kt{co) = {^Ic^ew}. The natural
information structure is that at each state co, i cannot distinguish between
states where his knowledge is the same, so #\(co') = {co: kt(co') = k,(co)}.
Thus far, we have constructed a standard model of asymmetric information:
we have a state space Q and partitions SF^15 Finally, we associate with each
state in the model the basic propositions which are true in that state. Thus,
in addition to a standard model of asymmetric information, this construc-
tion yields a function specifying for each state which propositions in X are
true.16 In this constructed Kripke model we ignore the specification of
which epistemic sentences are true.

There is a formal equivalence between the Kripke models that we have
just constructed, and the complete description of states in our language.
The main point is that we can forget about the complete description of the
state and derive from the model - which includes only a set of points Q,
partitions of Q, and a list of those basic propositions in X that are true at
each co e Q - what each player knows, what each player knows about what
each one knows, etc., at a particular state of the world, using the assumption
that the model is common "knowledge." The sentences we derive in this way
will be exactly those in the complete description of the state. Formally, let
[^] be the set of states at which \jj is true, [i//'] = {co: xjj e co}; the result is that
\jf is known according to the language - i.e., the sentence k^xj/) is part of the
description of co, kj^ij/) eco- if and only if \jt is known according to the model
- coeK/([i/']).

17 Hence we have constructed a commonly "known" model
from a complete description of a situation of incomplete information.18

The construction and results above suggest that one can work with
standard partition models, define knowledge in the standard way - i knows
A at co if ̂ ((co) a A — and assume the partition and state space is informally
common "knowledge" w.l.o.g. However, this is not precisely the case. There
are two issues concerning the richness of the language L. Our original
model was based on this language, so only sentences c/> could be known
according to k-v So only events of the form [c/>] could be known.19 But in a
standard model of asymmetric information any event A a Q, can be known.
So assuming the model is common "knowledge" will enable us to say more
then we could using our language. For instance, if the model of figure 5.4b, is
commonly "known" then we could deduce the following:
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co* eKx(-i CK^p)), 1 knows that p is not common knowledge. But there is
no sentence expressing this in our language, as our language only had finite
sentences (and common knowledge requires infinitely many conjunc-
tions).20 Nevertheless, there is no other model that agrees with the model of
figure 5.4b on all finite sentences.21 Thus the finite language uniquely
determines the model here. So, while there are statements that the Kripke
model can imply that the language cannot even express, there is no doubt
that this model is "correct" and, assuming it is common "knowledge"
w.l.o.g., in that if we were to extend the language to infinite sentences we
would get exactly the same conclusions as arise from the model.

There is, however, a second, more worrisome, problem. In general the
model is not uniquely determined by what we called a complete description.
Moreover, there is no way to a priori bound the depth of statements about
knowledge that is needed to obtain a complete description.

Consider the two models in figure 5.5.22 Player l's partitions are ovals,
2's are rectangles, and 3's are diamonds. Assume the true state is any state of
the world co except co* and that p is a proposition that is true, say, only in
state co0 0. Then, formally, in the model of figure 5.5a, coeK3(—\CK12(p)),
while, in figure 5.5b, this is not true. If we assume, informally, that the model
is common "knowledge," then clearly all three players' knowledge coincide
in both models except that in 5.5b player 3 does not know that p is not
common knowledge among 1 and 2, and, in 5.5a, 3 does know this.
However, such a sentence would not be included in co since such sentences
were not part of our finite syntactic framework.

Thus, the syntactic framework cannot distinguish between these two
models while our informal common "knowledge" assumption does enable a
distinction. So we have not fully achieved our objective of constructing a
model that is common "knowledge" w.l.o.g. If we take as a complete
description all sentences about finite levels of knowledge, then in the
example of figure 5.5, assuming common "knowledge" of the information
structure is a substantive assumption providing more information than
originally contained in the, so-called, "complete" description.

One might think that the problem can be solved by allowing for a richer
language, namely one in which not only finite conjunctions are permitted,
but also conjunctions of sets of formulas of higher cardinality. Similarly,
perhaps the problem can be addressed by introducing a syntactic symbol
cM analogous to CKM for M c AT.23 However, there is no conjunction, and
no collection of symbols, which would be large enough - Heifetz (1995c (see
also 1995b)) shows that an example with the properties of figure 5.5 can be
derived no matter how many conjunctions and symbols are introduced.24

This shows that the sense in which the constructed model can be assumed
to be common "knowledge" w.l.o.g., depends crucially on the epistemic
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Figure 5.5 Two information structures, which, at any (oktk_ly coincide
insofar as our, so-called, complete description of a situation of
incomplete information can determine, but differ in terms of the
knowledge they imply if they are assumed to be common
"knowledge." Thus a "complete" description does not distinguish
between these two models, hence is not truly complete.

sentences which we want the model to incorporate. It is impossible to
construct a model which allows us to interpret all conclusions that can be
made with the model using the assumption that the model is common
"knowledge." Only those conclusions that are meaningful in our original
syntax are permitted. Alternatively put, while in figure 5.5a we could derive
a statement about X3("nCXlJ2(p)), we are not justified in interpreting this
as player 3 knowing that p is not common knowledge among 1 and 2.
Moreover, however large a language we start with, the model we construct
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will still have conclusions of this form - i.e., using Kts and CKMs, etc. - that
seem to have an intuitive interpretation, but whose interpretation is not
valid since they are not expressible in the syntax.

On the other hand, it might be that we do not care about results where,
say, CKMs appear transfinitely many times.25 If this is the case, i.e., if we can
a priori place a bound on the depth of knowledge about knowledge that is
of interest to us, then we can construct a model such that all the
"interesting" conclusions derived using the assumption that the model is
commonly "known" will be correctly interpreted. To do this we would
simply use the syntax that includes as deep an iteration as we are interested
in for our results.

In conclusion, the syntactic approach does construct a commonly
"known" partition model. Each state of the world is constructed from a
"complete" and consistent list of sentences, and the derived model specifies
only an abstract set of states, a specification of which elements in X are true
in each state, and partitions. Consider any sentence about the knowledge of
the individuals, that lies in some state of the world, say k^fyeco. Using the
Kt operators, we can derive an analogous result from the constructed
commonly "known" partition model: coeK£([(/>]). Assuming the construc-
ted model is common "knowledge" we thus obtain the same conclusions
from the partition model as from the syntactic sentence. The problem we
saw was that the converse is false: in the constructed model there are
statements about players' knowledge that could not arise in the sentences of
the syntactic framework. (That means that there may be formal results
which can be proven using models, and which can be interpreted using the
assumption that the model is common "knowledge," that could not be
derived in the given syntactic framework.) No particular syntactic language
enables a construction of a model which can be assumed to be common
"knowledge" in this stronger sense. The extent to which this problem
should concern us is not clear. First, instead of asking whether there is a
language that provides complete descriptions for all possible models, we
could reverse the order of the question. In fact, given any model that is
assumed to be common "knowledge," there is some syntactic language,
possibly a language that allows for "very many" conjunctions, that justifies
and provides a complete description of that model.26 For example, a
language which would distinguish between the models of figure 5.5 would
require either infinitely many conjunctions and/or a symbol for common
knowledge among a subset of players, cM. Second, as a pragmatic matter, if
there exists a sufficiently rich language, in the sense that it incorporates
every sentence that we might ever care about, then again, there is no
problem as we could just construct the models generated by that language.

Cambridge Collections Online © Cambridge University Press, 2006terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CCOL521580110.005
Downloaded from https://www.cambridge.org/core. IP address: 99.135.139.133, on 30 Jan 2018 at 16:49:55, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CCOL521580110.005
https://www.cambridge.org/core


110 Eddie Dekel and Faruk Gul

3.2.2 The Bayesian approach

Harsanyi (1967) argued that a complete description of a situation of
incomplete information would involve a specification of each person's
beliefs, beliefs about beliefs, etc., and that the constructed ex ante state space
is one where Q is equal to the set of all such infinite hierarchies of beliefs.
Mertens and Zamir (1985) explicitly constructed such an Q, as did
Ambruster and Boge (1978) and Boge and Eisele (1979), using a less familiar
framework; these authors focused on Harsanyi's concern with games of
incomplete information. Basically, they have shown that any situation of
incomplete information that is completely described by a hierarchy of
beliefs is equivalent to a state of the world in a standard, commonly
"known," model of asymmetric information. Thus, in the context of a
Bayesian model, the problem we ran into above with a syntactic model
seems to be solved.27

Consider a basic space of uncertainty, S, which is commonly known to be
the basic set of physical uncertainties of interest for agents 1 and 2.28 Let
Xo = 5, and for any n > 0, let Xn = [A(Xn_J]N x Xn_v Player fs (first-
order) beliefs over S are an element of A(X0), denoted by t[\ fs (second-
order) beliefs about S and about/s beliefs over S are an element t[ of A(ZJ,
and so on.29 Thus, a complete specification of f s beliefs is an element of f s
type space, TQ = H™= xA(Xn). This generates an expanded space of uncer-
tainty that appears to include all uncertainties: an element of
Q = S x TQ x T% specifies the true physical state as well as all of f s beliefs
and all of/s beliefs.

However, there are two related problems. First, this construction just
begs the question of what are fs beliefs over/s types, i.e., over Tj

0. Second,
the beliefs just constructed may be incoherent; for example i may fail to
know his own beliefs (we have allowed him to have non-degenerate beliefs
over his own beliefs), and fs beliefs may fail to uniquely specify his own
beliefs, for example, f s belief about S calculated from f s second-order beliefs
t[, marg^o^ e A(S) may differ from f s first-order beliefs, t[ e A(X0). Since we
want to assume that f s beliefs are coherent we make two assumptions: f s
beliefs over his own beliefs are his actual beliefs, i.e., i knows his own beliefs
(see [4] and [5] above), and f s beliefs on any set calculated using any order
belief coincide. Thus, it is assumed that f s beliefs are an element of T[ c T^
which denote those beliefs which are coherent.30It turns out that restricting
attention to coherent beliefs also solves the first problem. This follows from
Kolmogorov's theorem which implies that a complete specification of
beliefs for f, x^ = (tl

u t^ ...) e 7^ is coherent, i.e., is in T[ if and only if there is
a corresponding belief for i over S and over all of/s possible types, namely a
/i 6 A(S x Tj

0) such that the beliefs given by \i on any measurable set A in Xn
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coincide with the beliefs given by TQ (equivalently, the beliefs given by rn') on
A. That is, a coherent belief for i, which is a belief over S and over/s beliefs,
and/s beliefs over 5 etc., also determines a belief over/s possible types. But
f s beliefs, even if coherent, are not guaranteed to determine a belief for i over
/ s beliefs over f s types. This will happen if and only if i assigns probability
zero to types ofj that are incoherent. If we define knowledge as probability 1
- this will be discussed further in section 3.3 below - then we can say that if/
knows that; is coherent then i can derive beliefs over/s beliefs over Q. Note
the similarity with partitions: iff "knows"/s partition and that j knows fs
partition, then i can calculate/s belief over f s beliefs; while here, if i knows^
is coherent then i can calculate / s beliefs over f s beliefs. More generally,
there is a similar correspondence between i knowing that j knows that . . A
is coherent and i knowing that j knows . . . fs partition. Thus, common
knowledge of coherency is a formalization within the model of the informal
assumption that the partitions and beliefs are common knowledge; how-
ever it seems less controversial.

Thus, by assuming common knowledge of coherency we will generate
spaces Tl cz Tl which have the property that each type in Tl is a complete
and consistent description: each type is a belief over S, and over the other
players' belief over 5, etc., moreover each such type generates a belief over
Q = S x T1 x T2. So we have created an ex ante space Q, and a possibility
correspondence where each player i is informed only of his type in T\ i.e.,
for co = (xj^.t1), we have ^(co) = {coeQ:co = (x9t

i
9t

2)s.tti = ?}. This
information structure generates a belief over the space that coincides with
the belief described by the state of the world. So, this structure can be taken
to be common "knowledge" w.l.o.g.

How have we achieved this result which was unattainable before? The
richer and continuous structure of countably additive beliefs is crucial here.
Consider the example in figure 5.5 again. As before, for any strictly positive
probability measure, at any state other than co*, 3 does not know
n"m = iK™a(p) for any n. In the syntactic approach we say no more, so we
cannot specify whether 3 knows —\CKX 2(p) or not. In the Bayesian
approach, if, say 3 does not know nn

m= iK™2(p\ f° r aH m> then there exists a
decreasing sequence, pn < 1, of the probabilities which 3 assigns to this
sequence of events. The countable intersection of these events is exactly
CKl2(p). So the probability of this limit event is given by the limit of the
sequence. If the limit is 0, then 3 knows that p is not common knowledge
among 1 and 2, while if it is positive 3 does not know that p is not common
knowledge among 1 and 2. And this conclusion is true regardless of 3's
partition, i.e., for both models in figure 5.5, since knowledge here is defined
as belief with probability I.31
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3.3 Belief with probability 1 or knowledge?

The usual notion of knowledge requires that when a player knows
something it is true. This is property [T], which in the partition model of
section 3.1 results from the assumption that co is an element of ^-(co), and
which is assumed directly in the syntactic framework of section 3.2.1 and
built into the construction in section 3.2.2. However, the probabilistic
notion of certainty used in the Bayesian model need not have such an
implication. This subsection discusses the relationship between knowledge
and certainty and briefly shows how to adapt the presentations above to a
notion of certainty. The distinction between certainty and knowledge, and
the combined development of both notions within one model in subsection
3.3.3 below, turn out to be very useful in discussing extensive-form games
(see section 5).

3.3.1 A certainty operator

Given an information structure (Q, J% pt), we can derive, in addition to
Ki9 a belief-with-probability-one operator B{. 2" -• 2Q given by
B^A) = {coip^A | ^^co)) = 1 } . Recall that we use the term certainty as an
abbreviation for belief with probability one. This certainty operator is
equivalent to the following: at any state co you are certain of (any superset
of) the intersection between your information at that state ^i(co) and the
support of your beliefs (denoted by S). The operator Bt satisfies the
properties below.

D Bt{A) cz-iBj-iA: if i is certain of A then i is not certain of the
complement of A;

MC* Bt(A) n B^C) = Bt(A n C): being certain of A and C is equivalent to
being certain of A and of C;

NB Bt{Q) = Q: i is always certain of anything that is true in all states of
the world;

4B Bt{A) a B^B^A)): if i is certain of A then i is certain that i is certain
of ,4;

5B —i Bt(A) a Bjf—} B^A)), being uncertain of A implies being certain
that one is uncertain of A.

As in subsection 3.1, given such a certainty operator Bt we can define
an information structure on Q: let pt be any probability on Q with
support S = n{E:Bi(E) = Q. and E is closed}, and let
#\{co) = {co':V£,co'eB^E)<=>coeBt(E)}.32 Moreover, this information
structure will generate (in the way defined above) the same Bt as we started
with.
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3.3.2 A syntactic symbol for certainty

How is the syntactic notion of knowledge weakened to certainty? Start with
a language as in subsection 3.2.1, and introduce a symbol bt for certainty
instead of kt for knowledge. Consider modifying the axioms [D, MCB, NB,
4B, and 5B] as we did in going from the operator K( to the language symbol
kt. That is, replace Bt with bt, 3 with ->, sets A with propositions </>, etc., and
add [RE] and [MP]. We can then create a consistent and "complete"
description of situations of incomplete information, which will generate a
state space and an operator Bt satisfying the axioms. Since we have just seen
that such a Bt is equivalent to an information structure we again have an
equivalence between the syntactic approach and the asymmetric informa-
tion model.

3.3.3 Knowledge and certainty combined

For characterizing solution concepts in games we will want a model that
allows for both knowledge and certainty: for example, a player should
know what her own strategy is, but can at most be certain, but not know,
what her opponent's strategy is. Therefore, we now present a unified
treatment of K( and Bt

33 Given an information structure we can generate
Kt and Bt as above. In addition to the properties derived above, these will
satisfy the following.

BK Kt(A) c Bt(A): you are certain of anything that you know;
4BK Bt{A) c: K£B£A)): you know when you are certain of something;

Similar to the equivalencies in subsections 3.1 and 3.3.1, given a Bt and a K(

satisfying [T, BK, 4BK, 5BX, MC, MC*] we can construct a partition and a
non-unique prior which in turn generate Kt and Bf.

34 In the future we will
need a notion analogous to common knowledge for the case of beliefs. We
say that an event E is common certainty at CD if everyone assigns probability
1 to £, and to everyone assigning probability 1 to E, etc.

3.4 The implications of constructing a commonly "known" model

We have discussed the constructions of Harsanyi's and Aumann's ex-
panded state spaces. These constructions show that it is without loss of
generality to work with models where we assume (informally) that the
information structure is common "knowledge." Alternatively put, we can
take any situation of incomplete information that is completely specified
and consistent, and view it as a state in a model that is commonly "known."
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This will be useful in formalizing assumptions such as common knowledge
or rationality, and in solving games where we are given some situation of
incomplete information. The main purpose of this subsection is to argue
that these constructions do nor justify acting as if all circumstances derive
from a commonly known ex ante model. The most obvious reason for this is
that the constructed models of subsection 3.2 do not contain a prior: only
probabilities conditional on a players' information are constructed.35

Moreover, it seems problematic to argue that, say, Savage's (1954)
framework justifies assuming that players have a prior on the constructed
state space. This state space includes states that the individual views as
impossible. So forming preferences over acts would require contemplating
preferences conditional on knowledge that conflicts with knowledge that
the player actually has, which seems conceptually problematic (and in
violation of the behavioral objectives of Savage (1954)). We have a second
type of concern with assumptions that are based on an ex ante model; these
concerns follow from the difference between justifying assumptions and
solution concepts for the artificially constructed model and justifying them
for a true physical ex ante model.

The argument that no prior was constructed immediately leads to the
conclusion that we ought to be cautious in using concepts that must be
defined in terms of priors. So, for example, ex ante efficiency and the CPA
are both questionable notions in true situations of incomplete information.
Naturally, in contexts where a real physical ex ante stage does exist, there is
no problem: then a Savage (1954) approach would justify assuming priors
on the space at the ex ante stage.36 But here we focus on situations of
incomplete information where the commonly "known" information struc-
tures, as constructed in section 3.2, are needed.

In the remainder of this subsection we elaborate further on the limita-
tions of these constructions. First we highlight the artificial nature of the
construction. Then we suggest that this raises doubts about other notions,
such as interim and ex post efficiency, as well as raising additional concerns
with justifications for the CPA. To clarify the artificial nature of the state
space constructed in subsection 3.2, we consider a simple version of this
construction, one which does not yield a space of all possible situations of
incomplete information, but does have a particular infinite hierarchy of
beliefs that is captured by a standard model. First, assume that there is some
fact about the world and the agents are concerned as to whether it is true or
false. Denote this fact by p, and assume that we are in a situation where for
i= 1,2, and j ^ i, i knows p but does not know if j knows it, and believes
that; does not know iff knows it, and more generally fs hierarchy of beliefs
is that there is common knowledge that i does not know if/ knows it and;
does not know if i knows it. This can be captured by the following Kripke
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Figure 5.6

model: Q = {a,b,c,d}; p is true in states a, b, and c, and false in state d;
<FX = {{*,&}, {c,d,}}; 3?2 = {{a,c},{M}} (figure 5.6).

The true situation is described by state a. All the states other than a are
artificial constructs. While they represent situations the agents can imagine,
they do not represent reality in any way. Recall that we are assuming that
we are given the situation of incomplete information described above,
which did not arise from any particular commonly known ex ante physical
situation. In particular both agents as well as the analyst know that state d is
false, and that it is an artificial construct.

What does this artificiality imply? First, we think it raises doubts about
the use of other efficiency notions, such as interim and ex post efficiency.
These notions seem to us to be based on giving the artificially constructed
states more meaning then they have. However, we have not been able to
develop this argument. Therefore, we should emphasize that our concerns
with interim and ex post efficiency notions are on less solid grounds than the
clear-cut argument - based on the lack of a prior - against ex ante efficiency.

A second consequence of the artificial nature of the ex ante state space
can be found in Bhattacharyya and Lipman (1995). They provide an
example of trade with a common prior, despite the no-trade theorem. Trade
occurs because ex ante utilities are not well defined, since the ex ante utility
functions are unbounded. But the interim utility functions can be bounded
without changing the essence of the example. While it seems plausible to
argue that utility functions are bounded, does this argument apply to an ex
ante artificial construct? We would say no, raising doubts about no-trade
theorems in such contexts, over and above any concerns about the common
prior assumption.37

The final problem that results from the artificial nature of the state space
concerns the main argument in favor of the CPA. This problem is of interest
because justifications for standard equilibrium concepts require a common
prior on such an artificial state space. (We say that an artificial state space is
necessary, because in the model that justifies solution concepts, the ex ante
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stage is one where the player does not know his own strategy, and may not
even know whether or not he is rational. The assumption that there actually
exists such a stage for decisionmakers seems very questionable.) The
problem focuses on Aumann's (1987) argument that a common prior is
plausible because players with identical information would have the same
beliefs. But how could player 1 receive the information that corresponds to
2's artificial information set {a, c}, which is constructed as the set where
player 1 both knows p and does not know p? (see also Gul (1995a)).

While we have said this several times, it is probably worth repeating here.
If we set aside the question of justifying solution concepts, then for some
economic applications the discussion of this subsection is not of direct
interest. If there is a real ex ante situation, then the notions are meaningful
since they do not rely on tradeoffs over artificial constructs. For example,
auction theory, while often citing Harsanyi's work as a justification for the
incomplete-information model, could be based on«an oil-sample story such
as was described in subsection 3.1, where intuitively there is a real physical
ex ante commonly known framework. Alternatively, in auctions with
private values, an ex ante foundation exists by arguing that bidders are
drawn from a population with a commonly known distribution of prefer-
ences. On the other hand, while a private-values with correlated beliefs
model could be imagined, it does not seem to correspond to any plausible
ex ante story, in which case any research examining ex ante efficiency of
various mechanisms in such a context needs to be motivated much more
carefully.

Having argued that both the notion of efficiency in games of incomplete
information, and the assumptions underlying standard solution concepts,
are not plausible in the artificially constructed space, one might think that
the whole exercise was vacuous: can any sensible assumptions be made on
the constructed model? Assumptions that do not refer to the constructed
state space, but rather are assumed to hold in the true state are on a solid
footing. For example, the assumption that at the actual state rationality is
common knowledge, is sensible. Such a statement only uses the artificially
constructed states the way they originated - namely as elements in a
hierarchy of beliefs. This obviously contrasts with assumptions that
essentially require the artificial constructs in order to be interpreted, such as
the CPA.

3.5 Conclusion

When there is a real commonly known ex ante stage then clearly it is
appropriate to model the situation with an asymmetric information model
that is commonly "known." The constructions in subsection 3.2 justify the
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assumption of a commonly known asymmetric information model in all
contexts where the players' views of the world are complete. These two
justifications of (almost) the same model differ in that only the former has a
well-defined notion of a prior and only in the former are all the states truly
feasible. This distinction argues against using ex ante notions in cases where
the second model is deemed necessary.

However, these notions are used heavily in information economics and -
in the case of the CPA - in the characterizations of solution concepts and
the analysis of their robustness. For these reasons we will emphasize results
that avoid the CPA, but we will still review other results, such as Aumann's
provocative characterization of correlated equilibrium, as well. Moreover,
we will use both the real ex ante stage and the artificially constructed
commonly known model interchangeably with the hope that by now the
reader understands the important differences between them. In particular,
we will continue to describe a model as (Q, J^,/?,), rather than
( Q , ^ v v k I ^i))> e v e n though the latter, rather than the former, is what we
justified in this section. We will leave it to the reader to decide on the
usefulness of the various results, and we try to minimize repetition of our
concerns in the remainder of the chapter.

4 A STATE-SPACE M O D E L FOR KNOWLEDGE,
CERTAINTY, AND RATIONALITY -
CHARACTERIZING NORMAL-FORM SOLUTION
CONCEPTS

We now introduce the notion of a model for characterizing solution
concepts, which specifies an information structure and a function from
states to normal-form games and to strategy profiles of the game in that
state.38 (A model is the same as the interactive belief systems used by
Aumann and Brandenburger (1995)), and closely related to the framework
used in Aumann (1987) to characterize correlated equilibrium (see also
Stalnaker (1994)). For simplicity we assume that strategy spaces of the
games are the same in every state; Zf denotes is strategy set, and Z = n£Et is
the set of strategy profiles. Thus, for the remainder of the chapter, a model is
a collection {Q, J% pi9 Sf, u, s j , where, st: Q -> Z£ specifies f's actions in each
state co, s(co) = (s^co),..., sw(co)), and u: Q. -»{(ut)ieN | Vf, u{. Z -• 9f} specifies
the pay off functions. Thus û co'Xcr) is the payoff to i in state cor if the strategy
profile a is played. We also assume that the partitions off have the property
that in each cell a common strategy off is specified at all states: i knows his
own action, VF e 3P'b ^J<s), co' e F, ŝ co) = st{(of). Finally, we assume that each
player knows his own payoff function (ut is the same in each cell of f's
partition). This last assumption is substantive, see, e.g., footnote 4. Note
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that if we ignore the function s specifying the strategy profile in each state,
then a model is just a game with a move by Nature: it specifies an
information structure, and, for each state of the world, a game. Under this
interpretation s is a strategy profile for the game with a move by Nature.
This interpretation will be useful later.

We denote by [u] the event in Q that the payoff functions are
u = (uly...,un), [u] = {coeft:u(co) = u] by [a] the set of states where the
strategy profile is c, [a] = {coeQ:s(co) = a], and similarly for [crj, [c_ J,
etc. This notation simplifies our assumptions above: i knows his own action
is simply \/at, K^aJ = [GJ; and i knows his payoff becomes VM£, Kt[uJ
= [MJ. At each state co, each player has an induced belief over the

opponents, which we denote by margz .pt-(-| J^co)); the event that these
beliefs equal some particular distribution <j> _ t e A(Z _f) is denoted by [c/> _ J .
Following Aumann and Brandenburger (1995) we use the term conjectures
of i as an abbreviation for f s induced beliefs over £_,-. Finally, we denote by
£f the operator on games of deleting one round of strongly dominated
strategies for all players; similarly iV denotes deletion of weakly dominated
strategies. Since the strategy spaces are held constant we abuse notation
and write y °°(M) to denote the operation of infinite deletion of strongly
dominated strategies in the game G = (Z, u).

Definition Player i is rational in state co if given f s beliefs at co, his action
maximizes his expected utility

X p,((0^(0)^(0)1 s _ ;(co')) > X /?,.(a/)

for all <7£el£.

The set of states at which all players are rational is the even [rationality].

Proposition 1 (Bernheim (1984), Pearce (1984))39 C£([w] n {rationality])
c: [S°°(w)]. Moreover, there exists a model such that CB([ii] n [rationality])

If at a state co, rationality and the game is common certainty, then at co each
player is choosing an action that survives iterative deletion of strongly
dominated strategies. The idea of the proof is well known - rationality is
equivalent to players choosing only strategies in £fl(u)\ the fact that
rationality is known implies that they only choose best replies to 5^1(w), so
only strategies in ^2(u) are chosen, etc.

What is the relationship between equilibrium concepts and Sf °°? Bran-
denburger and Dekel (1987a) show that the strategies and payoffs resulting
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from y °°(G) are the same as the strategies and payoffs in the interim stage of
an a posteriori subjective correlated equilibrium of G.40 An a posteriori
subjective correlated equilibrium of a game G is essentially a Nash
equilibrium of the game where an information structure, interpreted as a
correlating device about which players may have different priors, is
observed before G is played. (Aumann (1974) introduced this solution
concept.) The interim stage of such an equilibrium is the stage after
receiving the information of the correlating device. A correlated equilib-
rium is the same as an a posteriori equilibrium except that there is a
common prior over the correlating device. A correlated equilibrium
distribution is the probability distribution over Z induced by the correlated
equilibrium.

Proposition 2 Fix an information structure (Q, #\-, p() and a game G = (I , u).
Consider a game G', where before G is played, the players observe their private
information concerning Q. Strategies for i in G are functions s:Q -• Z£ that are
constant on an information cell for i. Consider a Nash equilibrium s of G',
where s^F() is optimal for all F( (even those with zero prior probability). The
interim strategy choices (and expected utilities) are rationalizable:
^CD)e^cc(G)for any F( in J%

Conversely, given any strategy o e £f °°(G) there is an information structure
and a Nash equilibrium as above where o is played in some state of the world.*1

Thus, common certainty of rationality justifies equilibrium analysis so long
as the equilibrium allows for differing priors. To get more traditional
equilibrium concepts one typically needs to assume a common prior on
Q.42 Aumann's characterization of correlated equilibrium was the first
characterization of an equilibrium concept within a formal state-space
model describing common knowledge of players' rationality.

Proposition 3 (Aumann (1987)) If there is a common prior p in a model, and
the support ofp is a subset of [rationality] n [u], then the distribution over
actions induced by the prior p is a correlated equilibrium distribution of

Intuitively, this follows from propositions 1 and 2: common certainty of
rationality is the same as Sf °°(G) which is the same as subjective correlated
equilibrium; imposing a common prior in addition to common certainty of
rationality should then be the same as objective correlated equilibrium.
This is not precise because propositions 1 and 2 focused on the players'
actual beliefs at a state of the world, not on the ex ante constructed model
and an overall distribution of actions.43
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Proposition 4 (Aumann and Brandenburger (1995)) In a two-person game if
the events [rationality'], [u] and [</>_ t]for i = 1,2, are mutually certain at co
(i.e., each player assigns conditional probability 1 to these events), then
(</>!, (j)2) is a Nash equilibrium of G = (£,u(a>)) = (Z,w).

The idea of the proof is as follows. First add the assumption that the players
are mutually certain that they are mutually certain that the payoffs are u. Iff
is certain that /s conjecture is 0_j6 A(S£), and that; is rational and that; is
certain his payoffs are up and f assigns positive probability to ap then oj

must be a best reply for; given/s conjecture about f's actions, <j>_p and
given ur So, under the additional assumption the result that (</>!,</>2) is a
Nash equilibrium is obtained. In fact, since we assume that players know
their own payoffs, Aumann and Brandenburger show that one only needs
to assume that the payoffs are mutually known. This is because if f assigns
probability 1 at co to [uj], [rationality] and [</>-;], and positive probability
to (Tp then there must be a state cof e [uj] n [rationality] n [</>_7] n [oj]. At
co'J is rationale's conjecture is [(/> _7],/s payoffs are [uj] and; knows this by
our assumption, and j is choosing oy This completes the proof.44

It is worth emphasizing that the statement that [ 0 J are mutually certain
is significantly stronger than saying that i is certain/s conjecture is [ ^ ] .
Since players have beliefs about their own conjecture, and naturally their
beliefs about their own conjecture are correct, assuming that conjectures
are mutually certain implies that the beliefs about the conjectures are
correct (see Aumann and Brandenburger (1995, lemma 4.2)). By contrast,
for an arbitrary event E, players 1 and 2 could be mutually certain of £ but
be wrong.

Aumann and Brandenburger (1995) also characterize Nash equilibrium
in games with n > 2 players, using the CPA, common knowledge of the
conjectures, and mutual knowledge of payoffs and rationality. They also
provide a series of examples to show the necessity of these assumptions.
They discuss a second characterization of Nash equilibrium, where the
CPA and common certainty of the conjectures are replaced with indepen-
dence, which they find less attractive (see also Brandenburger and Dekel
(1987a) and Tan and Werlang (1988)). Given our concerns with the CPA we
find the characterization using independence no less palatable.

In conclusion, we have concerns with applications of game theory whose
conclusions rely on Nash or correlated equilibrium. The role of the CPA
raises doubts about the use of correlated equilibrium; the necessity of
mutually certain conjectures raises some doubts about Nash equilibrium in
two-person games; and the peculiar combination of the CPA and common
certainty of conjectures, or independence and mutual certainty of conjec-
tures, raises serious doubts about the interpretation of Nash equilibrium in
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games with more than two players. Naturally, other foundations for these
solution concepts may exist, and some are currently being developed in the
context of evolutionary and learning models. However, until such founda-
tions are obtained we must be cautious in interpreting applications that rely
on Nash equilibrium.

We now discuss the application of the ideas above to games with moves
by Nature and games of incomplete information. As we know from section
3 there is a difference between these two environments. In one, there is a real
ex ante stage at which an analysis can be carried out, at the other ex ante
stage is an artificial construct used to think about the situation of
incomplete information. Obviously, the way we would analyze the case of a
real ex ante stage is by embodying the whole game with a move by Nature
into a state. To clarify this, recall that in the analysis above the state co
determined the game by specifying the strategies and the payoffs. In the case
of a game with a move by Nature these strategies are functions from the
players' private information into their choices, and the payoffs are the ex
ante payoffs. Carrying out the analysis at a state co will mean providing an
ex ante solution of this game, i.e., specifying what functions from private
information about Nature into Z will be played. So, in the case of a game
with a move by Nature, i.e., with a real ex ante stage, the model is
unchanged and the results above can be meaningfully applied to the ex ante
stage of the game. In the case of a game of incomplete information, the space
Q will capture all the incomplete information, and carrying out the analysis
at a state co will mean specifying a strategy in Z (not a function from private
information about Nature into Z). The model for this case will be the same
as the one used throughout this section, except that now [u] is no longer
mutual or common certainty, so the results obtained earlier are not
meaningful. We now examine the implications of this in the context of the
characterizations of Sf °° and of Nash equilibrium.45

First consider proposition 1: in this case common certainty of rationality
implies that players will choose actions that are iteratively undominated in
the interim sense in the game of incomplete information. (The distinction
between ex ante and interim dominance can be seen, e.g., in the example in
Fudenberg and Tirole (1991, p. 229).) On the other hand, if a game with a
move by Nature is played at co then the ex ante payoff function is commonly
known and iterated deletion of ex ante dominated strategies will be the
consequence of common certainty of rationality.

Next consider proposition 4. If we consider the case of a game with a
move by Nature there are no problems: if we assume that the game and
rationality are mutually certain at co, as are the players' conjectures - which
are over functions from private information into Z - then we have
characterized Nash equilibria of the game with a move by Nature.
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However, for the case of true games of incomplete information, where there
is no ex ante model, there seems to be no obvious characterization of
"Bayesian Nash equilibrium at ax" That is, we are not aware of an
equilibrium analog to iterated deletion of interim-dominated strategies.

The solution concepts above do not include any refinements. One might
want to see the extent to which concepts from the refinements literature can
be characterized using assumptions about knowledge, certainty, and
rationality. In particular, one might want to add an assumption of caution
as a requirement, namely that player i is never certain about/s strategy; the
event where this holds, [caution], is formally nl-nff_.-nBi"~i[(7_J. On this
event fs conjecture over his opponents has full support on Z_ v Clearly this
is inconsistent with common knowledge or common certainty of rationality
since these full support beliefs do not allow a player to know or be certain
about anything concerning their opponents' strategies. Thus there is no
way to assume common certainty of rationality and that players are
cautious, since caution conflicts with certainty.46 We return to this issue in
section 6 below.

5 CHARACTERIZING SOLUTION CONCEPTS IN
EXTENSIVE-FORM GAMES AND COMMON
KNOWLEDGE/CERTAINTY OF RATIONALITY

5.1 The model

Much of the research on rationality in the extensive form falls in one or
more of the following categories: criticisms of backward induction and
analysis of the problematic nature of common knowledge of the rationality
assumption for extensive-form games, identification of weaker, non-
backward induction theories as the consequence of rationality, and, finally,
alternative axioms or formulations of common knowledge of rationality
that yield backward induction. Below we will utilize the knowledge and
belief structure described in section 3 to discuss and summarize these
results.

Let F = {r,Z, -<,N,/,^4,(wf)"=1} be an extensive-form game of perfect
information. The set X = Y\JZ denotes the set of nodes and Z is the set of
terminal nodes. The binary relation -< on X is transitive and irreflexive and
hence has a minimal element. Furthermore, -< satisfies arborescence:
x < v, y -< v implies x -< y or y -< x or x = y. The function / determines for
each non-terminal node in Ythe player ieN who moves at that node. The
mapping A associates with each non-terminal node in Y, a non-empty set of
nodes (the set of actions for player I(v)), A(v) = {y \ v -< y and v < y' implies
(y = y'or y "< /)}• A strategy st for player i is a collection actions, one from
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each node that is not precluded by and earlier action of player i. The set St is
the set of all strategies for player i, s denotes a strategy profile, and S is the
set of all strategy profiles. Each ut associates with every terminal node a
payoff for agent i.

As in section 4, a model specifies an information structure and for each
state the game to be played at that state and the strategies chosen at that
state. Here we assume for simplicity that the game is the same, F, in every
state. A model is then M = (Q, s, #",, pf, F). As in section 3.3.3 the model
generates knowledge and certainty operators Kt and Bt satisfying Axioms
[BK,T,4BK,5BX,MC,MCBX]. Much of the following will be stated using
these operators, rather then using the partitions, J% and conditional
probabilities /?,(• | J^,). In order to identify the implications of common
knowledge of rationality or common certainty of rationality in various
settings, we need to identify nodes with subsets of Q: [A] = (JX 6 AM for
AcS9Si9 ovS_,

It is often said that in discussing rationality in the extensive form there is a
need to incorporate counterfactuals or nearby worlds or hypothetical or at
least a different kind of implication than the standard material implication
of propositional logic into the analysis (see Binmore (1987-8), Samet (1993)
and Aumann (1995b)). There are two separate issues that necessitate
counterfactuals. The first arises even in normal-form games. To justify the
rationality of action a for a given player, the other players and the modeler
have to argue that, given what he knows and believes, choosing a is a good
as any other action the agent might have undertaken. But this requires
discussing what would happen if this player were to choose ft at some state
in which he is specified to choose a. To be sure, this is a counterfactual of
some sort but not one that requires an elaborate theory of nearby worlds.
As in section 4, such counterfactuals will play a role only in the definition of
rationality and only implicitly. The second source of need for counterfac-
tuals or hypotheticals is present only in extensive-form games. The
rationality of a particular action a may rest on the predicted reaction of the
opponent to the alternative course of action ft which itself may or may not
be consistent with rationality. Furthermore, the prescribed rational course
of action a or the contemplated alternative /? may or may not be anticipated
by the opponent of the player. Thus, the modeler is forced to discuss not
only contemplated deviations by a rational player but also predicted
responses to deviations or surprises. In our approach to rationality in the
extensive form we will utilize the distinction between knowledge and
certainty to do away with this second source of need for counterfactuals.
Specifically, an event E will be considered a surprise by player i at any state
in —\Kf-\EnBf-iE. Moreover, we will often require that agents are, at
most, certain about their opponents' strategies and cannot know the
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strategies their opponents are using. Thus we will not need to consider what
players do when faced with situations they know to be impossible (i.e.,
counterfactuals). Therefore, the only counterfactuals will be those implicit
in the definition of rationality; strategy /? will be irrational in some state at
which the agent is to choose a since had he chosen p he would receive a
lower payoff.

Definition (extensive-form rationality): For any model M let (a)
.t.utf9s_ko)) > !*,<*,, s_<(c»))Va>e£}; (b)

n U*6D(.,)*i(l>] - £) U " » ^ M
->£; (c) Rv = { c o | s / ( » 6 ^ ( s / ( » } , K£ = C\m=iR

v
9R =

The first item of the definition above identifies the collection of events in
which the strategy st is strictly dominated. The second item defines the set of
states of the world in which the strategy s( is irrational at a particular node v.
The strategy st is irrational at [v] if [u] is possible (—1 Kt~~\ [vjj and i knows
that Si is dominated at v or v is plausible (—1 B~i [v]) and i believes st is
dominated at f. Note that, if i knows that v will not be reached, then he is
rational at v regardless of what he plans to do there. The final part of the
definition states that i is rational at v in state co if and only if the prescribed
strategy for i is not irrational at [v]. The event "i is rational" corresponds to
all states at which i is rational at every v.

5.2 Common knowledge of rationality

Since knowledge implies truth (Axiom T of section 3), a standard model of
knowledge may fail to incorporate even the most basic requirement of
extensive form rationality. Consider the game Yl in figure 5.7.

Player 2's knowledge that player 1 will not choose /? renders any analysis
of what might happen if Player 1 chooses jS irrelevant for the analysis of Tx

given our definition of rationality. Various ways of dealing with this issue
have been studied in the literature. Following the lead of the refinements
literature and extensive-form rationalizability (see Pearce (1984)), Ben-
Porath (1994), Reny (1993), Gul (1995b) require rationality in the extensive
form to imply that a player at an information set chooses a best response to
some conjecture that reaches that information set. Hence common knowl-
edge of rationality rules out player 1 choosing a in Tv By contrast Samet's
(1993) formalism does not yield the result that common knowledge of
rationality implies player 1 chooses a. Without further assumptions, any
Nash equilibrium outcome is consistent with common knowledge of
rationality in his model. The same is true of the standard model defined
above. If player 2 knows that player 1 will not choose /} then any analysis of
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I

Figure 5.7

what 2 would do when faced with a surprise is moot. This suggests that an
additional assumption is needed if the standard model is to incorporate
surprises: in an epistemic model of extensive-form rationality, convictions
regarding opponents should be limited to beliefs if this model is to
adequately deal with surprises and the issue of credibility. This is a
weakening of the assumption of caution introduced at the end of section 4,
which required that a player not be certain about an opponent's action,
here we allow for certainty but rule out knowledge of an opponent's action.
This idea is formalized in the definition below. Proposition 5 summarizes
the implications of common knowledge of rationality for the standard
model when no such axiom is imposed.
Proposition 5 Let s be a Nash equilibrium of the perfect information
extensive-form game T. Then, there exists a model M such that CK[K] = [s].
Moreover, ifY is generic, then for any model M, CK[K] c (JS6NE[s] where
NE is the set of Nash equilibrium profiles ofT.

It can be verified that the set of outcomes consistent with common
knowledge of rationality in Samet's model is identical to the set of outcomes
corresponding to strategies associated with common knowledge of ra-
tionality in the standard model of proposition 5 above. Samet's model
incorporates a theory of hypotheticals that enables him to impose addi-
tional restrictions regarding the "beliefs" at unreached information sets. In
our setting the distinction between knowledge and belief was developed to
handle just such concerns. As noted above, an additional principle is needed
in the current setting to rule out incredible threats as in the imperfect
equilibrium of Tl. We will call this principle the Weak Caution (WC). We
view WC to be an essential element of extensive-form rationality.

Definition (WC) WC = H
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5.3 The problematic nature of extensive-form rationality

Consider the game in figure 1 from section 2. This game, or a closely related
alternative, is studied by Basu (1990), Ben-Porath (1994), Bicchieri (1989),
Binmore (1987-8), Rosenthal (1981), Reny (1993), (1992), and Gul (1995b).
The standard argument of backward-induction is as follows: if 2 is rational
then he will choose t3 at his final information set if given a chance. Therefore
if 2 is given a chance then he knowing that 1 is rational and being rational
himself will choose t2. Hence, being rational, knowing that 2 knows he is
rational and that 2 is rational, 1 should choose tl at his first information set.
This is the well-known argument of backward induction. All of the authors
listed above note the following flaw in this argument: the claim that 2 knows
that 1 is rational when she has a chance to move is legitimate only if 2 has no
reason to doubt the rationality of 1 when she is reached. The backward
induction argument outlined above, shows that when reached, 2 can no
longer maintain all the assumptions that yield the backward induction
prediction. Basu (1990) and Reny (1993) provide two rather different ways
of formalizing this criticism of backward induction. Reny (1993) defines
formally what it means for rationality to be common certainty at every
relevant information set and proves that except for a rare class of games,
rationality cannot be common certainty at every relevant information set.
In particular, he shows that rationality cannot be common certainty at
player 2's information set in F2. In related work, Basu (1990) shows that
there cannot be any solution concept for extensive-form games that satisfy
the following apparently plausible restrictions. (1) Rational agents take, at
each information set, actions that maximize their payoff. (2) Agents start off
certain of the rationality of their opponents and remain certain until actions
that are inconsistent with any rational strategy are observed. (3) If rational
agents observe their opponents take an irrational action then they can no
longer rule out any possible action of the irrational opponents. (4) Finally,
any course of action which can lead to a payoff at least as high as a possible
payoff according to the theory, must be an allowed action for the theory. To
see the inconsistency, note that in F 2 backward induction cannot be the
theory, since if it were and 1 were to choose lx then 2 would have to believe
that 1 is irrational and hence by (3) might choose /3 if given a chance. Hence
2 might choose to give him this chance. But this means that 1 might do
better by choosing lx then tv But this contradicts (4) since tx is prescribed by
the theory and lx is not. Thus, any theory satisfying Basu's requirements
must allow for player 2's information set to be reached by some rational
strategy. But, then (1) and (2) imply that player 2 must choose t2 which
contradicts the rationality of lv
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Proposition 6Ifv is not on the unique backward induction path of a generic
extensive-form game and [u] n CB[K] / 0 in some standard model of this
game M, then there exists [i/] such that [>'] n CB[K] n ( J ;£f i [v'] ^ 0.

Proposition 6 is related to Reny (1993). If there is an information set not on
the unique backward induction path then it is either common certainty that
this information set will not be reached (hence rationality cannot be
common certainty once the information set is reached) or there is some
other state consistent with the common certainty of rationality where some
player is being surprised. That is, one player is choosing a strategy that
another player believes will not be chosen. The possibility of this type of
surprise is ruled out by Basu (1990) since his axiom (4) implicitly rules out
the possibility that the opponent may believe that the information set [t/]
will not be reached even though reaching it is not inconsistent with CB\R~]
(i.e., the theory). Note that proposition 6 above is not vacuous. We can
construct standard models for generic games in which [v] n CB[R~] is
non-empty even when v is off the backward induction path.

5.4 The resolution: weak caution and common certainty of
rationality

Gul (1995b) proposed the solution concept described next as the weakest
solution consistent with extensive-form rationality. For any extensive-form
game F, let Sf\ a S( be the set of strategies of i that are not strongly
dominated at any information set that they reach against conjectures that
also reach that information set, and let £fe = X\i^y?\. Gul's solution
concept is Re = y 0 0 ^ . For generic extensive-form games, the set of
strategies Sf* corresponds to the set of weakly undominated strategies in
the normal-form representation, G, of F, and hence R\ = 6^ccifr(G), the
strategies that are left after one round of removal of weakly dominated
strategies and then iterative removal of strongly dominated strategies. The
main result of Ben-Porath (1994) establishes in an axiomatic framework,
that in generic perfect information games a strategy profile 5 is consistent
with common certainty of rationality at the beginning of the game if and
only if it is in £f«>ir(G).

Proposition 7 below is closely related to the ideas of Ben-Porath (1994)
and Gul (1995b):

Proposition 7 In any standard model M, WC n CB[R~] c [Re~\. Moreover,
for every extensive game of perfect information there exists some standard
model M such that CB[_R~] = [ i ^ ] .
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5.5 Backward induction revisited

Three recent papers Aumann (1995a), Bonanno (1991), and Samet (1993)
have provided formal logical systems for backward induction in perfect
information games. Aumann identifies, with each state a behavioral
strategy and defines rationality as not knowing that the behavioral strategy
is dominated at any information set. He proves that common knowledge of
rationality implies and is consistent with backward induction. Bonanno
augments the standard model of propositional logic with a description of
the given extensive-form game (as a collection of propositions) and a rule of
inference that states that if it can be shown that an i permissible hypothesis
implies that the choice a is sure to yield a payoff greater than the payoff
associated with the choice /?, then choosing /? is irrational for agent i. (An i
permissible hypothesis is one that does not utilize any reference to player f s
rationality or utilize in its proof any propositions that invokes f s rational-
ity.) Bonanno proves that adding the axiom "all agents are rational" to this
extended propositional logic, yields backward induction as a theorem in
certain games, Bonanno also shows that without restriction to i permissible
hypothesis, the new system of logic yields a contradiction (i.e., is inconsist-
ent). Samet proves that an assumption that he calls common hypothesis of
node rationality yields backward induction. The significant difference
between these three formulations and the models discussed above is the fact
that the key assumption of rationality in these models has an "ignore the
past" feature. To see this note that in Aumann's formulation the relevant
objects of analysis are behavioral strategy profiles; rationality of/ at node v
has force even at a node v that is inconsistent with the rationality of i.
Similarly, in Bonanno (1991), the restriction to i permissible hypotheses
ensures that when making deductions about the behavior of agent i at a
node v only the behavior of agents at successor nodes are relevant since
deductions about the behavior of predecessors will typically involve
conclusions about f s own behavior. The same effect is achieved by Samet's
common hypothesis of the node rationality assumption. In the reasoning of
each agent or the reasoning of an agent about the reasoning of any future
agents, observed past deviations are assumed to be irrelevant for future
expectations. As suggested by Selten (1975), implicit in the idea of backward
induction is this notion that past deviations are "mistakes" that are unlikely
to be repeated in the future. Such a flavor is present in all three of the results
mentioned above. In our setting, we can utilize the distinction between
knowledge and belief to achieve this effect. Specifically, we will characterize
backward induction by the requirement that agents have doubts about
behavior at predecessor nodes and hence are (weakly) cautious. On the
other hand, we will assume that rationality of successors is common
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knowledge. Our aim is not to strengthen the case for backward induction
but to provide a unified framework for evaluating both the criticisms of
backward induction and its axiomatizations.

We need the following notation. Let sM denote a subprofile of strategies,
one for each ieM a N, and let SM and sM be defined in a similar fashion.
Finally, let RM = ni€MRt.

Definition (CK of rationality of non-predecessors) CK[Rnp\ = f]Ee^E
where *¥ = {CKM[RM] for all M,M' a N such that M' contains no player
who moves at a successor node to some node owned by a player in M}.

Definition (Weak caution regarding predecessors) WCp = C]SM~^ K f i [sM ]
where M is the subset of players that own an information set preceding an
information set owned by i; WCp = r\^WCl

p.

Proposition 8 / / M is a standard model for a generic extensive-form game in
which each player moves once, then WCp n CK[Rnp~\ c= [s°], where s° is the
unique backward induction strategy profile. Moreover, for any such game
there exists some standard model such that WCp n CK\_Rnp] = [s°].

6 WEAKENING THE N O T I O N OF CERTAINTY:
THE BAYESIAN APPROACH

Rubinstein (1989) provides a provocative example of a game with a move by
Nature, similar to the information structure and payoffs in figure 5.8 below.
Rubinstein's story for this information structure is that either game a or b is
played, and it is a with probability greater than 1/2. If it is b, 1 is so informed
and a signal is sent from 1 to 2, and a confirmation from 2 to 1, and a
(re)confirmation from 1 to 2, etc. Confirmations are lost with probability s,
and once a confirmation is lost the process ends. Players observe how many
signals they have sent (which for player 1 equals the number received plus
one, and for player 2 is equal to the number received). One can readily verify
Rubinstein's result that with e > 0 the only Nash equilibrium in which
(U, L) is played when the game is a, has ((7, L) played when the game is b as
well. (More precisely, the only Nash equilibrium in which player 1 plays U
when not informed that the game is b, has the players choosing (U,L) in
every state of Nature except a state that has zero probability when e > 0,
namely a> = (oo, oo).) By contrast consider the case where there are no
doubts about which game is being played, e.g., if s = 0 there are no doubts
in the only two states that have positive probability: (0,0) and (OQ, OO). In
this case there is an equilibrium where (U, L) is played when the game is b,
and (D,R) if it is a.
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Clearly, it is common certainty at state (00,00) that the game is b;
similarly, when £ = 0 the probability that the game will be commonly
certain is 1. Moreover, (n,n + l)eBn

N([b]\ i.e., at (n,n + 1) the players are
certain that. . . [rc times]. . . that they are certain the game is b. Therefore, it
might appear that when £ is small and/or at states co = (n, n + 1) for n large,
there is "almost" common certainty of the game.47

This suggests that when there is "almost" common certainty that the
game is G, the equilibria may be very different from the case when it is
commonly certain that the game is G.

The example above generated a literature examining the robustness of
solution concepts to weakening common-certainty assumptions.48 In the
current section we review this literature and relate it to the characteriz-
ations in the preceding sections. While previously we assumed Q, is finite,
clearly we now need to allow Q to be infinite; however, we restrict attention
to countably infinite Q.

In subsection 6.1 we define various notions of almost common certainty,
and in subsection 6.2 we provide characterizations results. First, we
examine the robustness of the normal-form characterizations of section 4.
The main message here is that for results to be robust, common certainty
can be weakened to "almost common 1 belief (defined below), which is not
satisfied by the example of figure 5.8. Next we use a notion of almost
common certainty - which avoids the conflict between certainty and
caution discussed at the end of section 4 - to characterize refinements. The
main result here is that almost common certainty of caution, rationality,
and of the game yield the same solution concept we saw in section 5: Sf °°#".
Subsection 6.3 examines refinements from a different perspective from the
rest of this chapter. Instead of axiomatically characterizing solution
concepts, we examine directly the robustness of solution concepts to a
particular perturbation of the game. Given a game G, we consider applying
the solution concept to a game with a move by Nature, G; we focus on those
games G in which it is almost common certainty that the game is in fact G.
For example, G could be the game of figure 5.8, G could be the game b, and
we could look at states in G where G is "almost" common certainty. We then
ask what is the relationship between the solution of G and the solution of G
in those states. That is, we are asking whether the solution concept is robust
to assuming the game is almost common certainty, instead of common
certainty as is typically assumed. Our interest in these refinements issues is
enhanced by the fact that both the methods and the results are closely
related to the characterizations in section 6.2. There are two types of
questions we consider when examining solution concepts. First, in subsec-
tion 6.3.1, we ask whether, for a given solution concept, an outcome that is
excluded by that solution concept in game G would still be excluded by the
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U 1,1

-3,0

0,-3

0,0

u

D

0,0

-3,0

0,-3

1,1

Game a Game b

Figure 5.8 Rubinstein's e-mail game. In state (0,0) game a is played, in
all other states game b is played

same concept in G when the game is almost common certainty. The main
conclusion here is that rationalizability with caution is the tightest
refinement of rationalizability that is robust in this sense.49 In subsection
6.3.2 we ask the converse. Will an outcome that is accepted by a solution
concept for a particular game, continue to be accepted by the same solution
concept if the game is only almost common certainty? Here we show first
that strict Nash equilibrium (and £ Nash equilibrium) are robust in this
sense, but, as in subsection 6.2, only with the notion of "almost common 1
belief; and, second, other solution concepts are robust to weaker notions of
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almost common certainty. Thus there will be several notions of almost
common certainty, and various questions which can be asked using each of
these notions. We restrict attention to a few of the most interesting results
rather than provide an exhaustive analysis of each notion and question.

6.1 Notions of almost common certainty

One possible definition is based on the number of levels for which mutual
certainty holds. That is, E is nth order mutual certainty at co if co e Bn

N(E), and
E is almost oo certain if n is large. One might well expect that almost oo
certainty is quite different from common certainty, since no finite n is
similar to oo. As Rubinstein (1989) observed this is familiar from repeated
games where large finite repetitions is quite distinct from infinite repeti-
tions.

All the other notions we use weaken the certainty aspect of the notion of
common certainty. Instead of requiring probability 1, we require only
probability close to 1. For example, common certainty of an event E is when
everyone assigns probability 1 t o . . . everyone assigning probability 1 to E.
So Monderer and Samet (1989) (see also Stinchcombe (1988)), consider
common q belief of £ - everyone assigns probability at lest q to. . . everyone
assigning probability at least q to E. To formalize this let
Bq(E) = {coip^El^^co)) > q} denote the set of states in which i assigns
probability at least q to £.50 Then E is common q belief at co if
coe nn°°= ^BlYiE).51 The event that E is common q belief is denoted Cq(E).52

We will say that E is almost common 1 belief at co, if £ is common q belief at
co, for q close to 1. This is a very demanding notion: in the example of figure
5.8 for no state co / (oo, oo) and not event E that is a strict subset of Q is
there almost common 1 belief of £ at co. However, we will see that it is the
appropriate notion for obtaining robustness of our characterizations.

Both preceding notions directly weaken the definition of an event being
common certainty at a state co; the former weakens the number of iterations,
the latter the degree of certainty. Thus they do not require a prior, only
conditional probabilities, as we argued for in section 3. Therefore, they will
not be useful for examining solution concepts that are based on common
prior, or more generally, for considering solution concepts from an ex ante
perspective. One possible ex ante notion involves a strengthening of the
notions above. In particular, continuing with our approach of assuming
probability close to 1 instead of equal to 1, we may want to assume that
almost surely an event, say E, is almost common certainty. Formally,
consider the assumption that everyone assigns probability at least q to the
event that E is common q belief: plCq(E)) > q. When this is true for q close to
1 we say that E is almost certainly almost common 1 belief.
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An ex ante notion that is weaker is used by Kajii and Morris (1995). If
there is a common prior, then p(E) = 1 implies that p(C(E)) = 1: if E is
certain then it is certain that E is common certainty. Then one could say
that E is almost certain if p(E) is close to 1, and one could explore this as an
alternative notion of being close to common certainty (since it is close to a
sufficient condition for common certainty). However, this is not a notion of
"almost common certainty" when there is no common prior, since without
a common prior even the extreme case of pt(E) = 1 for all i does not imply
that E is commonly certain (so naturally pt(E) close to 1 for all i need not
look at all like common certainty). To see the problem consider the
following information structure; Q = {a,b9c,d}, &r

1 = {{a},{b},{c,d}},
^2 = {{a9b},{c}9{d}}9fi = (0,1 - l/n,0,l/n),p"2 = (l/n,0,l - l/n,0),and
let E = {b,c}. While 1 and 2 are both almost certain that E occurs, each is
almost certain that the other is almost certain that E does not occur. So, in
the limit (using the conditional probabilities given by the limit of the
conditionals), E is subjectively certain but not common certainty. Never-
theless, for examining robustness of conclusions, one might be interested in
the notion of (subjective) almost certainty. This is because there may be
occasions where we think our assumptions (about the payoffs, rationality,
etc. of the players) are almost certainly correct, but we may not be sure that
they are almost common 1 belief.53

The relationship among the last two, ex ante, notions is worth clarifying.
Clearly if E is almost certainly almost common 1 belief then E is almost
certain, and in general the reverse implication is false. However, if there is a
common full support prior and Q is finite, then the reverse implication does
hold; see Fudenberg and Tirole (1991, theorem 14.5) and Kajii and Morris
(1995, equation 7.1).54

6.2 Robustness of characterizations and introducing caution

We begin by examining the robustness of the characterizations in section 4.
First we formally state that proposition 1 is robust to weakening common
certainty to almost common 1 belief.55

Proposition 9 Fix a game G = (S,u). There is a qe(0,l) such that given a
model {Q, J%p,.,s,u} ifq>q then C9([u] n [rationality]) cz [y°°(ii)].

The proof of this result is the same as the iterative part of the proof of
proposition 12.

Aumann's characterization of correlated equilibrium is also robust: a
common prior and almost certainty of rationality and of the game
characterize almost correlated equilibrium.56
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Proposition 10 Consider a sequence of models, which differ only in the
common prior: {Q, J%pw,s,u}^=1. Assume that u is bounded, i.e.,
u((o)(s) < be ${for any co and all s.51 Let En be the event that the payoffs are u
and the players are rational in model n.58 Ifpn(E") -> 1, then the limit of any
convergent subsequence of the distribution on actions induced by pn and s is a
correlated equilibrium distribution.

This is an upper hemi continuity result which can be proven along lines
similar to those used by Kajii and Morris (1995, theorem 3.2) (see also the
end of subsection 6.3.2 below).59

It is interesting that the results suggest that the characterization of
correlated equilibrium does not really rely on common certainty of
rationality or of the game. In the context of section 4, the characterization
can be stated using the assumption either that rationality and the game
have prior probability 1, or, that at every non-null co the event [rationality]
n [u] is common certainty; the two assumptions are equivalent with a
common prior. However, here we saw that we can make do with almost
certainty of rationality and of the game, and we do not need the assumption
of almost certainty that [rationality] n [u] is almost common 1 belief at
each non-null co. As we mentioned at the end of subsection 6.1, the latter
assumption is stronger than almost certainty of [rationality] and of [w].60

We conclude our analysis of robustness of characterizations of solution
concepts by considering Nash equilibrium. We show below that the
characterization of Nash equilibrium for two-person games in proposition
4 is robust if mutual certainty at co is weakened to conditional probability
close to 1 at co. The characterizations of Nash equilibrium for games with
n > 2 players are similarly robust, if common certainty of the conjectures at
co is weakened to almost common 1 belief of the conjectures at co.

Proposition 11 Consider a sequence of models {Q.,^r
i,p

n
i,s,u}^l, assume

N = {1,2}, u is bounded and fix an £. There is a S such that if the utility
functions, rationality, and the conjectures are almost certain at co, i.e.,
Pi([u] n [ 0 J n [^2] n [rationality] \ ^ico)) = 1 — d, then {cj)x, <j>2)) is an s
Nash equilibrium in the game G = (S, u(co)).

The notion here of an £-Nash equilibrium is the standard one; cj)t is within £
of a best reply to cf)j.61 The idea of the proof is the same as for the case of
common certainty, proposition 4.62

To summarize, all the characterization results are robust to weakening
certainty to probability close to 1, e.g., weakening common certainty at co to
common almost 1 belief at co.

We now introduce caution into the model. Recall that [caution]
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= nins_r~\Bi—\ [s_ J; thus if a player is cautious at co then her conjectures
assign strictly positive probability to every action of her opponents: c/>_f has
support S _ t. The main result of this section is that, if rationality, the game G,
and caution are almost common 1 belief, then players choose strategies in
y ^ - ^ G ) ; w e called this solution concept rationalizability with caution.
That is, to the extent that "admissibility" can be made common knowledge,
it does not characterize iterated deletion of weakly dominated strategies,
i^00; rather it characterizes rationalizability with caution. Similarly,
applying caution to Nash-equilibrium characterizations yields Nash equi-
librium in strategies that are not weakly dominated, not any stronger
refinement.63

Proposition 12 (Borgers (1994)) Fix a game G. There is aqe(0,1) such that,
given a model {Q, J*f,/?f,s,u}, if q> q then Cq([u] n [caution] n [rational-
ity]) cz [

The idea of the proof is as follows. Each f s strategy is a specification of what
to do conditional on each information cell. We consider two types of cells -
the cell including co, denoted by Ft and the other cells. At co each player i
knows her payoffs are u. Caution then implies that everyone chooses a
strategy that, conditional on Fi9 specifies something that is not weakly
dominated in G = (u, S). If q is large enough, then i believes with high
probability that player j is choosing a strategy that survives one round of
deletion of weakly dominated strategies in G. Being rational at co, we deduce
that i chooses a strategy that is a best reply to such a belief. For q close
enough to 1, conditional on Fi9 s(co) cannot specify that i choose something
that is strongly dominated in the restricted game W(G). (If it did then i is not
rational at co since i could do better by avoiding the dominated strategy.)
Now iterate on the last step.64

6.3 Robustness of solution concepts

In this subsection we view a model as a game with a move by Nature, which
we solve using various solution concepts. With this interpretation, the game
is given by (Q, #'i9pi9 u), and s will be a strategy profile, of the players in this
game, satisfying some solution concept. We assume for the remainder of
this section that u is bounded. We consider sequences of games paramet-
rized by probabilities, p", and we denote the solution of the nth game by s".
The question we ask is what solution concepts are robust to the game being
almost common certainty, and for which notions of almost common
certainty does this robustness hold?

How would the different notions of almost common certainty be used to
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examine this question? Let G be a game with a move by Nature:
(ft, J% p^ u), and G = (S, w). If co e Cq([u\) for g close to 1, then in G at co there
is almost common 1 belief that the game is G. Similarly, if pt-(C (̂[w])) > g for
g close to 1, then in G the game G is almost certainly almost common 1
belief. Finally, if p£[u]) > q for q close to 1, then we say that in G the game G
is almost certain.

Next we need to ask how we formally compare the solution of G with the
solution of G. Strategies for i in G are not elements of St; they are functions
from f s private information $F{into St. What we compare is, for example,
the specification of the equilibrium strategy in G in state co, at which G is
almost common 1 belief, with the equilibrium of G. More generally, we
compare the distribution over S given by the equilibrium conditional on an
event where u is almost common certainty. (More formal specifications will
be given below.)

In addressing the question of this subsection, there is an issue concerning
what one means by comparing the case of almost common certainty with
the common certainty situation. Fixing a model where some event is
common certainty, there are many "nearby" models in which that event is
almost common certainty. Should we ask: What is the outcome that
survives in all these "nearby" models, or in some? More specifically, one
might ask whether strategy profiles that are excluded by a solution concept
when the game G is common certainty are also excluded for all games G
within which G is almost common certainty. Alternatively one might
wonder if strategy profiles that are accepted by our solution concept are
also accepted in all possible games G in which G is almost common
certainty. The former perspective - which amounts to comparing the
solution of G with the union of the solution concept over all possible games
G in which G is almost common certainty - is appropriate for questioning
refinements: we should not exclude an outcome in a given, commonly
certain, game G if that outcome is plausible in some "nearby" game when G
is almost common certainty. This is the motivation underlying the research
initiated by Fudenberg, Kreps, and Levine(1988).65 The second perspective
- which amounts to comparing the solution of G with the intersection of the
solutions of all games G in which G is almost common certainty - is more in
the spirit of obtaining new solution concepts. We should not feel comfort-
able accepting a prediction of an outcome in a particular environment if
there is some "nearby" environment where the game is almost common
certainty and all the assumptions underlying our solution concept are
satisfied, but the prediction in this "nearby" environment is very different
from the original prediction. This is closer to the motivation of Monderer
and Samet (1989) and Kajii and Morris (1995).

We will be applying the solution concepts explicitly here, rather than
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axiomatically. This gives us greater flexibility in considering solution
concepts, but involves a different interpretation: we are not trying to justify
the solution concepts, but are investigating whether outcomes are excluded
or accepted in a robust manner. An example of the significance of this
different interpretation of results will be discussed in subsection 6.3.2
below.66

6.3.1 Almost common certainty and excluding outcomes robustly

Following Fudenberg, Kreps, and Levine (1988), the first version of this
robustness question argues that it is unreasonable to exclude particular
outcomes if our solution concept when applied to G yields very different
outcomes than when it is applied to a game with a move by Nature in which
G is almost common certainty. For example, we might think that any strict
Nash equilibrium is a reasonable prediction when a game is common
certainty among the players. However, since we the analysts might only
know that some game G is almost common certainty, it would be
unreasonable to rule out any outcomes which are strict Nash equilibria in a
game of incomplete information where G is almost common certainty (and
the game of incomplete information is assumed to be common certainty
among the players).

While the focus is different there is an obvious connection between this
question and the characterization results of the previous section. There
we also asked whether our axioms excluded behavior which would not be
excluded if the game were almost common certainty, rather than com-
mon certainty. For example, a corollary to proposition 9 is that 5^°°,
applied to a game G and evaluated at a state co at which G is almost
common 1 belief, yields a subset of^00 applied to G. (Moreover, taking
the union over all such games G yields all of ^"(G), since we can always
take the game G to be equal to G.) Thus the previous subsection showed
that 5 °̂° is robust (to almost common 1 belief) in the first sense consider-
ed in this subsection.67

A similar connection to the previous section is via proposition 12. That
result suggests that if we are given a game G, in which a particular game G is
almost certainly almost common 1 belief, then applying the solution
concept of rationalizability with caution to G, evaluated at those states
where G is almost common 1 belief, yields a subset of the same concept
applied to G; roughly speaking this says that ^xiT(G) a Sf™iT{G).
Moreover, once again, it is trivial that there is a game G, in which G is
almost certainly almost common 1 belief, such that, evaluated at those
states where G is almost common 1 belief, ̂ ^^(G) yields exactly Sf
- simply take G — G.
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Thus, rationalizability with caution is robust in the sense that, when
applied to a game G, it only excludes strategy profiles that would be
excluded when applied to any game in which G is almost certainly almost
common 1 belief. One might also ask if there are any tighter solution
concepts that are robust in this sense. Dekel and Fudenberg (1990) show
that this is essentially the tightest non-equilibrium solution concept.
Formally they show that the union of solutions of all games in which G is
almost certainly almost common 1 belief using iterated deletion of weakly
dominated strategies yields rationalizability with caution. The proof is
similar to the arguments already given.

Dekel and Fudenberg (1990) also show how this robustness test
corresponds to issues that have come up in analyzing extensive-form games.
The robustness question examines what happens if payoff are almost
common 1 belief. Thus, in particular, in an extensive-form game, it allows
players to change their beliefs about the payoffs in a game if they are
surprised by an opponent's action. This formally corresponds to the issues
raised in criticism of backwards induction: if a player is surprised and
observes non-backward-induction play, what should she believe? The
robustness test allows her to believe that the payoffs are different than she
previously thought. (Or, equivalently, revise her view of the rationality of
the opponents. These are equivalent since there is no way to distinguish
irrationality as it is used here from different payoffs.) This explains why the
solution concept 5^°°^, which was introduced when Dekel and Fudenberg
(1990) analyzed the robustness of solution concepts, is the same as the one
achieved using common certainty of rationality in extensive-form games
(see section 5).

6.3.2 Almost common certainty and accepting outcomes robustly

We now turn to the second, and opposite, notion of robustness: an outcome
should be accepted as a prediction for game G only if it would be accepted in
all games G in which G is almost common certainty. For brevity and
simplicity, we restrict attention to strict Nash equilibria of G in this
discussion. As before, consider a game G, and a sequence of games Gn in
which G is, in one of the senses formally defined earlier, almost common
certainty. Roughly speaking, we want to know if equilibria of G are also
equilibria in all such sequences Gn.

We first consider the case in which G is common qn belief at co, where
qn -• 1. This is the case considered by Monderer and Samet (1989). Their
results imply that a strict Nash equilibrium s of G is robust in that for any Gn

there is always a Nash equilibrium which plays s on states where G is almost
common 1 belief. Moreover, the interim payoffs are the same and if almost
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common 1 belief of G is almost certain then the ex ante payofiFs converge as
well.68

But are strict Nash equilibrium robust when all we know is that G is
almost certain? This is the question asked by Kajii and Morris. They show
that the answer is no - there exists a generic game G with a unique strict
Nash equilibrium s, and a sequence Gn of games in which G is almost
certain, pn([u]) -» 1, with a unique rationalizable strategy profile s,s.t. the
distribution of actions generated by s on the event [u] is not s.69 Kajii and
Morris go on to examine sufficient conditions for a Nash equilibrium of a
game G to be robust in this strong sense. They obtain two types of sufficient
conditions. The first is that a unique correlated equilibrium is robust. This
follows from an upper-hemi continuity argument related to the one we gave
following proposition 10. The limit of the distribution of actions in the game
G", conditional on the event [w], where the game Gn is solved by Nash
equilibrium, must be a correlated equilibrium distribution of G if G is
almost certain in Gn. Then, if there is a unique correlated equilibrium of G,
these limits must all be converging to that correlated equilibrium distribu-
tion, so it is robust.

The preceding paragraph may help clarify the relationship between this
subsection, which takes solution concepts as given, and subsection 6.2,
which looks at characterizations. Both the characterization of correlated
equilibrium, and the solution concept itself are robust: this is the message of
proposition 10 and the Kajii and Morris result discussed above. But
proposition 11 suggests that the characterization of Nash equilibrium is
robust, while the cited example of Kajii and Morris suggests that Nash
equilibrium is not robust to allowing almost common certainty. Why is it
that their example does not bear a similar relationship to proposition 11 as
does the relationship of their robustness of unique correlated equilibrium to
proposition 10? The answer is complex since the analysis of robustness of
characterizations and of the equilibrium concept are different in many
ways. However, by considering how one could modify the models to make
them more similar, it appears that there is a basic incompatibility between
the lack of robustness of Nash equilibrium as in Kajii and Morris on the one
hand, and the robustness of characterizations of Nash equilibrium. This
incompatibility may raise doubts about the robustness test used by Kajii
and Morris for Nash equilibrium.70

Kajii and Morris have a second sufficiency condition for robustness of
Nash equilibrium. While the general version requires too much setup for
this survey, a very special case of their second result is useful for drawing
connections to the literature and to examples above. The restriction of their
results to two-person two-strategy games with two strict Nash equilibrium,
implies that the robust outcome is the risk-dominant one. This is exactly
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what happens in the Rubinstein example at the beginning of the section,
and a similar result of this kind was obtained by Carlsson and van Damme
(1993) for 2 x 2 games when players observe their payoffs with noise.71

6.4 Necessity of almost common 1 belief for robustness

The final issue we consider in this subsection is the question of necessity. We
saw that almost common 1 belief is sufficient for robustness of strict Nash
equilibrium, while almost certainty is sufficient for robustness of a unique
correlated equilibrium. Is almost common 1 belief necessary for the former
result? Monderer and Samet (1990), and subsequently, Kajii and Morris
(1994a), show that one cannot in general weaken the hypothesis of almost
common 1 belief.72 As noted, the interest in this result is that it shows that
the sufficiency of almost common 1 belief for robustness presented
throughout this section is, in some sense, necessary for lower hemi
continuity of the equilibrium strategies and payoffs.

7 WEAKENING THE N O T I O N OF KNOWLEDGE:
THE SYNTACTIC APPROACH

7.1 Generalized knowledge operators and possibility correspondences

In section 3 we observed that any knowledge operator K{. 2n -• 2Q

satisfying [MC, N] generates a possibility correspondence <F{. Q -• 2Q, and
conversely. More precisely, using the definitions in section 3.1, starting from
either K{ (or #",•), going to ^\ (or Kt), and then going back, one ends up with
the same operator as one started with. Moreover, we saw that if the
knowledge operator satisfies [T],[4], and [5] as well, then 3F{is a partition.

Many authors have questioned the appropriateness of [T] and of [5] for
modeling knowledge and decision making.73 As we discussed in subsection
3.3 above, [T] is often weakened to [D] to model belief rather than
knowledge, and the importance of this weakening for modeling weak
caution in extensive-form games is explained in section 5.74 In this section
we focus on dropping [5].

Alternatively, some authors have directly questioned the appropriate-
ness of partition for modeling information. They consider various proper-
ties of the possibility correspondence, all of which are satisfied by partitions,
and examine the effect of weakening them and the relationship between
these properties and the axioms on Kt. In this section we will be discussing
these two approaches; in the current subsection we present the basics. In
subsection 7.2, as a first view of these models, we show the implication of
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weakening the knowledge axioms, and the partition structure of informa-
tion, in single-person decision theory. We consider games in subsection 7.3;
we show that without a common prior there is a sense in which these
weakenings have no effect, therefore the only insights these weakenings may
yield are in the context of assuming the CPA. In subsection 7.4 we present
the most widespread application of these weakenings, namely to no-trade
results. (Readers for whom the no-trade results are new may want to look at
the appendix, where we review the analogous results for the case where
partitions are used.) We conclude in subsection 7.5, where we discuss severe
problems with the motivation for most of these results, especially applica-
tions such as those in subsection 7.4.

The remainder of this subsection presents the relationship between
weakening axioms on a knowledge operator and weakening the partition
structure of information. The following are some properties of possibility
correspondences, J% which have appeared in the literature.

PI (reflexive) co
P2 (nested) For F and F in J% if F n F # 0 then either F c F or

FcF.
P3 (balanced) For every self-evident £, i.e., E s.t. coeE=> J^co) c JE, there

exists XE: &{-> 9? s.t. Vco e Q, ̂ F:(OeFe^AF) = 1 if G> e £ and
0 otherwise. We say that 3F >x is positively balanced and
satisfies [P3 + ] if XE can be taken to be non-negative.

P4 (transitive) co" e ^fao') and <x>' e 3F^oS) => co" e ^^OJ).
P5 (Euclidean) co' e #\(co) and co" e ^ipS) => co" e ^-(co').

Possibility correspondences satisfying several of these properties can be
seen in figure 5.9. The connection among the axioms on K( and properties of
# \ , where Kt and #\. are related as discussed above, are presented in
proposition 13 below. The most interesting parts are (i)—(iii), which relate Kt

to #\-; the rest are useful properties for understanding the results below.

Proposition 13
(i) Kt satisfies [7] if and only if ' # \ satisfies [PI] .

(ii) Kt satisfies [4] if and only if ^\ satisfies [P4].
(III) Kt satisfies [5] if and only if' &\ satisfies [P5].
(iv) If^i satisfies [PI] and [P2] or [PI] then it satisfies [P3].
(v) If Ft satisfies [PI, P2, and P4] then it satisfies [P3 + ] .

(vi) If^i satisfies [PI] and [P5] then it satisfies [P4].
(vii) ^t satisfies [P4] if and only if co' e & ^co)>=> #\(a/)

For proofs see Chellas (1980) and Geanakoplos (1989).
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CO co'

CO

co'

co"

7.2

Figure 5.9 Examples of possibility correspondences that are not
partitions.
(a) 3?(co) = {co}, 3?(cof) = {(D,a)'}. [P1]-[P4] are all satisfied, [P5} is
not.
(b) &(d) = {(o,a)'}, iF(co') = {co'}, &(co") = {co',o/}. [PI], [P3], and
[P4] are satisfied, [P2} and [P5] are not.

An application to single-person decision theory: When is
"information" valuable?

A single-person decision problem with information is determined by an
information structure {Q,/?,, #",}, a strategy space Si9 and utilities
u-iSi x f i ->91 . Given any information F e # \ the player can choose any
element of Si9 so a decision rule is a function st: 3F -x -> 5, which determines a
function from Q into St that we also (with abuse of notation) denote by s£,
where s^co) = s^J^co)). Given any F e J % the player's interim expected
utility is naturally defined as Eu(st\F) = lLm.sFu(^lp}\(o')p^(o')lp^F). How-
ever, if 3F{ is not a partition then it is not clear how to define ex ante utility.
The true ex ante utility is JEM(S£ || J%) = Y.i0&0ploS)Eu^i \ ^^co)). On the other
hand, the expectation of the interim utilities, ZFe^.pf(F)£w(s£ | F), may be
different. But this latter notion does net make sense: if a person thought she
had a non-partitional 3Fb then she would refine it to a partition. For
example, if she thought that in state co' e #'^co) the information received
were different from J^^co), which must happen for some co and co' if #\- is not
a partition, then she would not think that co' is possible when co happened.
So ^i{co) would not be the possibility set for co. For this reason, when
working with non-partitional possibility correspondences, #\-, it is often
said that the players do not know their information structure. Therefore,
the notion of ex ante expected utility should be thought of as something the
analyst considers and not the player, and as such we focus on the true ex
ante utility Eu(st |
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A partition 3F-x is more informative than #"J if the former is a refinement
of the latter, i.e., if for all co, J^^co) <= J^co). It is well known that the
ex ante expected utility increases when a partition becomes more informa-
tive: if tF{ is a more informative partition than partition J^J, then
Eu(s || #";) > Eu(s || #"J). Does this result hold if information is not given by
a partition? Equivalently, does this result hold if some of the axioms of
knowledge are dropped?

Proposition 14 (Geanakoplos (1989)) / / a possibility correspondence 3F{

satisfying [PI, P2, and P4] is a refinement of a partition 3F\ then
Eu(s || #",.) > Eu(s || J^-). Moreover, if & Jails [PI, P2, or P4] then there is a
partition 3F\ that is less informative but yields higher ex ante expected utility.

Thus [PI, P2, P4] are necessary and sufficient for information to be
valuable.75

7.3 Solution concepts with general possibility correspondences

In order to examine the effect of allowing for non-partitions in multi-person
environments, we need to extend and re-examine our definitions of
common knowledge and of equilibrium. As before, the basic definition of
common knowledge of E at co is that all players know E, know that they
know E, etc., and a person knows £ at co if #\(co) cz E.76 A (Bayesian) Nash
equilibrium in a game with a non-partitional information structure, will
also be defined as in the usual case.

Definition Given an information structure (Q, {^i,p^ieN) and a game
G = (Si9 ut)ieN, where u{. Q x S -• % a decision rule for each player is, as
above, a function sf: #",- —• St. A profile s = (s , )^ is a Nash equilibrium if for
all i, and for all co, i prefers st(co) to any other s{. for all i, F e 3Fb and st.

co'eF o'eF

What are the implications of these weakenings of knowledge for solution
concepts? This line of research has only been explored to a limited extent;
the main result is that a posteriori equilibria continue to correspond to Sf °°,
even when the information structures of the correlating devices violate all of
the properties above, so long as each player has a well-defined "condi-
tional" probability given each information she can receive.

Proposition 15 (Brandenburger, Dekel, and Geanakoplos (1992)) Consider
a Nash equilibrium, s: Q —• 5, as defined above, of a game G = (S, u) with
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possibility correspondences 3P\ and priors pt on Q, where u:S-+yi. (Note that
u is not a function o/Q.) For all i and all a),s(co)e^co(G).

Why is it that weakening the assumption that tF.x is a partition has no
effect on the set of strategies and payoffs that can arise in a posteriori
equilibria? The definition of Nash equilibrium requires that for every i
and each Ft e J% s(Ft) is a best reply to beliefs over the set
{s_ieS_i:3F_ie^r_is.ts{F_l) = s_J. Therefore, the product of the sets
{sieSi:3Fie&is.t.s(Fd = st} are best-response closed sets (cf. Pearce
(1984)) and hence in 5^°°. Thus, weakening the assumptions does not
enlarge the set of a posteriori equilibrium. We saw in proposition 2 that 9**°
corresponds to a posteriori equilibrium with partitions. Therefore, allowing
for non-partitions has no effect on this solution concept. On the other hand,
this equivalence between a posteriori equilibria with and without partitions
breaks down if a common prior is imposed. That is, the set of correlated
equilibria without partitions but with a common prior, allows for strategies
and payoffs that cannot arise in any correlated equilibrium with a common
prior and with partitions. This is demonstrated by the betting example
below. Thus one can interpret weakening the partition structure as
weakening the CPA. The relation between propositions 1 and 2, suggests
that there ought to be a reformulation of proposition 15 that directly states
that common knowledge of rationality and the game, even when knowledge
violates [T, 4, and 5], will also continue to characterize y°°.

Proposition 16 If at co both [u] and [rationality'] are common knowledge,
where for all i, Kt satisfy [MC] and [N], then

7.4 No-trade theorems and general possibility correspondences

In the appendix we review the no-trade results used in this subsection for
the case where 3F{are partitions. The propositions below show that results,
which in the context of partitions seem quite similar, are no longer similar
when non-partitions are considered. The results differ in the extent to which
partition properties, equivalently the axioms on knowledge, can be
weakened. For example, Aumann's (1976) agreeing-to-disagree result is
more robust than the no-bets-in-equilibrium and no-common-knowledge-
of-bets results. (Moreover, the last two also differ in their requirements on
knowledge.)

Proposition 17 (Geanakoplos (1989)) (see also Rubinstein and Wolinsky
(1989) and Samet (1990)). Consider two agents, i = 1,2, who share a common
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prior p, on a state space Q, and each has a possibility correspondence £F\ that
satisfies [PI ] and [P3] (a fortiori [PI] and [P4]).

If in some state of the world co, the agents' posterior beliefs concerning an
event A a Q, namely the values p(A\^i(co)), for i= 1,2, are common
knowledge, then these posteriors are equal.

Conversely, if for some i, 3P\ violates [P3], then there exists a space Q,
partitions ^ for all) / i, a common prior p and an event A such that the value
of the posteriors are common knowledge but they differ.

For simplicity we present a sketch of the proof for the first part of the
proposition only, and assuming [PI, P4]. There are two main aspects to the
proof. First, posterior probabilities have a "difference" property: if F" cz F
and p(A\F) = p{A\F") = p, then p(A| [F - F"]) = p also. Second, using
(vii) of proposition 13, [PI] and [P4] imply that #\- also has a "difference"
property described below. The rest follows from the definitions and the two
difference properties just mentioned. Since it is common knowledge that f s
posterior probability of A is p., there is a self-evident event G such that, for
all co in G,p(A | J^^co)) = p£. The difference property of J^- alluded to above
implies that G is the union of disjoint sets F, such that each Ft is either in $F {

or is the difference of two sets in 3F{. Using the difference property of
posterior probabilities, for each such Fi9 p(A | F,) = pt. But this implies

Proposition 18 (Geanakoplos (1989)) Consider two agents, i = 1,2, who
share a common prior p, on a state space Q, and each has a possibility
correspondence # t that satisfies [PI, P2, and P4]. Assume in addition that
these two agents are considering saying yes or no to abet X: Q -• 9* and the
agents' utility is their expected gain.

In any Nash equilibrium the expected payoffs of the agents are zero.
Conversely, if a players' possibility correspondence violates one of the
assumptions, there is a betting environment with all other players having
partitions, and with a Nash equilibrium where the expected utilities would not
be zero.

There is also an analog to the no-common-knowledge-of-bets result.

Proposition 19 (Geanakoplos (1989)) Consider two agents, i = 1,2, who
share a common prior p, on a state space £1, and each has a possibility
correspondence 3P\ that satisfies [PI] and [P3 + ] . Assume in addition that
these two agents are considering saying yes or no to a bet X: Q. -> % and an
agent says yes if and only if her expected utility is non-negative.

If it is common knowledge at co that the agents are saying yes to the bet, then
their expected payoffs equal zero.
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Conversely, if a player's possibility correspondence violates one of the
assumptions, there is a bet against players with partitions and a state of the
world at which it would be common knowledge that all the players accept the
bet, but their expected utilities would not be zero.

To understand why the agreeing-to-disagree result requires fewer assump-
tions than the two no-betting results, recall the proof of the agreeing-to-
disagree result (see the appendix for a review). The "difference" property
does not hold for inequalities: F" c F and p(A \F)>0 and p(A \ F") > 0 do
not imply p(A\ [F - F']) > 0. For example, let Q = {a,b,c}, p(co) = 1/3,
&xi(o) = Q for all co, &2{a) = {a,b}, ^2{b) = {b}, ffir

2(c) = {b,c}, and l's
payments to 2 are X(a) = X(c) = - $5.00, X(b) = $7.00. Clearly in every
information cell both players will say yes if they expect their opponent to
always say yes to the bet, and this is a Nash equilibrium, but their
conditional expected utilities are strictly positive. Note that 2's ex ante
utility is negative despite her interim expected utility always being strictly
positive.77

7.5 Motivation

Weakening the assumptions on knowledge and on information seems
appealing. People are not perfect reasoners and an axiomatic approach to
weakening knowledge should clarify which aspects of their reasoning
ability we are weakening. In fact, in contrast to the almost common
certainty approach of the previous section, the syntactic approach seems to
address more fundamental problems with our assumptions on knowledge.
Similarly, partitions do not seem appropriate with agents who are bound-
edly rational, if our notion of bounded rationality allows for errors in
processing information.

In this subsection we review the motivations for the weakenings of Kt and
3F{discussed earlier, and argue that, while these weakenings might seem a
priori interesting, the framework to which they are applied and the results
obtained are problematic. Our concerns are based on three related issues.

The ideas of bounded rationality and reasoning ability used to
motivate non-partitions do suggest, in some examples, that we
drop the assumptions needed to get the partition structure.
However, there are very few results explaining why we should be
willing to assume, say, [P1]-[P4] but not [P5] or be interested in
possibility correspondences that satisfy [P1-P3], etc. The
examples no more imply that we should drop [P5] in a general
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analysis of games and of trade, than does the fact that juries are
supposed to ignore a defendant's decision not to testify on his own
behalf. Perhaps the decision making by such jurors in court may be
fruitfully modeled using a particular non-partition (which violates
[P5]). However, these people ought not be modeled using non-
partitions in other aspects of their lives. Moreover, even if people
carry this mistake outside the courtroom, it is not clear why it
generalizes to other contexts as a failure of [P5]: while the
non-partition that captures the ignoring of someone's decision not
to provide information does violate [P5], there are many non-
partitions where [P5] is violated that do not have the same easy
interpretation.

The most compelling motivations for particular weakenings often
argue strongly for making other modifications in the framework;
but the analysis typically relies heavily on keeping the rest of the
framework (e.g., the CPA and Nash equilibrium) that underlies
most applications.

1 For example, the use of priors and of Bayesian updating seems
to be questioned by the very same arguments used to motivate
dropping [P5]. As we said at the beginning of this section, ex
ante analysis without partitions is questionable. On the one
hand, players are assumed not to know what they know; on
the other hand, they are assumed to have a prior and use it in
Bayesian updating based on information cells. There are
essentially no results that justify stapling traditional
frameworks together with non-partitions.

2 The motivations for non-partitions make the use of equilibrium
especially questionable: if people are that boundedly rational,
what justifications are there for standard equilibrium notions?
Moreover, if one is inclined to use a solution concept that has
stronger, albeit in this context not very strong, foundations,
namely 5^°°, then propositions 15 and 16 show that allowing
for non-partitions has no effect. Clearly, as Geanakoplos (1989)
observes, justifications of Nash equilibrium that are based on
introspection and assumptions about knowledge of rationality
and strategies seem in conflict with an environment where
players do not know their own information structure. Drew
Fudenberg (personal communication) has argued that it will be
hard to obtain a learning environment in which players will
learn enough to play a Nash equilibrium but not enough to
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learn their own information structure, so that learning-based
justifications of equilibrium with non-partitions are also
questionable.

3 In an analysis using equilibrium and common knowledge,
when non-partitions are involved, each player is assumed to
correctly know the opponents' possibility correspondences, but
not her own. Moreover, each player i knows what each
opponent j thinks is possibility correspondence is, but i thinks
j is wrong despite j being correct. This seems like an odd
assumption. There seems to be no reason to restrict their
mistakes to their own information, and moreover to take the
form of weakening [5].78

To clarify our concerns we will review the motivations for this research
that appear in the literature. These arguments fall into two categories:
explanations for why 2F .x need not be a partition when players are
boundedly rational; and motivations for why Kt need not satisfy all the
axioms [T,MC,N,4,5] when players have limited reasoning ability.

Provability and complexity Modeling knowledge as something that agents
deduce satisfies [4] and violates [5].

Geanakoplos (1989) informally proposed, and independently Shin (1993)
formally considered, the case where knowledge comes from proofs; we call
such knowledge provable knowledge in this paragraph. Clearly, not having a
proof for something, say fact p, implies that p is not provably known. On the
other hand, not having a proof does not imply that one has a proof that a
proof does not exist, so one would not provably know that p is not provably
known. We find this motivation for results along the lines of subsection 7.4,
questionable. Why is provable knowledge a useful notion for decision
theory? The mathematician who has not proven Fermat's last theorem, and
who certainly does not have a proof that such a proof is impossible, would
not say that he does not know that he does not have a proof of the theorem.
So, while Shin (1993) demonstrates that provable knowledge satisfies [PI]
and [P4] and may violate [P5], we do not view this as a com-
pelling motivation for considering knowledge and information that violates
[P5].

Similarly, Samet (1990) motivates keeping [T] and [4], while dropping
[5] by proposing axioms on the complexity of sentences that a person can
use or "produce." He considers a sentence, say p, that has complexity
greater than the bound on the person's ability, and argues that the person
will not know that she does not know this sentence. (The axioms imply that,
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not knowing p, and knowing that one does not know p, should have greater
complexity than p.) Nevertheless, it is possible, even with these complexity
bounds, for a person to know whatever they do know; so [4] can be
satisfied. Here again, it is not clear that the violation of [5] is relevant.

Forgetfulness Since people often forget information, the representation of
what they ultimately remember may fail to be a partition.

Geanakoplos (1989) formalizes this idea and proves that nestedness
corresponds to a condition on memory. Assume that each state is a list of n
statements concerning the truth or falsity of an ordered list of n facts. That
is, Q = {T, F}n, where the fcth element of co, denoted a>(/c) says whether the
/cth fact is true or false.79 Assume that information satisfies [PI] and that
information about facts is remembered in the ordered sequence. That is,
given any possibility cell ^fco) there is an / s.t. J^co) = {cof: co(j) =
co'(j)J = 1,.../}. This could happen if people remember the truth and
falsehood only of recent facts, or of important facts. If, in addition, / < n is
possible, then $F{need not be a partition but it will satisfy [P3]. Moreover,
given any nested J%- there is a memory-based justification of this sort.

Forgetfulness is an important limitation to incorporate into decision
making. However this form of forgetfulness implies that whether or not you
forget depends on the sequence of truths and falsehoods and not on the facts
which are true or false. So, to get a non-partition it is necessary to forget,
say, whether statements 2, . . . , n are true when statement 1 is false but to
remember differently when statement 1 is true. It would be interesting to see
what other conditions can be motivated by more realistic models of
forgetfulness. In this light it is worth noting that if people forget things in a
less orderly manner, then any # \ satisfying [T] can be obtained. That is, if
what causes people to forget can depend on particulars of the precise state
of the world, then it would be equally plausible to assume that in each state
co you remember only the information received corresponding to ^^co).
This would then justify looking at any non-partition (satisfying [PI]).

Moreover, to the extent that forgetfulness provides a motivation for
nestedness, it is worth noting that none of the results in the literature rely on
nestedness alone. So, the sufficiency results are of limited interest unless the
other conditions can be motivated as well. The necessity results fare better-
they imply that bets can arise so long as there is one person with a memory
problem of this ordered type, and that information may be "bad" for
anyone with this memory problem.
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Dynamic models The information provided by a dynamic process may be best
summarized by a non-partition.

Shin (1989) shows that [P1,P3,P4] are necessary and sufficient for
information to come from a particular dynamic model. This motivation for
an interesting class of non-partitions is then as compelling as is this
dynamic model. The reader is referred to the paper for details, but we do not
think the decision problem portrayed by this dynamic model is a common
situation. However, in contrast to Geanakoplos' forgetfulness result, Shin
(1989) characterizes exactly those information structures for which infor-
mation is valuable. So, to the extent that the dynamic representation is
compelling, it succeeds in motivating both the sufficiency and necessity
results concerning bets and valuable information.

Preferences and axioms Different axioms on preference relations may yield
behavior that is equivalent to that arising from non-partitions.

Morris (1996) proposes a Savage-like model of preferences, where in each
state the player's preferences over acts may differ. (This is not state-
dependent utility; the whole preference relation on acts may depend on the
state.) Knowledge is defined subjectively - similar to certainty, where a
person knows if she (subjectively) assigns probability 1 - and may depend
on preferences at each state. Naturally one can assume that preferences at
each state correspond to expected utility preferences conditional on
information received at that state, where information is given by some
partition; this will correspond to a partition model. Instead Morris
considers axioms on preferences that do not assume any particular
information structure and shows how different axioms correspond to
different information structures. For example, some of the axioms have
natural interpretations concerning the value of information. The problem is
that the basic axiom tying together the preferences at different states is hard
to interpret, and in fact highlights the problem with non-partition models:
there is no sensible way for the individual to have an ex ante view of the
world that corresponds to a non-partition model.

This just reinforces a general problem raised earlier: if there is no ex ante
view corresponding to a non-partition model, then there is no justification
for modeling the decisionmaker as having a prior which is updated in a
Bayesian like manner on non-partition information cells. But in that
case, why look at ex ante equilibrium notions and the value of information?
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Imperfect information processing Mistakes in processing information may
be modeled by non-partitions.

These motivations do not have formal results relating them to non-
partitions. Nevertheless, they do seem to justify the use of certain non-
partitions. For example, Geanakoplos (1989) discusses a situation where
selection bias - a situation where individuals select which information to
use, e.g., ignoring bad news but taking good news into account - will lead to
non-partitional J^-s. However, no connection is developed between selec-
tion bias and the properties used in results on non-partitions. So, while this
might motivate dropping the partition structure of information, it does not
motivate results based on the particular weakenings discussed in the
previous sections.

The argument in the previous paragraph seems to apply also to implicit
information, a related cause for non-partitional information. It is argued
that when reading the newspaper few people make deductions based on
what is not there. But it remains to be seen that this motivates dropping
[P5] in general.

Unawareness: an example and a reappearance of syntax Axiom [5] implicit-
ly requires awareness of all states and hence should be dropped.

The most commonly cited argument for dropping [5] is unawareness.
The argument that only partitions make sense starts by assuming that
a person believes J^(co) is the set of possible states, and that for
co' e #"(co), J^co') ^ #"(eo). Then the person would conclude that when the
state is co' she would think the possible states are #"t-(co'), and differ from
what she actually thinks at co, so it cannot be that OJ' is possible. But, the
counterargument says that if the individual is unaware of co', she could not
"know" the set ^(co').80 Non-partition possibility correspondences may be
plausible for this reason.

But this raises another question: What does it mean to say that, since
co' e #"(co), when co occurs the person thinks co' is possible, even though co' is
not conceivable. The following example of unawareness, from Geanakop-
los (1989), suggests a potential answer. A scientist, who is unaware of y rays,
and a fortiori is unaware of the fact that y rays indicate that the ozone layer
is disintegrating, is interested in knowing whether or not the ozone layer is
disintegrating. When it is not disintegrating, the scientist can not use the
non-existence of y rays to deduce that it is not disintegrating (since she is
unaware of y rays she can not use their absense to update); when it is
disintegrating she discovers y rays and then deduces the connection with
ozone, concluding that the ozone layer is disintegrating. If we describe the

Cambridge Collections Online © Cambridge University Press, 2006terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CCOL521580110.005
Downloaded from https://www.cambridge.org/core. IP address: 99.135.139.133, on 30 Jan 2018 at 16:49:55, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CCOL521580110.005
https://www.cambridge.org/core


152 Eddie Dekel and Faruk Gul

state space as {d,~id}, where d denotes disintegrating, the scientist
information is non-partitional: !F(d) = {d}, J^(~id) = {d,~id}. The answer
this suggests to our question concerning cof above seems to be that the
scientist does not have a complete description of the state. Thus what the
scientist thinks is possible in state ~i d has nothing to do with the y rays of
which she is unaware; rather she only thinks about the payoff - relevant
events and views disintegration and not disintegration as possible.81

But this introduces another concern: we have not provided a correct
description of the model, neither from the scientist's limited perspective nor
from ours. In the state corresponding to d the scientist is aware of y rays.
Could the model then have {d,y},—id as the two states? Not if we want a
model of the world as the scientist perceives it, since then in state —i d the
scientist's perception is no longer that either of those two states are possible.
Could this be a model of the world from the analyst's perspective? The
non-partitional model is an incomplete shorthand for a more complete
model with partitions and a prior for the person that differs from the
"actual" prior. The true state space is {y,—id} x {d, —id}, the information is
partitional: the scientist observes either {y} x {d,~\d} or {—iy} x {d,~\d},
and the "correct" prior on this state space has probability zero on —i y, d
while the scientist behaves as if this state had positive probability. (Once
again, this may clarify why allowing for non-partitions is like allowing for
different priors in a game.)

So what of our unawareness motivation for non-partitions satisfying
[P4] but violating [P5]? It seems to be having a hard time. At best, it is a
shorthand for a partitional model and it does not really justify weakening
[P5]. It suggests that certain "wrong" priors can be modeled as one very
special form of non-partitions; it fails to motivate general results along the
lines in the previous subsection. Like our discussion of jurors' decision
making earlier, the model of the scientist can at most suggest using
particular non-partitions in particular examples, not exploring the general
implications of non-partitions that violate [P5].

We conclude that the intuitive example of unawareness fails to motivate
results where [P5] is dropped and other axioms retained. The main
remaining argument for dropping [P5] in general is based on the syntactic
interpretation of [5] (which we saw is equivalent to [P5]). Assumption [5]
states that if an individual does not know something, then she knows she
does not know it. If she does not know it because she is not aware of it, then
presumably we should not insist that she knows that she does not know it.
But if one is adopting the syntactic approach, one should do so with care.
Modica and Rustichini (1993,1994) argue that to model unawareness, the
notion should be introduced into the language and examined. They then
accept the definition that a person is unaware of </> if she does not know (f)
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and she does not know that she does not know 0, formally they introduce
the symbol % and define it by °U(§) <-» ~~i k(cj))A—i fc(—i k((/>)). But, they argue
that in a state in which you are aware of y rays then you should also be
aware of no y rays; that is, they impose the symmetry axiom, [S],
~-i^(0)<->~-"i^("-~i$). They develop various interesting results on the
relationship of this symmetry axiom with [T,N, MC,4,5]. In particular
they show that [T,N,MC,4, S] characterizes partitions: symmetry of
awareness is equivalent to [5] so leads to no real unawareness in this
context.82 Dekel, Lipman, and Rustichini (1996) make a related point. They
say that to be unaware of (/> at co the person should not know that (she does
not know)" (/> for all n (since if there is a sentence where there is positive
knowledge of <j> she must be aware of <j>). They prove that requiring this for
all integers n allows for unawareness, but extending it (as one should)
transfinitely, results in the impossibility of real unawareness. In conclusion,
these papers show that non-partitions are not an appropriate way to model
unawareness because [N] and [MC] must be dropped, so a knowledge
operator that allows for unawareness cannot come from a partition.83

APPENDIX

No-trade results

We review here three simple and basic "no-trade theorems."84

The earliest explicit result of this kind is in Aumann (1976).85

Result 1 (Aumann (1976)) Consider two agents, i = 1,2, who share a common
prior p, on a state space Q, and each has information given by a partition SF{.

If in some state of the world co, the agents' posterior beliefs concerning an
event A a Q, namely the values p{ of P^A \ ^^(o)),for i = 1,2, are common
knowledge, then these posteriors are equal.

The basic property used in the proof is a version of the sure-thing principle:
If p((A | F) = Pi(A | F ) = pt for F, F e J\., FnF' = 0, then
pt{A \F u F ) = p(. This property and the formal definition (see below) that
at co the events {co': pt{A | J^co')) = p,} for i = 1,2, are common knowledge,
immediately imply the result. More directly interesting for economics is the
version of this result that speculation and trade cannot be a consequence of
private information alone. If private information cannot explain specula-
tion, other reasons must be the driving force in trade and speculation.

Result 2 (Sebenius and Geanakoplos (1983)) Consider the framework in the
result above. Assume in addition that these two agents are considering saying
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yes or no to a bet, which is a specification of how much agent 1 will pay agent 2
if a certain state occurs. That is, the bet is a random variable X: Q -> 9t.
(Negative amounts indicate payments from 2 to 1.) Assume also that, at some
state of the world a>, both agents are willing to accept the bet if and only if in
such a state of the world each agent has a non-negative expected payoff.

/ / it is common knowledge that the agents are willing to bet, then their
expected payoffs are equal to zero.

Given the first result, at a formal level this second result is not surprising:
the first result says that if it is common knowledge that a particular
conditional expectation for both players - namely their conditional
probabilities of an event A - equal p, then these conditional expectations are
equal. The second says that for any conditional expectation for both agents,
if it is common knowledge that they lie in the intervals [0, p j and [ — p2,0]
then both conditional expectations equal 0. However, the second result is,
in a sense that is made precise in section 7, less robust than the first.

The final preliminary result is an equilibrium version of no-speculation.
This result shows that the conclusion obtained above, by assuming a
common prior and common knowledge that players are optimizing, is also
obtained when we use a common prior and solve the game using correlated
equilibrium. This foreshadows Aumann's (1987) characterization result, see
proposition 3, that correlated equilibrium is equivalent to the assumptions
of common knowledge of rationality and a common prior.

Result 3 Consider the betting framework of the result above. In any
correlated equilibrium (a fortiori any Nash equilibrium) of the game where
players say YES or NO to the bet as a function of their private information and
the bet is in effect if both say yes, the expected payoffs of the agents are zero.

It is worth noting that a solution concept based solely on common
knowledge of rationality - namely rationalizability - does not yield the
same no-trade result: even if there is a common prior on Q, rationalizability
implicitly introduces non-common priors since it is equivalent to subjective
correlated equilibrium (see proposition 2).

Notes

We are grateful to the NSF and Alfred P. Sloan for financial support, to Aviad
Heifetz, Bart Lipman, Giacomo Bonanno, Steve Morris, and Aldo Rustichini for
very helpful and insightful comments and conversations, and to our colleagues for
their patience while we agonized over this chapter.
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1 Some additional sources that include an overview or a more complete presenta-
tion of material related to this survey are Aumann (1995b), Bacharach and
Mongin (1994), Binmore and Brandenburger (1990), Bonanno (1993), Branden-
burger (1992), Brandenburger and Dekel (1993), Chellas (1980), Fagin et al (1995),
Fudenberg and Tirole (1991), Geanakoplos (1992), Lipman (1995b), Lismont and
Mongin (1994a), Morris (1995a), Myerson (1991), Osborne and Rubinstein
(1994), Reny (1992), Rubinstein and Wolinsky (1989), and Tan and Werlang
(1984).

2 Stephen Morris has suggested that an equivalent way to view our argument is
that the paradoxes arise from confusing the (exogenous) states and the (en-
dogenous) choice of actions. This interpretation fits in better with the topic of the
next section, which is concerned with constructing the state space.

3 Alternatively, in accordance with the view of footnote 1, the player is confusing
the opponent's action which from her perspective is exogenous, with her own
choice.

4 A game theorist reading this analysis might be inclined to dismiss it entirely as
absurd and the resolution offered below as obvious. A survey of the philosophy
literature on the analysis of the Prisoners' Dilemma will offer ample evidence that
to many the analysis is not absurd and the resolution is not trivial. Consider the
following passage from Campbell and Sowden (1985) regarding the first two
paradoxes discussed in this section: "Quite simply, these paradoxes cast in doubt
our understanding of rationality and, in the case of the Prisoners' Dilemma,
suggest that it is impossible for rational creatures to cooperate. Thus, they bear
directly on fundamental issues in ethics and political philosophy and threaten the
foundations of social science." For our purposes, the most important thing to
note is that the "resolution" is the same as those offered for the less obvious
paradoxes below.

5 We suspect that most economists would dismiss Newcombe's Paradox as
uninteresting since the source of the difficulty appears to be arising from the
infallibility of the genie which in itself would appear to be problematic and
perhaps not a relevant modeling hypothesis. However, as is often noted, the
paradox persists even if the genie is correct with high probability, since
expected-utility calculations would still yield that it is better to take box B alone
rather than both. Thus, it is argued that the problem is not one postulating an
all-knowing genie and hence is genuine. The "resolution" that we will offer is
equally applicable to this probabilistic version.

6 Bonanno's resolution to the paradox is instructive. As discussed in section 5, he
replaces the rationality axiom above with a rule of inference that allows inferences
about agent f s behavior only if the hypothesis does not involve any reference to f s
behavior or to any proposition that utilizes a hypothesis involving f s behavior in
its proof. This "solves" the paradox since, effectively, the new rationality
hypothesis overcomes the problematic feature of maintaining the truth of a
player's rationality while he contemplates deviating. However, the solution goes
too far by not allowing i to use deductions made about the behavior of j which
relied o n / s belief of fs rationality. As a consequence, Bonanno's modified model
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of rationality will fail to eliminate even those strategies that require two rounds
of deletion of strategies that are strictly dominated by pure strategies, in a
two-person simultaneous-move game.

7 The paradoxes discussed in this section are of a different nature than the
discussions of Anderlini (1990), Binmore (1987-8), and Canning (1992). These
authors model players as machines and obtain impossibility and inconsistency
results, closely related to, and following from, Godel's famous work, concluding
that rationality is a problematic assumption.

8 The review and some of the development below is rather terse, one source for a
more thorough presentation of the material in 3.1 and 3.2.1 is Fagin et al. (1995,
chapters 2 and 3); Chellas (1980) is a very comprehensive reference.

9 Thus Aumann's (1976) discussion of the assumption that the information
structure is commonly "known" is closely related to Harsanyi's (1967) develop-
ment of a commonly "known" game for situations of incomplete information.

10 Of course justifications of solution concepts that do not impose common-
knowledge assumptions - such as those using an evolutionary approach, or
Aumann and Brandenburger's (1995) characterization of Nash equilibrium in
two-person games, see proposition 4 below - do not require a commonly
"known" model.

11 In fact, we will find an information structure that, if it is assumed to be common
"knowledge," generates in every state co' the perceptions that are described by
state co'.

12 Bacharach (1985, 1988) and Samet (1990) present different, but related, ap-
proaches. As in most of the literature, the models that we will construct from this
framework will involve partitions only, and no probabilities.

13 The symbol for conjunction should not be confused with the same symbol used
earlier for the meet of partitions. Since in both cases A is the standard symbol, we
abuse notation in this way. Similarly, —i will represent both set complements
and syntactic negation as will be clear from the context.

14 Excepting, of course, our original description of the actual situation of
incomplete information which is not a construct, but a given primitive of our
analysis.

Aumann (1995b) and Hart et al. (1995) show that the constructed state space
has the cardinality of the continuum.

15 The fact that the J^s constructed in this way are partitions is a result; see, e.g.,
Aumann (1995b), Chellas (1980), and Fagin et al. (1995), for proofs of such
results.

16 This is a more formal version of the Kripke models described in the preceding
subsection. Kripke models are usually defined using binary relations, e.g., GO is
considered possible at a>\ rather than possibility correspondences 2F\. The two
methods are easily seen to be equivalent so we use the one more familiar to
economists.

17 For proofs of this type of result, and more general connections between results in
the language, called syntax in the literature, and those in the model, called
semantics in the literature, see references cited at the beginning of this section.
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18 There is an issue here which requires some caution. We have just constructed a
set Q. where each co is a list of true sentences in L. Our main claim is that this
construct is equivalent to the following: view Q as a set of states, with each state
specifying only what sentences in X are true; append t o Q a partition (which we
derived) for each player and using this commonly "known" information
structure derive which epistemic sentences are true (just as we constructed K{

from the partitions). However, we could imagine a slightly different question.
Start with a set Q and functions J*"t:Q -• 2", and a function from Q into 2X

representing the subset of X that is true in each co. Use this to determine which
epistemic sentences are true. (Where /ct((/>) is true at co if [</>] e ^Jico).) Check if the
epistemic sentences satisfy [T, MC, N, 4, and 5]. If so, is it necessary that &\ is a
partition? No. Consider the following example: X = {p}, Q = {a>,a>'},
J* t(co) = ^i(co') = {co}, and the unique basic sentence in X is p, and p is true at
both co and co'. It is easy to see that all the axioms are satisfied concerning
knowledge about p, but $F{ is not a partition. To conclude that any Kripke
structure that satisfies [T, MC, N, 4, and 5] must be partition we either need to
verify the axioms on X t: 2

Q -> 2" or, if we want to verify it on sentences k$\ then
we must allow for all possible assignments of truth valuations from Q into X.
For more on this see, e.g., Fagin et al. (1995).

19 Maruta (1994) develops the notion of events that are expressible in the syntax,
and, among other results, characterizes partitions using a weaker axiomatic
structure but assuming that many events are expressible.

20 Actually, common knowledge can be defined without infinitely many conjunc-
tions, by adding symbols to the language and providing a fixed-point definition
of common knowledge. Even then, one might be concerned with the notion of
common knowledge in a syntactic framework, since it seems to require working
with sentences that involve infinitely many conjunctions. Thus, it might seem
questionable to model decisionmakers who, in some vague sense, need to
conceptualize, let alone verify, infinitely many sentences to know whether a
sentence in their language is true.

Aumann's (1976) state-space characterization of common knowledge suggests
that this should not be a concern. While common knowledge can be defined as
everyone knowing that everyone knows, it is equivalent to define common
knowledge in terms of the meet of the information partitions, which are simple to
construct and have a simple interpretation as self-evident events. This is often
called the fixed-point characterization of common knowledge. Since it seems
obvious that certain events, e.g., publicly announced events, are common
knowledge, it seems natural that we can verify common knowledge without
getting into "infinities" (see, e.g., Milgrom (1981)).

A related issue has been addressed in syntactic models by asking whether
common knowledge can be characterized with finitely many finite axioms. That
is, add a symbol cM for common knowledge among M c i V t o the language of
subsection 3.2.1. The question is whether there are assumptions that can be
added to [T, MC, N, 4, and 5] which define cM and have the property that, when
we construct the state space and partitions (analogously to the construction
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above), we get an equivalence not only between kt and Ki9 as in subsection 3.2.1,
but also between cM and CKM1 Intuitively, the answer is yes if we allow for
infinitely many conjunctions and define cM that way. But it can also be done with
finite axioms using the fixed-point approach, allaying any concerns of this type.
(See, Bonanno (1995), Bonanno and Nehring (1995), Fagin et al (1995), Halpern
and Moses (1992), and Lismont and Mongin (1993,1994a, b). See also Barwise
(1988) for a different perspective.)

21 To be more precise, there is no other model without redundant states, or put
differently, any other model that agrees with that of figure 5.4b on finite levels
also agrees with it on all levels.

22 This is related to Fagin, Halpern, and Vardi (1991), Fagin et al (1995) and
Rubinstein (1989). Carlsson and van Damme (1993) describe a realistic environ-
ment which generates an information structure with similar properties, see
footnote 6.

23 The relationship between the approach of allowing more conjunctions and that
of adding symbols is discussed briefly in subsection 3.2.1.

24 Heifetz (1995c) constructed a more general two-person example which has two
advantages: first all the models have the property that in every state the players'
knowledge coincide except concerning sentences outside the original syntax -
this is not true at state co* in the example above, and, second, he shows that there
are as many such models as partitions of Q. See also the second part of
subsection 3.2.2.

25 By contrast we definitely should care about the model of figure 5.5: A
straightforward extension of Rubinstein (1989), by adding a third player, yields
those types of models; and, as pointed out in footnote 6, Carlsson and van
Damme (1993) provide an economically interesting model with the same
properties as Rubinstein's model. The point here is that examples with even
greater transfinite depth of knowledge may not have similar motivations.

26 See theorem 3.1 in Heifetz and Samet (1995).
27 Tan and Werlang (1984) are concerned with the reverse implication: they show

how any standard model of asymmetric information can be mapped into (a
subspace of) the Mertens and Zamir (1984) model. Brandenburger and Dekel
(1993) re-examine the Mertens and Zamir formalization, focusing on Aumann's
concern with common knowledge of the information structure, in particular
showing which assumption in Mertens and Zamir plays the role of the
assumption that the information structure is common "knowledge."

28 We present the case where there are only two players; the extension to more
players is straightforward. In this discussion S is assumed to be complete,
separable, and metric. Heifetz (1993) generalizes the result to the case where 5 is
Hausdorf.

29 It is necessary to allow i to have joint beliefs over S and over / s beliefs over S
since the true state in S may naturally influence/s beliefs, e.g., if i thinks; has
private information about 5.

30 Formally, T[ = {(t\, tl
2,.. .)e Tl

0: :margXn /n+x = t\ and the marginal of t*H + x on
the ith copy of A(Xn_1) assigns probability 1 to t\leA(Xn_1)}.
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31 Heifetz (1995a) shows that there is an additional implicit assumption of
countable additivity: not only are we assuming that the beliefs xk are countably
additive, but also the meta assumption is adopted that the beliefs generated by
the sequence rk, over types of the opponent, are countably additive. This is a
meta assumption because it concerns how we extend beliefs from the hierarchy
to the state space, and it turns out that many finitely additive beliefs over T exist
which yield the correct marginals, and only one of these is countably additive. So
the uniqueness, as in subsection 3.2.1, is not completely w.l.o.g. On the other
hand, Heifetz also shows that there is an alternative way to generate a Bayesian
model, using non-well founded sets, which does not require this meta assump-
tion.

There is a mathematical feature that might be helpful in understanding the
difference between constructions in subsection 3.2.1 and 3.2.2. The cardinality of
the set of beliefs over a set can be the same as the cardinality of the set itself.
Therefore, it is feasible to construct a model where every possible belief over the
state space is represented by some state. On the other hand, the cardinality of the
set of partitions of a set is always bigger than the set itself. Therefore, one cannot
construct a state space in which each state incorporates every possible partition
of the set. So, we should expect that it will not be the case that each state can
express every possible sentence about the players' knowledge (see also the
discussion following figure 5.5, and Gilboa (1988) and Heifetz and Samet (1995)).

32 The extension of this subsection to infinite Q is delicate as it requires attention to
various topological and measure-theoretic details, such as why E must be closed.
We maintain the finiteness assumption for simplicity.

33 Battigalli and Bonanno (1995), Brandenburger and Dekel (1987b), Lamarre and
Shoham (1994), and Nielson (1984) also consider the relationship between
knowledge and certainty.

34 Note that property [N] follows from the other assumptions, and that any prior
with the same support, S, will generate the same Bt and Kt.

35 However, the model of certainty and knowledge at the end of subsection 3.3 does
create a support, even though it does not create a unique prior. This suggests
that perhaps a weaker assumption, such as common supports, can be justified.
There is very little exploration of this issue. Assumptions like this have been
used, together with additional assumptions, to characterize Nash equilibrium in
generic games of perfect information (Ben Porath (1994)). Stuart (1995) shows
that common support and common certainty of rationality yields Nash
equilibrium in the finitely repeated Prisoners' Dilemma.

36 Morris (1995a) compellingly argues in favor of dropping the CPA even when an
ex ante stage does exist.

37 The reader will note that in section 6 some results rely on the uniform
boundedness of the utility functions and should therefore be treated with similar
scepticism.

38 The reader might wonder why we care about characterizations of solution
concepts. The common view of characterization results such as those in this
chapter is that they explain how introspection alone can lead agents to play in
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accordance with various solution concepts. We would like to emphasize two
closely related roles: characterizations provide negative results and they suggest
which solution concepts are more appropriate in different environments. For
example, there may be results which provide very strong sufficient conditions for
a particular equilibrium notion, such as Nash equilibrium. This cannot
constitute a proof that the equilibrium notion is unreasonable, since it is possible
that an alternative model with appealing sufficient conditions exist (such as, for
example, recent evolutionary models). Nevertheless, most results are tight in
that if assumptions are weakened then play could be different from the
characterized solution concept. Thus, these results do suggest that various
solution concepts, in particular Nash equilibrium and backwards induction, are
implausible in various contexts. An example of the second type is the following:
for some solution concepts it is shown that common certainty of rationality
rather than common certainty of beliefs is sufficient. Such a result may be
important in a learning or evolutionary environment where common certainty
of rationality is more plausible than common certainty of beliefs. Similar
insights can be obtained by examining the robustness of characterizations to
weakenings of the common-certainty assumptions. For example, different
characterizations are robust to replacing common certainty with different
notions of "almost" common certainty. Therefore, since common certainty
assumptions are unlikely to be satisfied in any real context, the appropriate
concept should depend on which form of "almost" common certainty is most
likely to be satisfied in that context.

39 See also Stalnaker (1994) and Tan and Werlang (1988).
40 That Sf™ is equivalent to an interim solution concept is natural: it is

characterized by an assumption that is made about a particular state of the
world, not an ex ante assumption about the constructed states of the world.

41 That any such equilibrium uses strategies that survive 5̂ °° follows from
arguments similar to Bernheim's and Pearce's characterization of rationalizabil-
ity: each strategy used in such an equilibrium is a best reply to a belief over the set
of those opponents' strategies that are used; therefore these sets of strategies are
best reply sets, hence survive iterative deletion. To construct an a posteriori
subjective correlated equilibrium that uses any strategy that survives iterative
deletion we simply construct an information structure where the state space is
the set of strategy profiles, each player is informed of a recommendation for her
own strategy, and the players' conditional probabilities on the state space are,
for each possible recommendation to i, say ah the belief - which is over the
opponents' strategies that survive iterative deletion - which makes at a best
reply. (Such a belief exists since the strategies are rationalizable.) For more detail
see Brandenburger and Dekel (1987a).

42 For two-person games the CPA is not needed.
43 Clearly the hypothesis that each co in the support of p is also in [rationality]

n [u] is equivalent to the assumption that at each such a> there is common
certainty of [rationality] and of [«]. Thus it might appear that common
certainty of rationality is necessary for correlated equilibrium. However, in
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subsection 6.2 we will see that the appropriate statement of this ex ante result is
as in proposition 3 and not with common certainty; see the text preceding
footnote 6.2.

44 It is important that; knows the payoffs are uff if/ were only certain of the payoffs
then; could be wrong, and then the players would not necessarily be playing a
Nash equilibrium of the game (L,u(co)). Moreover, they would not even
necessarily be playing a Nash equilibrium of the game they believe they are
certain they are playing, as each player i could believe that j has wrong beliefs
about/s own payoffs. Thus, while we agree that certainty "of one's own payoff is
tautological" (Aumann and Brandenburger (1995, section (7c)), knowledge of
one's own payoff is not tautological, and seems necessary for proposition 4.

45 Applying this analysis to the case of correlated equilibrium may shed light on
which of the various definitions of correlated equilibrium, see, e.g., Cotter (1991)
and Forges (1992), are appropriate and in which contexts.

46 These and related concerns with characterizing refinements are discussed, e.g.,
by Borgers and Samuelson (1992) and Pearce (1982), see also Cubitt (1989) and
Samuelson (1992).

47 Throughout this section we use the term almost common certainty for the
general idea only - each particular notion will go by a different label. Thus, while
the term common certainty is formally equivalent to the term common 1 belief
(defined below), almost common certainty is not a formal precise term, and is not
equivalent to almost common 1 belief, formally defined below.

There are other models of noise, which may appear more natural, that lead to
similar information structures; for example, Carlsson and van Damme (1993)
use a generalization of an information structure where players are interested in
the value of a parameter x, but each player is informed of the true value of x plus
some i.i.d. noise with support ( — e, e). Then a player may believe that the true
value is close to zero, and that the other believes the true value is close to zero,
but given any value y as far from zero as you want, there is a chain that one
believes 2 believes . . . 1 believes y is possible. Formally, neither Carlsson and
van Damme's (1993) model, nor Rubinstein's (1989) model, have a non-empty
strict subset which is common q belief at any state for q close to 1. See below for a
definition of common q belief.

48 A related question would be to ask what notions of convergence of probabilities
yield (lower hemi) continuity results. For example, consider a coin tossed
infinitely often (including infinity) and let p be the probability of heads. Consider
the game where a player can choose to play and get 2 if the coin never falls on
heads, 0 otherwise, or not to play and get 1 for sure. Clearly she should choose to
play for p = 1 and not to play for p < 1. Consider pn -> 1. The induced
probability distributions on the state space of the first time the coin falls on
heads, Q = {1,2,...} u {never}, converge weakly but the ex ante expected
payoffs are 1 along the sequence and 2 in the limit, and the strategy choice is not
to play in the sequence and to play in the limit. Clearly, the standard notion of
weak convergence is not sufficient. The notions of convergence of probability
that yield lower hemi continuity in this context are developed in Engl (1994).
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Kajii and Morris (1994a) develop other notions of convergence more closely
related to almost common certainty. Both these papers discuss the relationship
among these notions of convergence and almost common certainty.

49 Fudenberg, Kreps, and Levine (1988) obtained the analogous result for
refinements of Nash equilibrium, essentially that the only robust refinement is
that of Nash equilibrium in strategies that are not weakly dominated (see also
remark 4.4 in Dekel and Fudenberg (1990)).

50 In the case that J*̂ (co) has zero probability, choose any version of a conditional
probability.

51 Here again the subscript N denotes the intersection of B? over all i in N, and the
superscript n denotes n iterations of the operator Bq

r

52 There is a useful characterization of common q belief similar to that of common
knowledge, simplifying the iterative definition to a fixed point definition. It is
analogous to the result that A is common knowledge at co if there exists a
self-evident event that contains co and is in A. Say that an event E is evident q
belief if for all coeE, it is true that pt(£ | #\(a))) > q, i.e., whenever E happens
everyone assigns probability at least q that E happened. Monderer and Samet
show that E is common q belief at co if and only if there is an evident q belief set F,
with coeF a Bq

N(E). (An extension of common q belief to uncountable Q is in
Kajii and Morris (1994b).)

53 It is worth emphasizing that this motivation is based on the analyst's prior and
doubts about her own assumptions.

54 The rough idea for this fact can be seen as follows. If ex ante i thinks E is likely
then it is ex ante likely to be the case that after receiving her private information i
still thinks E is likely. (After all, f s ex ante belief in E is the weighted average,
using the prior, of her conditional beliefs [which are bounded]. So if ex ante E is
likely, "most" conditional beliefs are that E is likely.) Using the common prior,
this implies that everyone thinks it is likely to be the case that everyone's
conditional beliefs are that E is likely. But this is just the statement that E is likely
to be evident q belief for q large, i.e., E is almost certainly almost common 1
belief.

55 As one might expect, since subjective certainty of an event is not at all like
common knowledge, weakening our common knowledge requirement to the
assumption that the game and rationality is almost subjectively certainty does
affect our conclusions. In particular this would only characterize £f2(n,S).
Moreover, here the assumption that it is common knowledge that everyone
knows their own payoffs is important; in its absence the characterization is
weakened to Sf^S).

Perhaps surprisingly, it turns out that almost certainty of the game and
rationality is nevertheless sufficient to characterize iterated dominance. How-
ever, since almost certainty requires a common prior it does not make sense in
this context where we are not assuming a common prior. We state this result
when we discuss the incomplete-information-game interpretation below; see
subsection 6.3.1.

It is also easy to see that for any finite game, weakening common certainty to
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almost oo certainty, i.e., requiring iteration to arbitrarily high (but finite) levels,
also does not effect the conclusion of the results o n ^ 0 0 because only finitely
many iterations are necessary in any finite game. Lipman (1994) examines
infinite games, and this robustness does not extend to discontinuous infinite
games.

As we should expect, proposition 9 above does not have anything to say about
the ex ante payoffs in the model: it could be that while [rationality] is almost
common certainty at co, the state co can be unlikely (ex ante). Nevertheless, it is an
immediate corollary to proposition 9, and proposition 2, that if [rationality] and
[u] are almost certainly almost common 1 belief, then the ex ante payoffs are
also close to expected payoffs that survive 9*™.

56 An advantage of introducing the CPA as an event, [CPA], is that one can use it
to evaluate the implications of assuming that it is almost common certainty that
there is a common prior. Thus, one could examine the robustness of various
results, including a local version of proposition 3 that holds at a state of the
world co instead of globally, but we have not done so.

57 This is a substantive assumption - see also section 3.4.
58 The event [u] is the same in each model, but, since the probabilities are

changing, the optimal strategies may be changing, hence the event [rationality]
may change in the sequence.

59 We introduce some simplifying assumptions that will make it possible to present
a brief sketch of a proof. Consider a particular convergent subsequence of
distributions on actions, say, {cbn}™=v where cb"eA(S) is defined by
cb"(s) = ^{O):s{O))=S}P"(co)- (We will denote the subsequence by n rather than the
more precise nk to simplify notation.) Our first simplifying assumption is that p"
converges; we denote its limit by p. We argue that s:Q->S is a correlated
equilibrium with the information structure (Q, J^-, p). If not then some player i
has a profitable deviation. Our second simplifying assumption is that this
implies that there is a state co, with p(co) > 0, at which playing something other
than s^co), say s, is a better reply against i conjecture at co, cf> _ ̂ co) e A(S_ £), where
(M^X 5 - , ) = ^{o:s-,(c(>')=s_i}P(w/1 &&P>))' (This is simplifying since for infinite Q
we should consider the case where each co is null, and look at deviations on
measurable sets with positive probability.) But then, since
p(co) > 0,(/>_-(co) = lim</>V(co), where cf>"_ {co^s _ t) = £ { c a< : s_^)= s_ l }pWI^M).
So, s must be better than s/co) against cb"_. for n large, i.e., st(co) is not optimal for i
in the nth model. On the other hand, since p(co) > 0, co e E" for n large enough,
which means that s,(co) should be optimal, leading to a contradiction.

60 See also footnote 4.
61 Proposition 10 could also be stated in this way; we chose not to do so because the

notion of an £-correlated equilibrium is not standard.
62 There we noted that if i assigned positive probability to j playing sp and

probability 1 to [u] n[rationality] n [<j>j\ then there is a state co'e[u] n [ra-
tionality] n [$j] n [sj] which implies that Sj is a best reply against c\>i given
payoffs Uy Now we simply note that the total probability that i assigns to
strategies Sj that are not best replies is bounded by 1 — £, since at any
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(o' 6 [w] n [rationality] n [0 ;] , s/a>') is a best reply to [</>J given payoffs uy Also,
as in the discussion after proposition 4, one could drop the assumption that
players know their own payoffs, but this seems to require strengthening the
hypothesis by adding the assumption that at a> there is almost mutual certainty
that [u] is almost mutually certain, i.e., p£[u] \ &£(o)) > 1 — 5 and p,({a>": p/[w]
I * > " ) ) > 1 - 5J # i} | * > ) > 1 - <5.

63 This result follows the same arguments as in preceding results, so will not be
repeated. The result does imply that the only standard refinement with a
somewhat appealing epistemic characterization is that of trembling-hand
perfection, and then only for two-person games.

64 Because the strategy spaces are finite, there is a q that works uniformly
throughout the iteration.

65 This is also the approach implicit in subsection 6.2. Fudenberg, Kreps, and
Levine focus on the case where almost certainly there is almost common
certainty that the payoffs are almost as in G. Formally, for a sequence u" -+u and
qn -> 1 they assume that with probability at least q", u" is common q" belief. By
contrast we assume here u" = u. For examining robustness of solution concepts
theirs is a very sensible weakening of the assumption that the analyst is almost
certain that the game G is almost common certainty, by adding the adjective
almost before the game G as well. Since it turns out that this change only
complicates the statement of the results, without contributing significantly to
understanding the issues with which we are concerned here, we do not consider
this additional weakening in this chapter. Dekel and Fudenberg (1990) precisely
analyze the role of allowing for this additional "almost."

66 To be precise, it appears in the fourth paragraph of that section.
67 Not only is 5 °̂° robust in this first sense to weakening common certainty to

almost common 1 belief; it is also robust to weakening it to almost certainty.
Formally, assume that sne£fco(Gn). This implies that if limp"([s]) > 0 then
seSf^lG). If the analyst believes that any uncertainties about the payoffs are
reflected by a common prior of the players, but that strategic uncertainty is not
captured by a common prior, the analyst will want to know if .9̂ °° is robust to
weakening common certainty to almost certainty. This makes sense if the
uncertainties about the payoffs arise from some physical structure about which
players have asymmetric information (e.g., the success of player f s firm); but the
uncertainties concerning opponents strategies are subjective.

On the other hand, if the uncertainties over payoffs do not come from a
common prior, the appropriate question is whether Sf™ is robust to weakening
common certainty to almost subjective certainty. As we noted above - see that
text preceding section 6.2 - it is not. So, even though 5 °̂° is a very coarse solution
concept, it is not robust in this very demanding sense.

68 To see all this fix a strict Nash equilibrium of G, denoted by s. Let C" be the
event in Q on which G is common p" belief, and let [u] be the event in which the
game is actually G. Finally, let Q." = Bq"(Cn) - the event on which i believes with
probability at least q" that there is common q" belief that the game is G; and
Q£ = C" n [«]. Note that for w in Q", i is almost certain that the event Q^
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occurred: co e Q." => p"(QN | ^,(co)) -• 1. (This is because for such co, i is almost
certain that the game is G and that G is almost common 1 belief, so he is almost
certain that both these events obtain.) Consider the following strategies s" in G".
(a) Play st on Q". (/?) Find a Nash equilibrium where i is choosing strategies only
for other states assuming everyone is playing as given in (a). (That is, consider
the restricted game where every i is required to play st on Q" and free to choose
anything at all other states. Of course strategies must still only depend on a
player's information.) Since s is a strict Nash equilibrium, all players are happy
with (a) when n is large. (This is because on Q" player i is almost certain that
everyone else is playing 5 and that the game is G.) Since in (/?) we constructed a
Nash equilibrium, everyone is happy with (/?) as well. Clearly the interim
payoffs of the equilibria we have constructed on G" converge to those of G; the
ex ante payoffs converge as well if it is almost certain that G is almost common
1 belief.

If 5 were not a strict Nash equilibrium, but just a Nash equilibrium, then the
construction would yield an interim e Nash equilibrium in G", i.e., strategies that
are e optimal at every information set. Thus, the notion of interim £ Nash
equilibrium is robust in that given any G, every interim e Nash equilibrium of G
is played in some interim e Nash equilibrium of G in those states where G is
almost common 1 belief.

69 The distribution of actions generated by s on [u] is formally defined as the
element 01M of A(S) given by <p | u(s) = X{(oe[u]:siO))=s}Pn((o)/pn([.u]).

70 See also the discussion of the characterization of Nash equilibria in games of
incomplete information and games with moves by Nature at the end of section 4.

71 Kajii and Morris (1995) is not, strictly speaking, a generalization of Carlsson and
van Damme (1993), because the latter allow for continuous noise, and do not
assume that players know their own payoffs, but it seems that the methods of
Kajii and Morris (1995) could be used to generalize Carlsson and van Damme
(1993).

72 Monderer and Samet consider perturbations of ^ t s , whereas Kajii and Morris
focus on changing only the probabilities as we do in this section. Formally, Kajii
and Morris (1994a) show that given a Nash equilibrium s for G00 there is an
s-Nash equilibrium s" for a sequence of games G", where the expected payoffs of
s" in G" converge to those of s in G00 if an only if p" converges to p in the sense that
it is almost certain that it is almost common 1 belief that the difference in the
conditional probabilities are uniformly almost zero. More precisely, the only if
result is that when the sequence fails to converge there exists games where the
expected payoffs fail to converge.

73 Assumption [N], that you always know Q, is also strong - it implicitly rules out
some forms of unawareness, in that the complete list of states is always known.
Similarly, [MC] is strong since it implies monotonicity, 4 a B=> Kt(A) cz K^B),
which in turn implies that at any state at which you know anything, you also
know the complete state space Q. For now [N] and [MC], which are necessary
and sufficient for the translation between possibility correspondences and
knowledge operators, are maintained.

Cambridge Collections Online © Cambridge University Press, 2006terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CCOL521580110.005
Downloaded from https://www.cambridge.org/core. IP address: 99.135.139.133, on 30 Jan 2018 at 16:49:55, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CCOL521580110.005
https://www.cambridge.org/core


166 Eddie Dekel and Faruk Gul

74 While some authors have briefly considered the effect of just dropping [T],
without imposing [D], (Geanakoplos (1989), Samet (1990), Brandenburger,
Dekel, and Geanakoplos (1992)), we feel that [D] is a basic property of belief and
knowledge. Thus, since weakening [T] to [D] has already been analyzed and
shown to correspond to weakening knowledge to belief, we will not focus on
weakening [T] in this section. Nevertheless, we will present a result where both
[D] and [T] are dropped - Brandenburger, Dekel, and Geanakoplos show that
this is w.l.o.g. for some purposes, and the extra generality comes at no cost in the
presentation. Naturally, one can ask many of the other questions that follows in
the context of assuming [D] and not [T]. We leave such exercises to the
interested reader.

75 Morris (1992,1996) extends this in several directions. He provides a multi-stage
dynamic decision-making context, and derives additional properties that the
possibility correspondence must satisfy if it will meet some additional require-
ments concerning dynamic consistency and the value of information in these
richer contexts; he allows for non-Bayesian updating of probabilities; and he
considers non-expected utility preferences. The latter is an attempt to motivate
non-partitional structures from an axiomatic perspective, and will be mentioned
again below when we turn to the motivation for these structures.

76 As with partitions and common q belief, there exists a non-iterative characteriz-
ation of common knowledge in this more general context as well: E is common
knowledge at co' if there is a self-evident F, (i.e., ̂ (co) <= F given any co e F), that
contains co' and that is perceived to be a subset of E, i.e., given any co in F,
J\(co) c E. If J ^ satisfies [PI] (equivalently, if Kt satisfies [T]), then this reduces
to the following: E is common knowledge at co if there exists a self-evident F with
coeF c E.

11 The hypothesis in proposition 19 may appear weaker than those in proposition
18, but this is not the case: the proposition 19 assumes that it is common
knowledge that players say yes whereas in 18 the assumption is that we are
considering a Nash equilibrium.

78 This clarifies why non-partitions with common priors leads to the same
behavior as do non-partitions and partitions without common priors. The lack
of a common prior corresponds to the disagreement about fs information
structure.

79 This is similar to the syntactic construction of Q; the difference is that the order
of the elementary facts in X is now important.

80 See, e.g., Binmore and Brandenburger (1990).
81 A more common version of this story is Watson's deductions concerning the

guilt of a person based on a dog not barking - he fails to use the lack of barking
as an indication that the dog knew the individual, while he would (we presume)
deduce from any barking that the person was not known to the dog.

82 What happens in the non-partition model of the scientist is instructive. The
typical model has Q = {d,—\d}: a state d which is characterized by the ozone
layer disintegrating and y rays appearing, and a state —i d which is characterized
by no y rays appearing and no disintegration. As before we specify
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= {d}, Jr(—id) = {d,~nd}. So at d, the scientist knows there are y rays and
the ozone layer is disintegrating, so is aware of everything including y rays. At
—i d she does not know d. Moreover, at —i d, she does not know that she does not
know d, since the set of states at which she does not know d is —i d, and at ~i d she
does not know —\d. So she is unaware of y rays. So far so good. But consider the
person's awareness of no y rays. While it is true that at —i d she does not know
there are no y rays, she does know that she does not know it. This is because she
knows Q, and at both states she will not know that there are no y rays, so she
always knows that she does not know there are no y rays. Thus, at state d she is
aware of the sentence "there are no y rays," so Modica and Rustichini argue she
should be aware of the possibility of y rays.

83 Dropping [N] and [MC] is related to dropping logical omniscience, the
requirement that an individual can deduce all the logical implications of his
knowledge. Dekel, Lipman, and Rustichini (1996) argue that, in fact, the
state-space model is inappropriate for modeling unawareness as it imposes a
form of logical omniscience by identifying events with all sentences that are true
in that event, so that knowledge of any sentence implies knowledge of any other
sentence that is logically equivalent. Various aspects of logical omniscience are
weakened (in very different models) by Fagin and Halpern (1988), Lipman
(1995a), and Modica and Rustichini (1993, 1994).

84 In order to focus on the foundations of knowledge and rationality we will not
present the extensions to more interesting economic environments, such as
Milgrom and Stokey (1982).

85 Actually, there is a precursor in Aumann (1974). The result stated there, that in a
zero-sum game allowing correlations without differing priors will not change the
value of the game, can be shown to imply result 3 below.
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