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REPRESENTING PREFERENCES WITH A UNIQUE 
SUBJECTIVE STATE SPACE 

BY EDDIE DEKEL, BARTON L. LIPMAN, AND ALDO RUSTICHINI' 

We extend Kreps' (1979) analysis of preference for flexibility, reinterpreted by Kreps 
(1992) as a model of unforeseen contingencies. We enrich the choice set, consequently 
obtaining uniqueness results that were not possible in Kreps' model. We consider several 
representations and allow the agent to prefer commitment in some contingencies. In the 
representations, the agent acts as if she had coherent beliefs about a set of possible future 
(ex post) preferences, each of which is an expected-utility preference. We show that this 
set of ex post preferences, called the sulbjective state space, is essentially unique given the 
restriction that all ex post preferences are expected-utility preferences and is minimal 
even without this restriction. Because the subjective state space is identified, the way ex 
post utilities are aggregated into an ex ante ranking is also essentially unique. Hence when 
a representation that is additive across states exists, the additivity is meaningful in the 
sense that all representations are intrinsically additive. Uniqueness enables us to show 
that the size of the subjective state space provides a measure of the agent's uncertainty 
about future contingencies and that the way the states are aggregated indicates whether 
these contingencies lead to a desire for flexibility or commitment. 

KEYWORDS: Unforeseen contingencies, preference for flexibility. 

1. INTRODUCTION 

1.1. A Brief Overview of the Results 

KREPS (1979) SHOWED THAT THE PREFERENCE of an agent over sets of possible 
future choices or actions2 can be represented using subjective states that are 
interpreted as the agent's (implicit) view of future possibilities. More precisely, a 
subjective state is a possible ex post preference over actions that will govern the 
agent's choice tomorrow of an action from the set she chooses today. Surpris- 
ingly, he showed that weak axioms on preferences were sufficient to give a 
representation in which the agent has a coherent subjective state space without 
assuming an exogenously given state space. Kreps (1992) reinterpreted this as a 
model of unforeseen contingencies. After briefly reviewing our results, we 
discuss this interpretation, which is our main motivation for this work, and then 
return to a detailed description of Kreps' work and our results. 

1 We thank Jeff Ely, Matt Jackson, Peter Klibanoff, George Mailath, Jean-Francois Mertens, 
Sujoy Mukerji, Klaus Nehring, Phil Reny, Shuyoung Shi, Rani Spiegler, Jeroen Swinkels, numerous 
seminar audiences, and Drew Fudenberg and three anonymous referees for helpful comments. 
Dekel and Rustichini thank the NSF and Lipman thanks SSHRCC for financial support for this 
research. Lipman also thanks Northwestern and Carnegie Mellon for their hospitality while this 
work was in progress. This paper was previously titled "A Unique Subjective State Space for 
Unforeseen Contingencies." This work was begun while the second author was at the University of 
Western Ontario, and while the third author was at CORE and CentER. 

2 For example, a specification of control rights in a firm can be interpreted as such a set since it 
specifies a restriction on the future actions of an agent. 

891 



892 E. DEKEL, B. L. LIPMAN, AND A. RUSTICHINI 

Unfortunately, the subjective state space Kreps derived is not pinned down by 
the preferences, making it problematic to interpret it as the agent's view of what 
is possible and leading to other difficulties discussed below. We enrich the 
choice set to consist of sets of lotteries over future actions. We show that the 
subjective state space is unique whenever we can represent the agent's ex ante 
choice of a set of lotteries under the hypothesis that her ex post choice from the 
selected set satisfies the expected-utility axioms. We also show that such a 
representation is possible given a surprisingly weak condition: the decision 
maker must be indifferent to having the extra option of randomizing over the 
lotteries in a chosen set. Normatively and descriptively, this seems like a weak 
requirement. Thus, under mild assumptions, one does not need to assume the 
existence of an exogenous state space to deduce that decision miakers will 
behave as if they have a unique such state space in mind. 

The uniqueness result enables us to show that the agent's "uncertainty" about 
the future can be measured by the size of her subjective state space. It also 
enables us to identify the aggregator-that is, the way the agent aggregates her 
possible ex post utility levels into an ex ante evaluation. In particular, we also 
characterize when the representation is inherently additive across states.3 

Without the restriction to ex post preferences that are EU, the subjective 
state space is not unique. However, we show that within a wide class of 
preferences, the EU subjective state space we derive is the smallest possible 
subjective state space. 

In addition to allowing for lotteries, we modify Kreps' assumptions in another 
direction. Kreps derived the subjective state space by analyzing when flexibility 
was valued by the agent. Kreps assumed that flexibility was never disadvanta- 
geous-that is, that preferences are monotonic in the sense that a larger set is 
always weakly better. However, the agent might have in mind some situations 
where flexibility is costly. For example, the agent may envision a scenario in 
which commitment is valuable for strategic reasons. Alternatively, as recently 
proposed by Gul and Pesendorfer (1999), also in a sets-of-lotteries framework, 
the agent may derive disutility from temptations that might arise. Finally, the 
agent may simply find larger sets more difficult to analyze because of complexity 
considerations. Motivated in part by the contribution of Gul and Pesendorfer, 
we drop the monotonicity assumption for most of our analysis. Unlike them, we 
do not specify the particular form of the violations of monotonicity allowed. It 
turns out that the representation and uniqueness results do not require restrict- 
ing the agent to only conceive of circumstances in which flexibility is valuable. In 
particular, our identification of the aggregator implies that we also uniquely 
identify those ex post contingencies in which the agent prefers flexibility and 
those in which she prefers commitment. 

3A representation with a particular subjective state space is inherently additive if it must be a 
monotone transformation of an additive representation using (essentially) that same state space. 
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1.2. The Unforeseen Contingencies Interpretation 

We are interested in a model that allows for unforeseen contingencies, in the 
sense that the agent does not have an exogenously given list of all possible states 
of the world. This may be because she sees some relevant considerations, but 
knows there may be others that she cannot specify. For example, perhaps she 
sees that a particular variable x is relevant, recognizes that it is not the only 
important variable, but does not know what variables are missing. For simplicity, 
we assume henceforth that the agent conceives of only one situation, "some- 
thing happens," but knows that her conceptualization is incomplete. In the 
example, this means that there is only one possible value of x.4 

At first glance, the standard Savage model seems to provide no way to allow 
for unforeseen contingencies. Savage takes the set of states of the world as an 
exogenous element of the model and assumes that the agent has preferences 
over state-contingent allocations or acts. For a model to allow for unforeseen 
contingencies, it seems necessary to let the state space reflect the agent's 
subjective understanding of the world, rather than taking it to be exogenous. 
More precisely, we must identify what the agent believes might happen as a 
function of her action instead of taking this to be exogenously given. 

A natural approach is to think of each possible payoff function as a state, thus 
constructing a subjective state space. More precisely, if the set of possible 
actions is A, we could construct a subjective state space where each state is a 
preference relation over A. This state space seems to be a natural description of 
how a "fully rational" person should make choices when she is aware that her 
knowledge of the "true" state space is incomplete. Such an individual does not 
care about the "real" states per se, caring instead only about how well she does, 
how she feels as a result of her choice. With this subjective state space in hand, 
one expects that an individual who is rational in the usual sense would choose in 
a way that corresponds to forming subjective probabilities over these states and 
maximizing expected utility.5 In effect, such a construction would replace 
unforeseen external possibilities with foreseen payoff possibilities. 

However, directly assuming such a state space seems problematic. By analogy, 
consider the status of subjective probability prior to the work of Savage (1954). 
Writers like Keynes (1921) and Knight (1921) had advanced strong arguments 
that behavior under known probabilities (risk) and unknown probabilities (un- 
certainty) are significantly different. In light of these arguments, the claim that 
agents under uncertainty would form subjective probabilities and treat them as 
objective ones would seem quite unconvincing on its own. The importance of 
Savage (1954) is that he characterized the kinds of preferences (behavior) that 

4Recently, Ozdenoren (1999) has shown how to extend several of our main results to the case 
where there is a finite set of objective states or, in the terminology of this paragraph, values of x. 

5An advantage of defining the state set this way is that the only exogenous element required is 
the set of feasible actions, A. Kreps' approach also takes such a set as the only exogenous element. 
A related approach defines the state space from actions A and a set of consequences X as XA (see 
Fishburn (1970, Chapter 12.1)). 



894 E. DEKEL, B. L. LIPMAN, AND A. RUSTICHINI 

correspond to having subjective probabilities. This characterization plays two 
distinct roles. First, one can use it to "justify" the assumption of subjective 
probability by arguing that the behavior of interest falls into the class corre- 
sponding to subjective expected utility. Second, if one believes that risk and 
uncertainty are different, Savage's characterization may help identify the essen- 
tial characteristics of preferences for which they do differ. This is precisely the 
contribution of Ellsberg (1962) who identified the role of the sure-thing princi- 
ple in ruling out uncertainty-averse behavior, paving the way for new approaches 
to modeling choice under uncertainty. 

Analogously, we believe that simply assuming a subjective state space rules 
out potentially interesting aspects of unforeseen contingencies by fiat and hence 
is, at best, a partial answer to the problem. By providing a characterization of 
preferences that correspond to this model, we hope to clarify the nature of such 
an assumption. As in the case of Savage, this clarification might be taken as 
evidence that this approach to modeling unforeseen contingencies is appropriate 
or as an avenue for identifying less "Bayesian" approaches. At this point in 
time, it is too early for us to know which interpretation is more appropriate. 

There is one difficult question of interpretation: does the agent "foresee" the 
subjective contingencies that are part of the representation? Normally, we do 
not worry about such issues. For example, in Savage, we say that the agent 
behaves as if she had subjective probabilities and do not concern ourselves with 
the question of whether this, in fact, describes her decisionmaking process. 
Here, though, the situation is less clear. By assumption, we are representing an 
agent who cannot think of all (external) possibilities with an agent who has a 
coherent view of all payoff possibilities. If the agent does foresee the payoff 
possibilities, do we really have unforeseen contingencies? We remain agnostic 
on this point. The key idea is that we have allowed for the possibility of 
unforeseen contingencies by dropping the assumption of an exogenous state 
space and characterized the agent's subjective view of what might happen. 
Whether the agent actually fails to foresee any relevant situations is a different 
matter. It could be that our representation of the agent is quite literally correct 
-that is, the agent does in fact foresee the set of future utility possibilities and 
maximizes as in our representation. In this sense, it is the agent, not the 
modeller, who replaces unforeseen external possibilities with foreseen utility 
possibilities when making decisions so that, arguably, he has no truly unforeseen 
contingencies. On the other hand, as is common in decision theory, one can 
interpret the model as an "as-if" representation of an agent who cannot imagine 
the set of situations that might occur.6 For clarity, we typically refer to subjective 
contingencies and avoid the phrase "unforeseen contingencies." 

6In the context of contracting, Maskin and Tirole (1999) observe that if all relevant utility 
possibilities are common knowledge, then the fact that physical possibilities may not be known is 
irrelevant. On the other hand, the "as-if" interpretation of our representation does not seem to 
permit use of their mechanism, so that their result regarding the irrelevance of unknown physical 
possibilities is sensitive to this interpretational issue. 
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1.3. Background and Detailed Results 

Dropping Savage's assumption of exogenous states requires replacing the 
objects over which the agent's preferences are defined. Instead of taking an act 
to be a state-contingent consumption bundle, Kreps viewed an act as determin- 
ing only the subset of actions, e.g., consumption bundles, from which the agent 
will subsequently choose. Kreps' showed that if preferences over sets are 
sufficiently "well behaved," then the agent indeed acts as if she had a subjective 
state space describing her uncertainty regarding her ex post preferences and is a 
standard expected-utility maximizer with respect to this uncertainty. 

Intuitively, Kreps identifies the agent's view of the possible states of the world 
from preferences for flexibility in the same way that Savage identified subjective 
probabilities from preferences over bets. For concreteness, imagine the problem 
of an agent who must decide now on the menu from which she will have to 
choose at dinner on a specific night several months away. Let B denote the 
finite set of (deterministic) options-food items in this example-and consider 
the agent's preference, > over nonempty subsets of B-called menus-which 
are denoted as x E X= 2B \ {0}. A choice of a menu is interpreted as a 
commitment to choose "in the future" from this subset. If the agent knows 
exactly what her future preference over B will be, say >- *, we can derive her 
preference over X from it as follows: If the best (according to > I) element of x 
is preferred to the best element of x', then x >- x'. It is easy to see that such a 
preference over menus will not value flexibility. That is, no preference over 
menus that is generated in this way can have both {b, b'} >- {b} and {b, b'} >- {b'}. 
In this sense, Kreps argued, it is the desire for flexibility that reveals the agent's 
uncertainty about her ex post preferences over B. Given our assumption that 
the agent can only conceive of one possible exogenous situation, this means that 
the agent perceives other subjective contingencies. 

Turning to the specifics of the representations, under mild axioms, Kreps 
(1979) derives a representation of preferences over menus, where menu x is 
evaluated by 

(1) V(x)= , maxU(b, s). 
seS Eb X 

To understand this representation, imagine that the agent chooses menu x, 
knowing that at some unmodeled ex post stage, she will learn the state of the 
world, s, and thus learn her preferences as represented by UQ, s). She then 
chooses the best object from menu x according to these ex post preferences. Ex 
ante, these preferences are aggregated by summing the maximum utilities across 
states. Equivalently, we can think of the states as equally likely and view this as 
an expectation over s. We refer to this as an additive representation since the 
payoffs are being summed over S. One important point is that S and the U(, s) 
functions are part of the representation, not a primitive of the model. In this 
sense, the model does not assume that the agent foresees all possible future 
circumstances but yields the conclusion that the agent acts as if she had a 
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coherent view of the possible future utilities. The set S itself is not directly 
relevant-it is merely an index set. The important aspect of the agent's beliefs is 
the set of possible ex post preferences, those induced by the collection of utility 
functions {U(, s) I s E S}. We refer to this collection of possible ex post prefer- 
ences as the subjective state space. We use the less specific term state space to 
refer to any convenient index set such as S. 

Kreps also considered ordinal representations, where >- is represented by 

(2) V(x) =u maxU(b,s)) ), 
b E=x sS C 

where u is some strictly increasing but not necessarily additive function. He 
showed that the set of preferences with a representation of this form is the same 
as the set of preferences represented by (1)-thus additivity does not impose a 
restriction on preferences. In either case, the representation is hardly pinned 
down. To see the point, consider the following example. 

Example 1: Suppose B = {b1, b2, b3} and the agent's preferences over menus 
are that she prefers longer menus to shorter. That is, letting #x denote the 
number of items in the set x, we have x >-x' if and only if #x > #x'. This 
preference satisfies Kreps' axioms and therefore has an additive representation. 
In fact, it has several such representations. In particular, consider the subjective 
state spaces S = { s, s3} and S = l A, s3} with utility functions U(b, s) and 
U(b, s) given by 

St S2 s3 SI S2 S3 

b, 2 1 1 2 1 0 

b2 1 2 1 0 2 1 

b3 1 1 2 1 0 2 

With either subjective state space, the function V(x) as defined in (1) gives 
V(x) > V(x') if and only if #x > #x', so each of these V functions represents 
the preferences. Note that the collection of ex post preferences in S is disjoint 
from the collection in S: in the latter, there are never any ties in the ex post 
preferences, while there always are ties in the former. It is also easy to see that 
the union of these two subjective state spaces also yields an additive representa- 
tion. 

The indeterminacy of the subjective state space is troubling for several 
reasons.7 First, it undermines the strength of the conclusion that the agent acts 
as if she had a coherent subjective state space. By analogy, part of the appeal of 
Savage (1954) or Anscombe-Aumann (1963) as a justification of subjective 

7In principle, we may not need to achieve uniqueness. By analogy, in modeling risk, utility 
functions are only identified up to positive affine transformations, not uniquely, yet the Arrow-Pratt 
measure of risk aversion is well defined. In fact, Kreps (1979, Theorem 2) characterizes the set of 
transformations of state spaces that preserve preferences. However, there does not seem to be any 
simple or useful statement of this set of transformations. 
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probability is the fact that the subjective probabilities are unique. Second, it 
clearly causes difficulties in deriving subjective probabilities. It seems impossible 
to identify the agent's probability distribution on the subjective state space 
without identifying the latter. In a related vein, applications of the model 
naturally involve more than one agent. But in a multi-agent extension, we would 
want to formalize the notions of common knowledge and common priors, which 
depend on the joint subjective state space. Finally, applications of the model 
seem to require some measure of the agent's aversion to uncertainty regarding 
future contingencies, which would presumably be based on the size of S, and, 
loosely, on the variance of U(, s) across states. If we cannot identify the 
subjective state space in a meaningful way, then we have no obvious way to 
characterize such notions and hence seem unable to use the model effectively. 
For instance, a natural intuition is that if, after specifying exogenous states as 
completely as possible, one agent has a larger subjective state space than 
another, then she is more "averse to subjective contingencies." Yet Example 1 
shows that one agent's subjective state space (say, S) can be a strict subset of 
another's (S U S) while both have the same preferences. 

To address this problem, we enrich the choice space by allowing menus of 
lotteries, instead of considering only menus of deterministic options.8 To see 
why this helps, consider Example 1 again. Suppose we take the utilities given in 
the two subjective state spaces to be von Neumann-Morgenstern utilities. 
Consider the menus 

x1 = {b1, (.5)b2 + (.5)b3}, 

where the second item is a lottery giving b2 with probability 1/2 and b3 
otherwise, versus 

X2= {b1, (.5)b2 + (.5)b3, (.5)b1 + (.5)b2}. 

With the first representation, the payoffs to these are V(xd) = V(x2) = 5 so the 
agent is indifferent between these menus. Note, in particular, that the lottery 
(.5)b2 + (.5)b1 is never useful to the agent since she always (at least weakly) 
prefers b1 or (.5)b2 + (.5)b3. On the other hand, with the second representation, 
there is an ex post preference, namely A2, in which the agent strictly prefers 

8 Extending the preferences to sets of lotteries is of interest for other reasons as well. First, it is 
overly restrictive to assume that menus are chosen in a way that the options are deterministic. For 
example, while menus of lotteries are artificial in the case where B is a set of food items, 
presumably, the agent is primarily concerned with the "taste attributes" of the food-the kinds of 
spices used, the temperature and texture of the food, etc.-rather than the dish itself. It seems quite 
realistic to suppose that a given dish will correspond to a probability distribution on this space, 
though admittedly a subjective interpretation of these probabilities is more natural. Second, if one is 
to apply these preferences, then allowing for uncertainty seems necessary, especially in games, where 
one would want to allow for mixed strategies and incomplete information. Finally, it is worth noting 
that the set of lotteries is easy to conceptualize and create. In this interpretation, the construction 
here is analogous to that in Anscombe-Aumann (1963), where preferences are assumed to extend to 
such objects. 
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(O5)b2 + (.5)bO to either of the other lotteries. As a result, we get V(x1) = 4.5, 
while V(x2) = 5, implying that the agent strictly prefers x2 and hence that these 
representations no longer reflect the same ex ante preferences. What this 
illustrates is that if we restrict attention to subjective state spaces where all ex 
post preferences are expected-utility, we can pin down the subjective state space. 

This approach also enables us to identify the aggregator in a sense not 
possible in Kreps' framework. As mentioned above, additivity of the aggregator 
is not a restriction in Kreps' model. 

Example 2: To see this more concretely, consider the state space S and 
state-dependent preferences U in Example 1, but with the nonadditive aggrega- 
tor u-(a1, a2, a3) = a1 x a2 + a3. This aggregator is inherently nonadditive since 
there is no monotone transformations that makes it additive. Nevertheless, the 
preferences given by S, U, and -u using (2) do have an additive representation 
with U(b, s) given by 

S1 S2 S3 

b, 3 0 4 

b2 0 3 4 

b3 1 1 5 

In this sense, Kreps' model is unable to determine whether or not the aggrega- 
tor is additive. 

When we extend Kreps' model to allow the agent to prefer commitment in 
some ex post circumstances, the lack of identification is still more troubling. A 
preference for commitment is represented by allowing the agent's ex ante view 
to differ from her ex post view. More specifically, even though the agent will 
maximize her ex post utility in each state, ex ante the agent prefers lower utility 
in some states, so the aggregator is decreasing in some ex post utilities. If we 
modify Kreps' framework to allow such ex ante preferences, the nonuniqueness 
of the aggregator implies that we cannot identify which ex post states are the 
ones where the agent wants commitment. 

Example 3: For a concrete example, consider two state spaces, S = 

{sl, S2, s3, S4} and S2 = {sl, s2, S5} where the state-dependent utilities are given by 

Si S2 s3 S4 S5 

b, 0 1 0 1 0 

b2 1 0 0 2 2 

b3 2 0 1 0 1 

Consider the preferences generated by the aggregator u1(a1, a2, a3, a4) = 2a1 + 
5a2 - 3a3 + a4 with state space Sl. It is not hard to show that any additive 
representation of this preference on Si must have coefficients with these signs. 
However, we also obtain an additive representation of this preference on S2 
with aggregator u2(al, a2, a5) = -al + 6a2 + 3a5 and, again, any additive repre- 
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sentation on this state space must have coefficients with these signs. Note that 
state si must enter with a strictly positive coefficient in a representation using 
S1, but must enter with a strictly negative coefficient in a representation using 
S2. In this sense, we cannot identify the agent's ex ante view of the ex post 
preference in state sl. 

Note that in both examples, the properties of the aggregator are not pinned 
down because we can change the state space in a way that requires the 
aggregator to change. Clearly, then, our identification of the subjective state 
space can potentially eliminate these problems. 

Turning to a more concrete statement of our results, we define a weak EU 
representation of an ex ante preference, which takes the form of Kreps' ordinal 
representation in (2) above with two modifications. First, each U(, s) is required 
to be an expected-utility (affine) function (hence the EU in the name). Second, 
the conditions on the aggregator u are very weak, weaker than those used by 
Kreps, even in the case where we assume monotonicity. This class of aggregators 
includes, e.g., the case where the agent evaluates a menu by the worst possible 
ex post utility it could yield, a potentially interesting model which is excluded by 
Kreps' requirements. 

We show that the subjective state space and the aggregator for a weak EU 
representation are essentially unique. This result should make applications of this 
approach easier as it makes it possible to relate the structure of the state space 
to intuitive properties of preferences. For example, Theorem 2 shows that if one 
ex ante preference is more "uncertain" than another, then it must have a larger 
subjective state space for its weak EU representation. Also, if one preference exhibits 
a stronger desire for flexibility (commitment) than another, then the aggregator is 
increasing (decreasing) in more states. 

The significance of these results is highlighted by showing that weak EU 
representations exist if and only if preferences satisfy a mild set of conditions. Other 
than requiring that >- be a nontrivial and continuous weak order, the only 
condition we need is that adding the ability to randomize across menu items 
does not alter the evaluation of a menu. Hence we conclude that the subjective 
state space and aggregator are identified under the expected-utility restriction for a 
very broad class of ex ante preferences. 

Aside from the pragmatic consideration of the results it yields, there is 
another reason for restricting attention to ex post preferences that satisfy the 
expected-utility axioms. If we are willing to restrict attention to strictly increasing 
aggregators u, then the expected-utility subjective state space is the smallest possible 
subjective state space for any representation. That is, we consider ordinal EU 
representations, like Kreps' ordinal representation (2), but where the ex post 
preferences are required to be expected-utility preferences. We show that given 
any ordinal EU representation and any other ordinal representation of the same 
ex ante preference, the ordinal EU representation's subjective state space has 
smaller cardinality, strictly so in the finite state-space case. We show that such 
ordinal EU representations exist if and only if preferences satisfy monotonicity and a 
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weak version of a natural adaptation of the independence axiom in addition to 
weak order, nontriviality, and continuity. 

We also show that if ex ante preferences satisfy an appropriate (unweakened) 
version of the standard independence axiom, but not monotonicity, then there is a 
weak EU representation with an additive aggregator, similar to (1). Thus we 
characterize when preferences have a more "standard" representation. More- 
over, in contrast to Examples 2 and 3 above, our identification of the aggregator 
implies that when there exists an additive EU representation every aggregator 
must be additive (up to a monotone transformation) and the signs of the 
coefficients are unique. This result does not directly enable us to identify 
probabilities, but opens the door to doing so as we explain in Section 3.1. 

1.4. Outline and Related Literature 

In the remainder of the introduction, we summarize the relevant literature. In 
Section 2, we set out the model, definitions, and axioms. In Section 3.1, we 
demonstrate the uniqueness of the weak EU representation and characterize 
the preferences that have such a representation. In Section 3.2, we turn to 
ordinal EU representations and show that the subjective state space identified 
under the expected-utility restriction is the smallest possible subjective state 
space. We also identify the preferences that have an ordinal EU representation. 
In Section 3.3, we characterize the preferences for which an additive EU 
representation exists, and as a corollary to the uniqueness results, show that 
additivity and the signs of the coefficient are unique. A sketch of the proofs for 
the characterization results is in Section 4. Complete proofs, where not con- 
tained in the text, are in the Appendix. Some concluding remarks are contained 
in Section 5. 

Our survey of the literature includes only the related decision-theoretic work. 
For a discussion of epistemic approaches to unforeseen contingencies,9 see 
Dekel, Lipman, and Rustichini (1998). Aside from the aforementioned work of 
Kreps, the only papers we know of that take decision-theoretic approaches to 
unforeseen contingencies are Ghirardato (1996), Skiadas (1997), and Nehring 
(1999). All three share our view that with unforeseen contingencies, the agent 
cannot specify the state space precisely and so can only think in terms of events 
in the true state space. Ghirardato models this by assuming that the agent views 
an act as yielding a set of consequences in each event, rather than a single 
consequence. Thus he gives a generalization of subjective expected utility to acts 
that are correspondences rather than functions. The representation he derives is 
a generalization of nonadditive probability models. 

Both of the other two papers, like ours, do not assume that there is a given set 
of consequences, instead deriving what can be interpreted as consequences. 
Skiadas studies preferences over actions conditional on events and derives a 

9Other approaches are also possible-see, for example, MacLeod (1996) or Al-Najjar, et al. 
(1999). 
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representation where the agent has a subjective utility for each action condi- 
tional on each event. Intuitively, this represents the agent's "expectation" of the 
utility consequences over the unforeseen aspects of a situation. The Kreps 
approach is similar to Skiadas' approach in that both use the agent's preferences 
to identify the utility consequences of acts as a function of the state. While 
Nehring, like us, follows Kreps' approach, he analyzes preferences over acts over 
menus. That is, like Ghirardato, his acts are functions from events to sets, but 
unlike Ghirardato and like us, his representation involves an implicit ex post 
stage at which the agent chooses from the appropriate set. Instead of an 
expected-utility restriction on the ex post preferences, Nehring restricts atten- 
tion to ex post preferences in which there are only two (thick) indifference 
curves that is, his ex post preferences are represented by a utility function that 
takes only two values. He gives a uniqueness result given this restriction and, 
hence, his additivity is meaningful in the same sense as ours. He does not have a 
minimality result his subjective state space is typically not minimal. 

Another related paper is Gul and Pesendorfer (1999). Motivated by the study 
of temptation and commitment, they also analyze the sets-of-lotteries model, 
using the same independence axiom and, for some of their results, the same 
continuity axiom we use. One of their main results is to characterize what in our 
terms is an additive EU representation. They replace Kreps' monotonicity axiom 
with the assumption that a union of two sets is always ranked between the two. 
In our terminology, this axiom effectively requires the subjective state space to 
be either a singleton (that is, standard expected utility) or a pair of states where 
commitment is valued in one of two.'0 We do not require any such axiom and so 
can have many subjective states, including several in which the agent prefers 
commitment. 

2. PREFERENCES: REPRESENTATIONS AND AXIOMS 

Let B be a finite set of K prizes and let A(B) denote the set of probability 
distributions on B. A typical subset of A(B) will be termed a menu and denoted 
x (or x, x', x, y, etc.), while a typical element of A(B), a lottery, will be denoted 
by ,3. The agent has a preference relation >- on the set of nonempty subsets of 
A(B). We endow this collection with the Hausdorff topology; see Appendix A.1 
for precise definitions. 

We have in mind an environment where the individual first chooses a menu 
and at a later stage will choose among the elements of this set, but we do not 
explicitly model this second choice. To clarify, we refer to the preference >- 

over menus as the ex ante preference. As discussed above, the representations 
we consider include sets of preferences over A(B), interpreted as the possible ex 

10 To see this, let A be a set consisting of a healthy snack and a sweet unhealthy snack and let B 
contain the healthy snack plus a salty unhealthy snack. If the agent considers two different negative 
circumstances, namely one in which she would be tempted by a sweet snack and one in which she 
would be tempted by a salty one, then A U B may be strictly worse ex ante than both A and B. 
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post preferences that will govern the agent's later choice from the menu. We use 
> * to denote a typical ex post preference over A(B). 

2.1. Representations 

We consider three different notions of a representation of such an ex ante 
preference. Each of the representations is a triple, consisting of a (nonempty) 
state space S, a state-dependent utility function U: A(B) X S -* R, and an aggrega- 
tor u: Rs -* R. As explained in the introduction, the idea is that the agent's view 
of her possible ex post preferences over A(B) are summarized by S and U. The 
aggregator translates the various possible ex post utility levels from a menu into 
an ex ante comparison. That is, the preference is represented by 

(3) V(x) = u(( sup U(J3, s)) )' 

the natural generalization of Kreps' ordinal representation. 
While we refer to S as the state space, it is just an index set, providing a way 

to refer to the different ex post preferences over A(B) that are summarized by 
U(, ). We refer to the collection of these ex post preferences as the subjective 
state space. Formally, given S, U, and s E S, we define >- * to be the ex post 
preference relation over A(B) represented by the utility function U(-, s). That is, 
> * and the subjective state space, P(S, U), are defined by 

, > *3, U(f 3, s) > U(f 3',s) and 

P(S, U) = {>- I s E S}. 

We focus on EU representations in which each U(, s) is an expected- 
utility-more precisely, affine-function; that is, for all s E S and all ,3 E A(B), 
U(i, S) = Lb E B U(b, s)f3(b). 

When S is infinite, certain technical issues arise. These are presented in a smaller font 
and can be skipped without loss of continuity. In particular, for infinite S, we require a 
topology on the set of all expected-utility preferences that is discussed in Appendix A.2. In 
the text, we simply take this topology as given. 

Our first objective is to characterize representations of the form (3) for which 
the subjective state space is unique. Clearly, if we allow the aggregator u to 
ignore certain states we could never obtain such a uniqueness result since one 
could add or delete such states freely. Hence we restrict attention to "relevant" 
subjective states.1" It is easier to define the relevance of a subjective state-that 
is, an ex post preference-in terms of the state s in the state space S to which it 
corresponds, rather than in terms of the ex post preference >- * directly. In the 

1 Alternatively, we could define a weak EU representation without this requirement and then 
focus on representations with a minimal state space-that is, a space such that we could not 
eliminate any states and still have a representation on the remainder. It is not hard to use our 
arguments to show that the results also hold under this approach. 



SUBJECTIVE STATE SPACE 903 

finite case, a state s is relevant in state space S if there is some comparison of 
menus for which it is key. That is, there are two menus between which the agent 
is not indifferent, even though they yield the same ex post utility for every 
subjective state other than s.12 More precisely, we use the following definition. 

DEFINITION 1: Given a representation of the form (3) with P(S, U) finite, a 
state s E S is relevant if there exist menus x and x' such that x + x' and for any 

s'ESwith >- * = >- *, sup:, E x U( ,(, s'f) = sup: E= x IU( ,(, s'f). 

If P(S, U) is infinite, then state s is relevant if for every neighborhood N of s, there exists 
x and x' with x -x' and such that for all s' E S\N, sup' E . U( /, s') = sup, E X U( /, s'). 

The weakest of the three representations we consider is a weak EU representa- 
tion. 

DEFINITION 2: A weak EU representation of >- is a nonempty set S, a 
state-dependent utility function U: A(B) x S -> R, and an aggregator u: Rs -* R 
such that (i) V as defined in (3) is continuous and represents >- , (ii) each U(-, s) 
is an expected-utility function, (iii) every s E S is relevant, and (iv) if s, s' E S, 
s = s', then > * 0 >- *,. 

Part (iv) of the definition is for convenience. It enables us to uniquely refer to 
a state or "index" s in terms of the corresponding subjective state or ex post 
preference >- . 

Also, while for notational convenience we define the aggregator as a function 
on RS, it is meaningful only on the subspace 

2/,(S, U)--((sup: E X Uf(3,8s))5s, Isx cA(B); 

Henceforth, we omit the S and U arguments from 2/'* when it is unlikely to 
cause confusion. 

The next representation we consider, an ordinal EU representation, strength- 
ens the weak EU representation by requiring the aggregator u to be strictly 
increasing. This corresponds to strengthening the requirement that every state 
be relevant in two ways. First, it gives us the "direction" in which a state must be 
relevant. More specifically, an increase in ex post utility in any state cannot 
decrease ex ante utility. Second, it requires that every state always be relevant in 
that a change in the utility in that state always "counts."13 We will also have 
occasion to consider ordinal representations that do not impose the EU require- 
ment. 

12 Note that a state in which the agent is completely indifferent among all lotteries could never be 
relevant in this sense. Hence this (trivial) ex post preference can never be part of a subjective state 
space. 

13 For an example of an aggregator that satisfies our requirements for a weak EU representation 
and is weakly but not strictly increasing, let ut( ) be the minimum operator. Clearly, if we increase a 
vector of ex post utilities without changing the minimum of these utilities, this aggregator does not 
increase. However, every state (that can achieve the minimum for some menu) is relevant in our 
sense. 
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DEFINITION 3: An ordinal EU representation is a weak EU representation with 
an aggregator that is strictly increasing on I*(S, U). An ordinal representation is 
a triple (S, U, u) that satisfies all the requirements to be an ordinal EU 
representation except that U need not be an expected-utility function.14 

Finally, the last kind of representation we consider is an additive EU represen- 
tation in which u is additive across the vector of maximal ex post utilities. Unlike 
the ordinal EU case, here we do not require monotonicity so we do not restrict 
the weights on the different states to be positive. Thus the additive EU 
representation is stronger than the weak EU in a different way than the ordinal 
EU. 

DEFINITION 4: An additive EU representation is a weak EU representation15 
such that there exists a finitely additive measure ,t on S such that, for all 
x cA(B), 

u (sup U(3, s)) =f sup U 3, s)X(ds). 
,8 E=X sS (E 8E=X 

2.2. Axioms 

The axioms that we consider on the ex ante preference relation are the 
following. The first three we assume throughout. 

AXIOM 1 (Weak Order): >- is asymmetric and negatively transitive. 

AXIOM 2 (Continuity): The strict upper and lower contour sets, {x' c A(B) I x' >- 

x} and {x' c A(B) I x >- x'}, are open (in the Hausdorff topology).16 

AXIOM 3 (Nontriviality): There is some x and x' such that x >- x'. 

Our three representations differ primarily in terms of the independence-type 
condition they require. The condition we use for a weak EU representation says 
that if we enlarge a menu by allowing the agent to randomize over items on the 
menu, this expansion has no value or cost to her. This axiom has very little of 
independence to it, though it clearly is related. Formally, for a menu x, let 
conv(x) denote its convex hull. 

14 This definition is not complete as we do not give a topology for the set of all preferences. 
Hence the notion of a weak representation without the EU restriction is not fully defined. However, 
the only ordinal representations we will need to consider are either ordinal EU or have finite 
subjective state spaces where topological considerations play no role. 

15 To be more precise, we must expand the definition of a weak EU representation to make S a 
measure space and require U to be measurable with respect to this space. Since we make no explicit 
use of such measurability considerations, we avoid a discussion of the details. 

16 The Hausdorff topology is reviewed in Appendix A.I. 
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AXIOM 4 (Indifference to Randomization (IR)): For every menu x cA(B), 
x conv(x). 

The axioms we require for ordinal EU and additive EU representations are 
much more akin to standard independence axioms. To state these, we first need 
to define convex combinations. We do this by defining the convex combination 
of two sets to be the set of pointwise convex combinations. That is, for A E [0, 1], 
define Ax + (1 - A)x' c A(B) to be the set of ,3" E A(B) such that (3" = A,3 + 
(1 - A),3' for some ,(3 (x and ,3' (x' where, as usual, A,3 + (1 - A),3' is the 
probability distribution over B giving b probability A,3(b) + (1 - A),38'(b). 

We first give the stronger axiom since the weaker is more easily understood as 
a relaxation of it. 

AXIOM 5 (Independence): If x >- x', then for all A E (0, 1] and all x-, 

Ax + (1- A)x >- Ax' + (1- A)x-. 

This is the usual independence axiom, using the definition above for taking 
convex combinations. 

We now explain the normative appeal of this condition. It is easiest to 
understand the axiom by breaking it into two parts. To understand the first part, 
suppose we think of Ax + (1 - A)xA not as a convex combination of sets as we 
have defined it, but instead as a randomization over these menus where the 
agent gets menu x with probability A and menu x- otherwise. (We will justify this 
interpretation momentarily.) Given this, our axiom is precisely the usual inde- 
pendence axiom and is interpreted in precisely the usual way: the difference 
between Ax + (1 - A)xA and Ax' + (1 - A)xA is only in the "A" event, so the 
preference between these should be the same as the preference between x 
and x' 17 

The key, then, is understanding why a rational agent should view this kind of 
lottery over sets as equivalent to the convex combination of sets we defined. This 
interpretation can be thought of as a kind of reduction of compound lotteries 
together with an assumption that the agent is certain she will satisfy the 
independence axiom ex post, both normatively appealing notions. 

To see this most easily, suppose x = { [1,32} and x- = { [} and consider how 
the individual should view the gamble giving x with probability A and x- 
otherwise. The individual knows that whatever menu the gamble gives her ex 
ante, she will choose her preferred element from that set at the ex post stage. 
There are two sets of circumstances at the ex post stage: those in which she 
would choose [13 over [32 and those in which she would choose [32 over [1. In 

17 Nehring (1999) can be thought of as assuming this form of independence in considering 
lotteries over sets. (This is not entirely accurate since he considers Savage acts over sets, but he uses 
the standard Savage axioms to reduce such an act to a lottery over sets.) However, he does not 
follow our next step of identifying lotteries over sets with our definition of convex combinations of 
sets, an identification that is at the heart of our independence axiom. 
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the first case, the randomization over menus effectively gives her A,31 + (1 - A),(3, 
while in the second, she effectively receives Af32 + (1 - A)(3. 

Compare this situation to the one where we simply give her the menu 
{A,31 + (1 - A),3, Af32 + (1 - A),3}-that is, in place of the lottery, we give her 
the convex combination of menus. Again, there are clearly two sets of relevant 
circumstances ex post: those in which she would choose A,31 + (1 - A),3 from 
this menu and those in which she would choose Af32 + (1 - A),3. Now suppose 
that she is sure of one thing: her ex post preference will satisfy the indepen- 
dence axiom. In this case, she knows that the circumstances in which she prefers 
1l8_to f82 are exactly those in which she prefers Af31 + (1 - A):3 to Af32 + (1 - 
A),3. In other words, both the lottery over menus and the convex combination of 
menus then effectively give her A,31 + (1 - A),3 in those circumstances in which 
she prefers 81 to 02 and AJ32 + (1 - A):3 in all other circumstances. Hence she 
should be indifferent between the lottery over menus and the convex combina- 
tion of the menus. 

We emphasize that this is a normative argument, relying on the idea that the 
agent is fully rational except that she does not necessarily know the set of states 
of the world.18 None of the argument above requires the agent to understand 
anything about the circumstances in which she would prefer 81 to f2, only to 
imagine that such circumstances could exist and that her ex post preference in 
such a situation would satisfy the independence axiom. 

Our weaker version of independence requires this implication only for certain 
menus. 

AXIOM 6 (Weak Independence): If x' c x and x >- x', then for all A E (0, 1] and 
allx, 

Ax + (1-A)x >- Ax' + (1-A)x. 

In words, if the addition of x \x' to the menu x' strictly improves it, then 
adding A(x\x') + (1 - A)xA to Ax' + (1 - A)x must also be a strict improvement. 

A natural question to ask is why we do not also require a strict preference 
implication when x -< x'. The reason is that our only use of this axiom will be in 
conjunction with monotonicity: 

AXIOM 7 (Monotonicity): If x cx', then x' >- x. 

In other words, bigger sets are weakly preferred-that is, commitment is 
never valuable. Obviously, monotonicity implies that both of the preferences to 
which we refer in Axiom 6 must hold weakly. 

The following lemma characterizes the relationships among IR, indepen- 
dence, and weak independence. 

18 In particular, she is indifferent to the timing of the resolution of the objective uncertainty. 
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LEMMA 1: If >- satisfies independence, then it satisfies weak independence. If 
>- satisfies weak order, continuity, and weak independence, then it satisfies IR. 

3. IDENTIFYING AND CHARACTERIZING THE REPRESENTATION 

3.1. Uniqueness of the Subjective State Space and Aggregator 

In this subsection, we show that if a weak EU representation with a finite 
state space exists, then every weak EU representation of this ex ante preference 
has the same subjective state space; that is, the subjective state space is uniquely 
identified. We also show that such representations exist for a very broad class of 
preferences; in particular, monotonicity is not required. 

The uniqueness of the subjective state space in turn implies a form of 
uniqueness of the aggregator. Because the formal definition is notationally 
cumbersome, we state the idea here and give the details in Appendix B. Recall 
that the aggregator is a function from vectors of ex post utilities to an ex ante 
evaluation. A trivial way to alter the aggregator then is to "relabel" the 
subjective states that is, to put the ex post utilities into a vector in a different 
order and change the aggregator accordingly. Naturally, we will say that two 
aggregators related in this fashion are essentially the same. A second trivial way 
to alter the aggregator is to rescale some of the ex post utility functions and to 
alter the aggregator accordingly. That is, we might replace the state s utility 
function with twice the original function and then change the aggregator by 
having it divide this component in half before aggregating it with the other ex 
post utilities as before. Again, we will say that two aggregators related in this 
fashion are the same. Finally, the aggregator is only meaningful on those vectors 
in Rs that can be generated by some menu. That is, we cannot expect to pin 
down the aggregator at points outside of Z/*(S, U). When the aggregators for all 
weak EU representations of a given ex ante preference can be related in this 
fashion, we say that the aggregator is essentially unique. 

If the subjective state space is infinite, it is unique but only up to closure. See Appendix 
A.2 for details. As a result, uniqueness of the aggregator is further complicated in this 
case by the fact that we could change the state space in a way that does not change the 
closure and change the aggregator correspondingly. Again, we view this as an essentially 
irrelevant change. 

THEOREM 1: A. The ex ante preference >- has a weak EU representation if and 
only if it satisfies weak order, continuity, nontriviality, and IR. 

B. If an ex ante preference has a weak EU representation with a finite state space, 
then all weak EU representations of that preference have the same subjective state 
spaces. Furthermore, the aggregator is essentially unique. 

C. More generally, the closuires of P (S, U) for all weak EU representations of >- coincide. 

PROOF SKETCH: The proof of Theorem I.A is discussed in Section 4. For the 
intuition behind Theorem 1.B, suppose we have two weak EU representations 
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(S, U, u) and (S', U', u'), both with finite subjective state spaces, such that 
P P(S, U) 0 P(S', U') P'. If these subjective state spaces are not the same, 
then there is some ex post preference, >- *, contained in, say, P' and not in P. 

For each s E S U S', let Ys denote a lower contour set for the preference >- s 
and let Us denote the associated level of utility. That is, Ys is the set of points 
on and "below" the indifference curve associated with utility Us for >- *. Let x 
denote the intersection of these lower contour sets. Because all of these ex post 
preferences are expected-utility preferences, we know that these indifference 
curves are linear. As a consequence, we can always choose the lower contour 
sets so each coincides with a (nontrivial) part of the boundary of x. (See Figure 
1 for example.) Let x' denote the intersection of all these lower contour sets 
except for Yso. Because this lower contour set formed part of the boundary of x, 
x ' must be strictly larger than x as shown in Figure 1. (In the figure, x' = x uy.) 

For any s E S, consider the value of sup: E x U(f,3, s). It is easy to see that it 
cannot exceed Us since every point in x is contained in Ys and so gives utility 
less than or equal to Us. Also, it cannot be less than Us since we have ensured 
that the indifference curve for state s associated with this level of utility 
intersects the boundary of x. Hence for all s E S, this supremum must exactly 
equal Us. Note that exactly the same argument applies to the value of 
sup: ( x U'( P3, s) for any s E S'. Also, exactly the same argument applies to x' 
for any s 0 s0. On the other hand, the argument does not apply to x' for state 
s0. Note that x' must contain some points outside Yso and, by definition, all 
such points give utility in state s0 strictly greater than Uso. Hence 

sup U(3, s)= sup U(3, s), Vs E S, 
,8 ex E xI 

sup U'( 3, s) =sup U'( 3,s), Vs S', s sO, 
3ex 0EXI 

and 

sup U'(f , sO) < sup U'(f , sO). 
,8ex 3exI 

FIGURE 1 



SUBJECTIVE STATE SPACE 909 

Because so 0 S, the fact that (S, U, u) represents the ex ante preference >- 

implies that x x'. Hence in representation (S', U', u'), the aggregator must be 
ignoring the state so utility difference between x and x'. Roughly, the proof of 
Theorem 1.B shows that essentially every comparison of sets that have utility 
differing only in state so can be written as a comparison of such an x and x'. 
Therefore, the aggregator u' must always ignore the state so utility difference 
when it is the only state where a utility difference exists. But this implies that so 
is not relevant to the representation (S', U', u'), a contradiction. 

As noted in the introduction, one reason the lack of identification of the 
subjective state space in Kreps' framework is problematic is that it makes it 
difficult to relate the structure of the subjective state space to intuitive proper- 
ties of the underlying ex ante preferences. For example, a natural intuition is 
that larger subjective state spaces correspond to a greater concern about 
subjective contingencies. We also want to give a similar characterization of 
greater preference for flexibility or commitment using the way subjective states 
enter the representation. Examples 1 and 3 in the introduction showed that such 
comparisons cannot be made in the Kreps framework: alternative representa- 
tions of the same preference can have (i) nested subjective state spaces or (ii) 
identical subjective states with oppositely signed coefficients. Since we pin down 
the subjective state space (given the EU restriction), we can make such compar- 
isons. 

To do so, given a weak EU representation (S, U, u) with a finite subjective 
state space, say that s E S is positive if there are vectors U*, UP E v ' that differ 
only in coordinate s and have Us* > Us* such that u(U*) > u(U*). Define s E S 
to be negative if the same is true except that u(U*) < u(U*). (Note that some 
states may be both negative and positive.) Let 9 denote the set of ex post 
preferences corresponding to the positive states-that is, 

P= { > * I > * = - for some positive s}. 

Define X similarly for the negative states. Intuitively, the size of 9 measures 
the agent's desire for flexibility, while the size of X measures his desire for 
commitment. 

When the subjective state space is infinite, say that s ( S is positive if for every 
neighborhood N of s, there are menus x and x' with x cx', x' >-x, and sup: E U( ,3, s') 
= sup , ,., U( ,B, s') for all s' E S\N. The definition of a negative state is analogous. Let 
O denote the closure of the set of ex post preferences corresponding to positive states and 
define X analogously for the negative states. 

To relate these attributes of the representation to the preferences, say that 
agent 2 desires more flexibility than agent 1 if x U x' >-1 x implies x U x' >-2 X 

and that agent 2 desires more restrictions than agent 1 if x U x' -<1 x implies 
x U x' -<2 x. Finally, say that agent 2 is more uncertain than agent 1 if x U x' -" x 
implies x U x' _"'2 x. Focusing on the intuition of the last condition, x U x' -" x 
says that agent 1 conceives of a circumstance in which having the options in 
x' \x would be relevant to her in some fashion. (For instance, in the monotonic 
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case, this would mean that she would value the flexibility of having the 
additional options in x' \x.) The implication says that agent 2 must also 
consider a circumstance in which x' \x is important. In this sense, 2 has more 
uncertainty than 1. Note that in contrast to the desires for flexibility and 
commitment, in this last condition there is no requirement that 1 and 2 give the 
same value to adding x' that is, we allow x Ux' >-1 x and x Ux' =<2 X. 

THEOREM 2: Let (Si, Ui, ui) be weak EU representations of preferences >-i, for 
i = 1,2. 

1. If > 2 desires more flexibility than >- s, then 91 C 92 

2. If >_2 desires more restrictions than >-I, then A1 C A2. 

3. If > 2 is more uncertain than <1 and if S2 is finite, then P(S1, U) C P(S2, U2). 
4. If >2 is more lncertain than >1 and S2 is infinite, then the closure of P(S2, U2) must 

contain thze closure of P(S1, U1). 

This result implies that if <1 = >2, then 9l =-2 and A41 =X42.19 Thus we 
uniquely identify which states are positive and which are negative. 

Hence we see that our identification of the subjective state space and 
aggregator enables us to relate the representation to intuitive, economically 
meaningful properties of the underlying preferences. 

3.2. Minimality of the EU Subjective State Space 

In this subsection, we give a different reason for focusing on subjective state 
spaces consisting only of expected-utility preferences: such state spaces are the 
smallest possible, if we restrict attention to ordinal EU representations.20 It is 
easy to see that ordinal EU representations require monotonicity, so, unlike the 
previous subsection, we do assume monotonicity here. 

THEOREM 3: A. >- has an ordinal EU representation if and only if it satisfies 
weak order, continuity, nontriviality, weak independence, and monotonicity. 

19 This is also an implication of Theorem 1. 
20 This result is not true for weak representations, even in the monotonic case. If one assumes 

that ex ante preferences over menus are generated by having one ex post preference that is not 
expected-utility but does have convex lower contour sets, the induced preference over menus will 
have a monotonic weak EU representation. (This follows from Theorem L.A.) However, this 
representation will require more than one ex post preference in its subjective state space, while the 
"correct," non-EU subjective state space is a singleton. 

21 The conditions Kreps uses to prove existence of an ordinal representation are weak order, 
monotonicity, and x x U x' => x U x" x U x' U x". It is not difficult to show that this last condition 
is also necessary for an ordinal EU representation in our model, so it must be an implication of our 
axioms. A direct proof of this fact is not difficult. First, note that x Ux' x Ux' U x", so monotonic- 
ity implies that the latter is weakly preferred. By weak independence, then, 2x + -;[x Ux' Ux"] >- x 
+ [x U x" ], strictly so if x U x' U x" >- x U x'. Suppose that x -x U x'. Then weak independence 
implies 2x + }[x Ux"] -[x Ux'] + [x Ux" ], so lx + 1 [x Ux' Ux"] >x I [x Ux'] + }[x Ux"]. How- 
ever, the left-hand side is a subset of the right-hand side. Hence by monotonicity, we must have 
indifference. But then this requires x U x' U x" x U x'. We thank Klaus Nehring for showing us a 
critical step in this argument. 
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B. If there is an ordinal EU representation with a finite subjective state space, 
then any ordinal representation of the same ex ante preference that has a different 
subjective state space must have a strictly larger one. 

C. If there is an ordinal EU representation with an infinite subjective state space, then every 
ordinal representation of the same ex ante preference has an infinite subjective state space. In 
addition, there must be an ordinal EU representation with a countable subjective state space so 
every ordinal representation has a subjective state space with weakly larger cardinality. 

PROOF SKETCH: We describe the intuition for part B of Theorem 3. Fix any ex 
post preference, say >- *, in the subjective state space of an ordinal EU 
representation, say representation 1, and any (interior) lower contour set, say x, 
for that preference. Fix any set of lotteries y that is disjoint from x. If the 
agent's preferences are given by >- *, then she is strictly better off choosing 
from x U y than from x alone. Since x is the set of lotteries yielding utility less 
than some amount according to >- -, everything in y must yield higher utility. 
Since supa, x U( ,3, s) < supp, x u y U( ,3, s) for all s, the fact that the aggregator 
is strictly increasing implies that x U y >- x. Hence if we have another representa- 
tion of these preferences, say representation 2, this property must be preserved. 

How can it be preserved? One way to do so is to ensure that representation 2 
contains a preference for which x is a lower contour set. It turns out that if 
representation 2 also has a finite state space, this is the only way to ensure this 
property. (If 2 has an infinite subjective state space, then our minimality 
property holds, so we are done in this case.) 

In light of this, fix any interior /3. For each ex post preference ? * in the 
subjective state space for representation 1, let 2s denote the lower contour set 
in which [3 is maximal, i.e., 2s = { /3': [3 ? ? [3 '1. Since these are all expected-util- 
ity preferences, each different ex post preference must be associated with a 
different s. But, by the preceding paragraph, each of these lower contour sets 
must be associated with a different ex post preference in representation 2. 
Hence representation 2 must have at least as many possible ex post preferences 
as representation 1. In fact, the proof of Theorem 3.B shows that this compari- 
son must be strict unless the subjective state spaces are the same. 

In short, an ordinal EU representation exists if and only if preferences satisfy 
monotonicity and a weak independence axiom. Such a representation has the 
minimum possible cardinality over all ordinal representations, EU or otherwise. 
In this sense, the EU representations have the "simplest" possible subjective 
state space. 

3.3. Additive Representations 

It is natural to explore when an additive representation exists, as that would 
be more similar to standard representations of preferences under uncertainty. 
The next theorem shows that strengthening IR to independence characterizes 
additivity. Moreover, in contrast to Example 2, the aggregator in any weak EU 
representation of such preferences must be a monotone transformation of an 
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affine function, pinning down additivity.22 Finally, in contrast to Example 3, the 
uniqueness result of Theorem 1 immediately implies that the signs of the 
coefficients are uniquely identified. 

There is also a novel behavioral implication of independence in this context: 
in contrast to the general case discussed earlier, if u is affine, then SD nx is 
empty. That is, any given subjective state either leads to a desire for flexibility or 
for commitment, but not sometimes one and sometimes the other, depending on 
the sets being compared. 

THEOREM 4: A. The ex ante preference >- has an additive EU representation if 
and only if it satisfies weak order, continuity, nontriviality, and independence. If >- 

also satisfies monotonicity, then the measure ,t is always positive. 
B. When an additive EU representation exists, every weak EU representation has 

an affine aggregator up to a monotone transformation. That is, if (S, U, u) is a weak 
EU representation of a preference satisfying these axioms, then there exists a finitely 
additive measure / on S such that for any x c A(B), 

u((supU( 0,s) sup U( /3, s) ,/' (ds) 
,8x s(E S s ex 

S23x 

up to a monotone transfornation.23 

Given that we have identified additivity, a natural hope is that we can identify 
the agent's probabilities over the subjective state space. Unfortunately, this is 
not straightforward even in the monotonic case. The key to the preference for 
flexibility is the fact that the agent does not know what his ex post preferences 
will be. Hence it is critical that ex post preferences vary with the "state of the 
world." But in the usual Savage or Anscombe-Aumann setting, it is precisely the 
state independence of preferences that allows identification of probabilities.24 

To identify probabilities, we must introduce some form of separability in the 
ex post preferences in such a way that some aspect of state independence is 
introduced. Since this is a significant deviation from the rest of our work, we 

22 This suggests that a distinction between ordinal and additive representations might be obtained 
in Kreps' model by means of a restriction on the ex post preferences, analogous to the way we 
require ex post preferences to be expected-utility. This cannot be done within the class of 
preferences Kreps studies: we can show by example that there is no restriction on ex post 
preferences in Kreps' framework that (a) allows an additive representation of every ex ante 
preference he considers and (b) does not allow any intrinsically nonadditive ordinal representation. 

23 This result does not just say that given any weak EU representation of preferences that have 
an additive EU representation, there is an additive EU representation that is a monotone transfor- 
mation of the weak EU representation. Since any two functions representing the same preferences 
must be monotone transformations of one another, this would be trivially true. Instead, the result 
says that this is true without essentially changing the subjective state space. 

24 With state dependent utility, one can always rescale the utility functions to change the 
probabilities, so the probabilities are meaningless. This does not contradict our result on the 
essential uniqueness of the aggregator as essential uniqueness allows such affine changes. 
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only sketch a particularly simple version of the idea here. Returning to the 
meal-planning example of the introduction, suppose the agent cares about food 
items (what he has for dinner) and money (how much it costs him). In particular, 
suppose that while he is uncertain about what he will feel like eating on the 
night in question, he knows how he will value his money. That is, the agent's 
utility for money his degree of risk aversion is independent of any subjective 
contingencies. Formally, we rewrite the set B as the product of two finite sets, 
say Z and M. The elements of Z are interpreted as those choices that are 
affected by subjective contingencies (food items), while the elements of M 
(amounts of money) are not. Given a distribution ,3 c A(Z x M), let fz3 be the 
marginal on Z and f3M the marginal on M. Focusing on the case where S is 
finite for simplicity, we could consider a representation of the form 

E max[Uz(,3z,s)+UM(/3M)]K(s) 
seS f3x 

where UM and each Uz(, s) is an expected-utility function. If such a representa- 
tion exists, all the results above would apply to identifying the subjective state 
space and the additivity of the representation. In addition, the fact that s does 
not appear as an argument in the UM function enables one to use a straightfor- 
ward variation of standard results to show that the probability distribution A is 
also uniquely identified. 

While a representation like this has nice properties, it is not a trivial matter to 
determine the axioms on preferences that generate it or similar representations. 
We leave this as a topic for future research. 

4. PROOF SKETCH OF THE REPRESENTATION RESULTS 

The necessity of the axioms is easily shown in each case.25 This section is 
devoted to sketching the sufficiency proofs. Before doing so, we state a useful 
lemma. Let cl(x) denote the closure of x (in the Euclidean topology on A(B)). 

LEMMA 2: If >- satisfies weak order and continuity, then for all x cA(B), 
cl(x) - x. 

Intuitively, the Hausdorff distance between a set and its closure is zero, so 
continuity in the Hausdorff topology requires the agent to be indifferent 
between these menus. 

25 The only demonstration that is not completely straightforward is showing that weak indepen- 
dence is necessary for an ordinal EU representation. To see this, assume we have such a 
representation. Suppose x cx' and x' >-x. Fix any A c (0,1] and any x. Because x cx', we know that 
sup,E U( /3, s) 2 sup,, E U( /3, s) for all s. Because x' >- x, we know that we must have at least 
one s for which this inequality is strict. Since U is an expected-utility function, we have 

SUp, E Ax+(l-A)x U( /3, S) = Asup8 E x U( /3, s) + (1 - A)sup, E x U( /, s) and likewise for x'. Hence 
SUp,8 Ax+(1-A).v U( /, S) ? SUp8 E Ax'+(1-A).X U(/3, s) iff sup: E x U(/3, s) < sup: E xe U(/3, s). Hence we 
see that the inequality before last holds for all s and strictly for some s. Since the representation is 
an ordinal EU, u is strictly increasing, so this implies Ax + (1 - A)x -< Ax' + (1 - A)x. 
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For the rest of this section, we assume that >- satisfies the axioms in 
Theorem 1.A. In light of IR and Lemma 2, we henceforth restrict ourselves to 
the set of closed, convex, nonempty subsets of A(B), denoted by X. 

We begin by establishing the existence of a representation of preferences on 
X using standard results. We then describe how we transform this into the 
desired representation. 

PROPOSITION 1: If >- satisfies weak order and continuity, then there is a 
V: X -- R that represents >-, that is, 

x -x' iff V(x) > V(x'). 

V is unique up to monotone transformations and continuous (with respect to the 
Hausdorff topology). 

PROOF: Since A(B) is connected, compact, and metric, the space X is 
separable (see Theorem 4.5.5, page 51, of Klein and Thompson (1984)) and 
connected (see Theorem 2.4.6, page 20, of Klein and Thompson). Hence all the 
conditions of Debreu's theorem (see, for instance, Fishburn (1970, Lemma 5.1, 
page 62)) are satisfied, giving the desired representation. Q.E.D. 

We now characterize V(x) for closed and convex x c A(B), showing that we 
can write 

V(x) = u (max U( 3, s)) ) 

for some S and expected utility functions U. It is easy to extend this characteri- 
zation to all nonempty subsets of A(B) as follows. Fix any x c A(B) such that 
x X X. Since each U(-, s) is an expected utility function, 

sup U( X3, s) = max U( X3, s). 
,B x B E conv(cl(x)) 

By IR and Lemma 2, for every x c A(B), x conv(cl(x)), so we can define 

V(x) = V(conv(cl(x))) = u( max U( ,X3 s) 
3 EE conv(cl(x)) s E S 

=u((supU(I8s)) )s 
18ex SE-=S 

completing the extension. 
To characterize V(x) for x c X, we first show that we can uniquely identify 

each element x in X with a function ox defined on a subset of RK, denoted 
sK 26 formally defined below. The function is the support function see Rock- 
afellar (1972, page 28). These functions have the form of o?(s) = max 8 UE ( ,3, s) 

26 Recall that K is the number of elements of B. 
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for s c SK, where U is linear in /3, i.e., U( /3, s) = Lb E B U(b, s)/3(b). In short, we 
can uniquely identify each menu in X with a function giving the maximum 
expected utility from that menu over a certain artificial "state space." This will 
enable us to rewrite V in terms of these functions and then identify a subset of 
this artificial state space that is the "real" state space. This construction will 
generate our weak EU representation. After sketching this construction, we 
explain how strengthening the axioms enables us to further refine the construc- 
tion to yield an ordinal or additive EU representation. 

For convenience, we write B = {b1, . . ., bK}. Let SK = {S c RK I E Si = 0, Elsil = 

1}, and let C(SK) denote the set of continuous real-valued functions on SK. For 
intuition, think of an element of SK as a possible specification of the von 
Neumann-Morgenstern utilities for each of the K elements of B. Because such 
utilities are only identified up to affine transformations, we have two "degrees of 
freedom" in setting a normalization. For essentially technical reasons, it is 
convenient to normalize by requiring these utilities to sum to zero and requiring 
their absolute values to sum to one. We order the functions in C(SK) pointwise 
as usual-that is, o-> o' means u(s) 2 '(s) for all s E SK. We now map X 
into C(SK), denoting the image of x by ?x, where for any s = (sj, ... . SK) C SK, 

K 

oj(s) max U( ,, s) max E ((bi) si. 
f3ex f3x i=l 

Let C denote the subset of C(SK) that o- maps X onto; that is, C {o c 

C(SK) IX E XI. Finally we define the inverse that maps elements of C into X by 

x?- n 8E=-E{ (B) E1(bj)sj?<o(s)}. 
s E SK i 

The following lemma gives two useful properties of the mapping of X to C. 
First, it is a bijection. Second, it is monotonic in the sense that larger sets (in 
terms of set inclusion) correspond to larger functions (in the pointwise order). 

LEMMA 3: 1. For allxcXand o-cC, x(,) =x and ()= f. Hence u is a 
bijection from X to C. 

2. For allx, x' cX, x cx' < o-x< o-,. 

PROOF: This is a standard result that follows immediately from the defini- 
tions. See, e.g., Clark (1983), Castaing and Valadier (1977), and Rockafellar 
(1972). Q.E.D. 

By the first part of this lemma, we can define a function W: C -- R by 
W(0-) = V(x,). That is, because each o- c C is associated with a unique x cX, 
we can define the "utility" of o- to be the utility of the corresponding menu x. 
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This almost completes the proof. To see why, suppose, for the moment, that 
we try defining a weak EU representation by setting S = SK, defining 

K 

U(p, S) = U(p, (S1,,. *I. SK)) = 8(bi)si, 
i=1 

and letting u( ) = W( ). This last step is not complete since W is only defined on 
C, that is, on a certain subset of RS, while u is supposed to be defined on all of 
RS. However, we can define u to equal W on C and extend it any way we like to 
the rest of RS. 

The (S, U, u) so defined satisfies all but one of the properties for a weak EU 
representation. It is not hard to see that u[(sup e x U( /3, s)),E s] = V(x) for all 
x E X. Hence Proposition 1 implies that this function is appropriately continuous 
and represents the ex ante preference as required. Each U(-, s) is an expected- 
utility function as it is affine in /3. 

The only remaining requirement, which will not hold in general, is that each 
s E S be relevant. Intuitively, SK includes every ex post preference that we 
might need, but a weak EU representation cannot include ex post preferences 
that aren't actually needed. Hence we cannot simply set S = 5K but must 
identify the "relevant" subset of SK and set S equal to this subset. The proof in 
the Appendix shows how this can be done. 

Let S denote the remaining set of "relevant" points in SK. Now we can 
restrict the support functions to this smaller space. The fact that the excluded 
point was "irrelevant" means that the essence of the construction still works. 
We lose the bijection property, but if two menus x and x' are associated with 
the same support function, then we must have x x', so that the utility of the 
associated support funtion is still well defined. For the rest of this proof sketch, 
we will continue to use u- to denote a support function but now defined on S 
instead of all of SK. 

The proof of Theorem 3.A picks up from here, adding the assumptions that 
>- satisfies monotonicity and weak independence. We now sketch the proof that 
these properties imply that the u function constructed above will be strictly 
increasing on 9. 

This step uses another property of support functions. 

LEMMA 4: For all x, x' EX, 0Ax+(1-A)x' = AO + (1 -A) . 

PROOF: This is another standard result. See the same references as for 
Lemma 3. Q.E.D. 

We sketch the proof for the case where the weak EU representation identi- 
fied at the previous step has finitely many states. Recall that one property of 
weak EU representations is that every state s is relevant. In the finite case, this 
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requirement is that for every state s, there is an x1 and x2 with x1 >- x2 but 

sup U( 3,s')= sup U( 3, s') 
f EX1 f3GX2 

for all s' Os. So fix any s and such an xl and x2. Without loss of generality, 
assume x2 cx1. To see why this is without loss of generality, note that if it does 
not hold, then we can replace x1 with x1 U x2. By monotonicity, x1 U x2 : x1 > x2, 
so we have xi Ux2 >_x2. Also, it is easy to see that for all s' V s, 

sup U 3, s ') = max sup U( /, s'), sup U( 1, s') 
fEx1XUX2 3 EX 1 EEX2 

= sup UP3, s'). 
JOEX2 

Thus if x1 does not satisfy these properties, x1 Ux2 will, so we can assume that 
x1 does. 

Let o-i be the support function of xi, i = 1,2. Since x2 cx1, we know that 
1(s) > o2(s). By hypothesis, o-1(s') = o-2(s') for all s' 0 s. Let o_s denote the 

vector of values of o- and O-2 for s' =s. We know that x1 >-x2, so 

W(0-1(S), 0-s) > W(0f2(S), 0--s)' 

By weak independence, for any x- and A E (0,1], we must have 

Ax1 + (1 - A)x >- Ax2 + (1 -)x, 

So W(oxX?+(1-A)X) > W(oAX2+(-A)x). By Lemma 4, this implies 

W(Ao1 + (1 - A)6f) > W(Ao2 + (1 -A)f) 

where 1i is the support function of xc. In particular, we could take 1i to be either 
u1 or o2, in which case we see that W(o1) > W(Ao1 + (1 - A)o-2) > W(o-2). It is 
not hard to strengthen this to show that W(Ao1 + (1 - A)o2) is strictly increas- 
ing in A. That is, W(os, o-s) is strictly increasing in os for o? E [G>2(s), u1(s)]. 
What we want to show is that it is strictly increasing in this coordinate 
everywhere. 

Figure 2 describes the situation in two dimensions. We know that W is 
increasing moving up from the point labeled cr2 to the point labeled o1. It is not 
hard to show that this requires W to be increasing all along the line through 
these two points. So consider another possible value for os, say o' s. This value 
corresponds to the vertical line in Figure 2. The argument needed for the 
boundary points is a little more complex, so let's focus on the case where this 
line is in the interior. It is easy to see that we can then identify a point like 6f 

shown in Figure 2 with the property that there is an appropriate convex 
combination of points on the line through o-, and o2 that lies on this line, 
giving the points labeled ^1 and &2 in the figure. By weak independence, ^1 
and &2 must be ordered the same way as u1 and O-2. That is, we know that W 
must be strictly increasing between these two points and hence, just as claimed 
above, it is strictly increasing as we move up this line as well. Since o's was 
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FIGURE 2 

(essentially) arbitrary, this implies that W is strictly increasing in the s coordi- 
nate everywhere. Since s was arbitrary, this implies that W and hence u is 
strictly increasing on all of 9'*. 

Finally, we explain how to develop this construction further in the case when 
>- satisfies independence but not necessarily monotonicity to obtain an additive 
EU representation. First, we amend the very first step of the analysis to 
strengthen the properties of the V function shown to exist in Proposition 1. The 
following result, a simple implication of the Herstein and Milnor theorem (see, 
e.g., Fishburn (1970, Theorem 8.4, page 113), or Kreps (1988, page 54)), is 
proved in the Appendix (see Section C.5). 

PROPOSITION 2: If >- satisfies weak order, continuity, and independence, then 
there is an affine V: X -> R that represents preferences. That is, the V identified in 
Proposition 1 can be assumed to satisfy 

V(Ax + (1 - A)x') = AV(x) + (1 - A)V(x'). 

V is unique up to affine transformations. 

Now that we have added this affinity property of V, it is not hard to see that 
the W we have constructed will inherit this property. To see why, simply note 
that by Lemma 4, 

0AX+(1-A)x' = Aox + (1 - A)ox. 

From the way we constructed W, we have 

V(Ax + (1 - A)x') = W(oAX+(1A)X) = W(Ao-X ? (1-A)ox). 

By the affinity of V, we know that this equals AV(x) + (1 - A)V(x'). But using 
the construction of W again, we see that 

W(Ao-x + (1 - A)o-x) = AW(o-x) + (1 - A)W(o9x,). 
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Hence we know that W is continuous and affine. We verify in the Appendix that 
the structure of C then implies that W can be extended to a continuous linear 
function on the set of all continuous functions on S. The Riesz representation 
theorem then implies that W, hence V, can be represented as integrating the 
value of the function against a measure. Thus there exists A such that W(Mu)= 

JSK cKa(s)(ds), or V(x) = JSK o-(s)A(ds) = JSK max x U( /, s) (ds), yielding 
the desired representation. 

5. CONCLUSION 

To summarize, we have extended Kreps (1979) in several ways. By enriching 
the structure of the model, we identified an essentially unique subjective state 
space given a restriction to ex post preferences that are expected-utility prefer- 
ences. This demonstration is more general than the class of representations 
Kreps considered, holding for essentially any representation that uses a subjec- 
tive state space, and is characterized by the property that the agent is indifferent 
to having the extra option of randomizing over the lotteries in a chosen set. This 
identification implies that the aggregator is essentially unique as well. In 
particular, if an additive EU representation exists, then all weak EU representa- 
tions are additive. As one might expect, additivity is characterized using the 
independence axiom. None of these results require monotonicity, so we can 
allow for contingencies in which flexibility is costly. Finally, we showed that in 
the monotonic case, there is another reason to focus on an EU subjective state 
space: it is the smallest subjective state space for any ordinal representation. We 
also showed that ordinal EU representations correspond to preferences satisfy- 
ing monotonicity and a weak independence axiom. 

As illustrated in Theorem 2, pinning down the subjective state space opens up 
the possibility of giving concrete economic meaning to the properties of the 
objects in the representation. Our hope is that this paves the way to applications 
of this model. 

In addition to such applications, there are other possible directions for future 
research. As discussed in Section 3.1, it would be of interest to explore how 
separability can be used to identify probabilities on the subjective state space. 
Also, while we have characterized the case where the aggregator is affine, other 
aggregators might be interesting. For example, perhaps there is an interesting 
subclass of preferences with a weak EU representation that can be represented 
using the minimum function as the aggregator. 

Finally, as discussed in our introduction, one interpretation of our representa- 
tion results is that we are determining where an alternative approach must look 
to find behavior that can be distinguished from this model. If the subjective state 
space approach misses some interesting aspects of behavior under unforeseen 
contingencies, it must be true that some axiom (either an explicit one or an 
implicit assumption built into the structure of the model) precludes this behav- 
ior. If there is such an omission, then, just as Ellsberg identified the role of the 
sure-thing principle in precluding uncertainty-averse behavior, we believe that 
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one must first find a concrete example of behavior that is a sensible response to 
unforeseen contingencies but that is precluded by our axioms. An important 
direction for further research is to see if there is such an Ellsbergian example 
for this setting and, if so, to explore relaxations of our axioms. We believe that 
the most interesting possibility is to relax the assumption that the agent knows 
all the feasible actions. Realistically, part of the problem of unforeseen contin- 
gencies is failing to recognize what actions are possible, not just which ones 
might be useful. 
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APPENDIX 

A. Topologies 

A.l. A Review of the Hausdotff Topology and a Lemma 

Let d denote any distance on A(B). For any pair x, x' c(B), we define as usual d(a, x') 
info EX d(a,/3) and e(x, x') supc , x d(a, x'). The ball in the hemimetric topology is the set 
defined in (4) below. The topology whose basis is these balls is the Hausdorff hemimetric topology. 

(4) W(x, 8) -{x' C A(B) I max{e(x', x), e(x, x')} < e}. 

LEMMA 5: Let {x,,} be an increasing sequence of subsets of A(B), X1 CX2 C --, and let x8 = 

U ZI= 1 x,l. Then x, -> cl(x *) in the Hausdotff topology. 

PROOF OF LEMMA: Fix any 8 > 0. Since X =_ cl(x*) is compact, there is a finite cover of x by open 
balls of radius 8/3 and center a,,, m = 1. M. For n* large enough, x,,X must contains at least 
one element of each of the M balls, so that supaEx infbex ,* d(a, b) < 2(?/3). Hence 

lim,l supa E x infb Ex d(a, b) = 0, so x,, -x. Q.E.D. 

A.2. The Topology on P (S, U) 

Let pEU denote the set of all nontrivial27 expected-utility preferences. The topology we use on 
pEU was also used by Dhillon and Mertens (1996). We define it by specifying which sequences 
converge. (That this generates a well-defined topology is easily shown using, say, Theorem 2.9 in 
Kelley (1955).) 

27 That is, 3 >- *,3' for some (3, (3' c A(B). 
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DEFINITION 5: Given a sequence { > *} of expected-utility preferences over (B), we say that >- * 

is a limit of the sequence if it is a nontrivial expected-utility preference such that 

3> *3' implies 3N such that > *,3',V n 2 N. 

Equivalently, we can treat an expected-utility preference as a point in [0, 1]K giving the von 
Neumann-Morgenstern payoff to each of the K points in B with the normalization that the worst 
point gets payoff 0 and the best gets payoff 1. The topology above is equivalent to the usual 
(Euclidean) topology on this space. 

Given a subspace p c pEU, we define the relative topology on P in the usual way-that is, P c P 
is open if it is the intersection of P with an open set in pEU. Given a pair (S, U), we define an 
induced (relative) topology on S by defining S cS to be open if P(S, U) is open in the relative 
topology on P(S, U). 

B. Uniqueness of the Aggregator 

DEFINITION 6: Let Ri = (Si, U;, ui), i = 1, 2, be weak EU representations of some preferences. If 
the subjective state spaces of these representations are finite, then R1 and R2 are essentially 
equivalent if the following hold. 

(i) The subjective state spaces are the same. That is, P(S1, U1) = P(S2, U2). 
(ii) There is a bijection : S2-> S, and functions y : S2-> R+ and 8: S2 -> R such that for any 

U1* c *(S1, U1), the vector g(Ui*) defined by 

g(UP )(S?) = Y(S2)UP*(T(s2)) + 8(S2) 

is contained in W*(S2, U2). The function g: W*(S1, U1) -> *(S2, U2) is a bijection. 
(iii) Up to a monotonic transformation, u1(U*) = u2(g(Ul*)) for all U* c W/*(S1, UI). 
If the subjective state spaces are infinite, then all of the above holds up to closure. That is, the 

closures of P(S1, U1) and P(S2, U2) are the same. Also, all references to S, and S2 in (ii) and (iii) are 
changed to the closures of the set in question. 

We can now restate Theorem LB: all weak EU representations of a given ex ante preference are 
essentially equivalent. This follows almost immediately from the uniqueness of the subjective state 
space, which implies that for every s, c S1, we can find an 52 C S2 with >- *, * and vice versa. 
Given this, it is clear that U1Q, s1) must be an affine transformation of U2(Q, S2) for the correspond- 
ing S2- The g function in the definition simply translates the U* vectors by rescaling appropriately. 
The result then follows from the fact that the V1(x) generated from representation 1 must be a 
monotone transformation of the V2(x) generated from representation 2. 

C. Proofs 

For convenience, the order of proofs varies from the order of the results in the text. 

C.1. Proof of Lemma 2 

By definition of W(x, ?) (see equation (4) in Appendix A.1), for every 8> 0, cl(x) C=(x, 8). 

Recall that L(x) is the strict lower contour set for x. Suppose x' >-x, so that x c L(x'). By 
continuity, L(x') is open, so by the above, it must be true that cl(x) c L(x'). That is, x' >- cl(x). 
Similarly, if x' -<x, then x' -< cl(x). So suppose x >- cl(x). Then cl(x) >- cl(x), contradicting the 
hypothesis that >- is a weak order. Similarly, if cl(x) >- x, we again obtain cl(x) >- cl(x). Hence 
X Cl(X).28 Q.E.D. 

28 We thank a referee for suggesting this proof, simplifying a proof in a previous draft. 
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C.2. Proof of Lemma 1 

The first statement of the lemma is trivially true, so we turn to the second. We show the second 

by first demonstrating that weak order and weak independence imply that x conv(x) for every 
finite x. We then use continuity to complete the argument. 

Fix any finite x, let k denote the number of elements of x, and consider the set Ax + (1 - 

A)conv(x) for A c (0, 1/k]. We now show that this set is conv(x). To see this, note first that 
Ax + (1 - A)conv(x) c conv(x) for any A. For the converse, fix any A c (0, 1/k] and any /(3 c conv(x). 
By definition, there are nonnegative numbers ti, i = 1.., k, such that Lti= 1 and Li ti 3=i ,3. 
Clearly, there must be some j such that tj 2 1/k. Define ti for i = 1.., k by 

t -A 

"1-A 

and for i 1 j, 

ti 
t.= 

1 1-A 

Obviously, ti 2 0 for all i # j. Also, tj 2 1/k ? A implies ?j 2 0. Finally, 

Eti= 1_ tj -A+ Eti. = 
[ - 

A1Al 
= 1. = 1[f.A~~ ~-,j 1 

Let /3 = Li t? /3i Clearly, , c conv(x). Hence 

Aj + (1 -A) c Ax + (1 -A)conv(x). 

Clearly, we can write A/j + (1 - A)f: = zi t' j for some coefficients t'. It is easy to see that 
t = (1-A)?i =tj for i#j and tj = A+(1-VA)j =tj. Hence Afj3+(1-A)f:=f3. Hence Ax+ 
(1 - A)conv(x) = conv(x). 

Of course, x c conv(x). Hence weak independence implies that if x , conv(x), then there is no 
A c [0,1) with A conv(x) + (1 - A)conv(x) Ax + (1 - A)conv(x). The left-hand side is conv(x) and, 
by the above, there are values of A for which the right-hand side is conv(x). Hence x conv(x) for 

eveiy finite x. 
We now turn to infinite x. By Lemma 2, we can restrict attention to the case where x is closed. 

Hence x is compact and so has a countable dense subset, say E = {e1, e2, ... }. Let e' = {e,,..., e,,}, 
n = 1,2,.... By the above result, e'- conv(e') for all n. By Lemma 5, e' -> cl(E) =x and 
conv(e') -> cl(conv(E)) = conv(x) in the Hausdorff topology. We now show that this plus e'" 

conv(e') for all n implies x conv(x) by continuity. To see this, suppose to the contrary that 

x >- conv(x). Then by continuity, we know that for n sufficiently large, x >- conv(e') and e' >- conv(x). 
Fix such an n. By continuity, then, we see that for m sufficiently large, e... >- conv(e') and 
e' >- conv(e"..). But since conv(e') e'", this implies e... >- conv(e"..), a contradiction. The case where 

conv(x) >-x yields a similar contradiction. Hence x conv(x). Q.E.D. 

C.3. Proof of Theorem 1 .A 

In the text, we gave SK, UK: A(B) X S K -> R, and UK RSK -> R satisfying all the requirements of 

a weak EU representation except that each s c SK be relevant. Recall that s is relevant in state 
space S if for every neighborhood N (in the relative topology on S) of s, there are menus x and x' 
with x , x' such that for every s' 0 N, oC(s') = o-(s'). In general, not every s c SK will satisfy this 
requirement. 

To construct an appropriate subset, first we define s c SK to be strongly relevant if for every 
neighborhood N (in the topology on SK, not the relative topology) of s, there are menus x and x' in 
X with o-r(s') = o-,(s') for all s' eSK\N and x "x'. Let SI denote the set of all strongly relevant 

S e SK. 
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Say that S cSK is sufcient if for all x and x' such that or(s) = o,-(s) for all s c S, we have 
x x'. Clearly, the subjective state space must be sufficient or else it cannot represent the ex ante 
preference. We will show that St is the smallest closed sufficient set. This will be used to show that 
we can use it for our subjective state space. 

First, it is not hard to see that S* is closed. If s c cl(S*), then every open set containing s 
intersects S*. But then each such open set is a neighborhood of some point in S* so there must be a 
pair of menus whose support functions differ only on the neighborhood and which are not 
indifferent. Hence s is also strongly relevant. 

We now show that S* is smaller than eveiy closed sufficient set. Suppose S is a closed sufficient 
set, but S* X S. Then there is some s c S* with s 0 S. Because S is closed, there is a neighborhood 
N of s with N n S = 0. By definition of S*, then, there is an x and x' in X with or(s') = o- (s') for 
all s' cSK\N and x ' x'. Hence o(s') = or(s ') for all s' c S as ScSK \N. Since xy-x', this 
contradicts S being sufficient. 

In light of the above, we see that if S* is sufficient, then it is the smallest closed sufficient set. 
The sufficiency of S* is an implication of the following lemma. For later use, we prove a result that 
is more general than is needed here. Let St be the set of s c SK such that for every neighborhood 
N of s, there are menus x and x' with x cx', x' >-x, and o-r(s') = o-, (s') for all s' C SK\N. 
Intuitively, S* is the set of positive states-those where flexibility is desirable. Define St 
analogously but where x >- x'. Note that S* U StI c S. Given any x, x' c X, let 

D(x, x') - ESK lo(s) # ox(S)}. 

LEMMA6: Ifx-x', tl e#D(x,x')nS* 0. Ifxcx' andx' >-x, thenD(x,x')nS*0. If xcx' 
andx>-x', then D(x,x')nSt#0. 

PROOF OF LEMMA: First, note that if we have menus x and x' with x "' x' and D(x, x ') n S 0, 
then without loss of generality, we can assume these sets are nested. To see this, suppose that 
neither set is contained in the other. Because x Y x', at least one of these sets is not indifferent to 
conv(x Ux'). Hence we may as well assume that x yx Ux'. Note that if o-4s) = o,-W(s), then 

o(7(s) = max{o-(s)x, o>(s)} = O-conv(X u x )(S), Hence D(x, x Ux') CD(x, x'). So since D(x, x') n Sq = 

0, the same is true of D(x, x Ux'). Therefore, we may as well assume x cx'. 
Hence it is sufficient to prove the results claimed for S* and S* as this will imply the claim 

about S*. We give the proof for S*; the argument for S* is analogous. 
So suppose we have x and x' with xcx', x' >-x, and D(x,x')nS-=0. Without loss of 

generality, we can assume that both x and x' have nonempty interiors. To see this, suppose that one 
or both have empty interiors. For A c (0, 1), define x(A) = Ax + (1 - A)A(B) and define x'(A) 
analogously using x'. It is easy to see that x(A) and x'(A) have nonempty interiors for all A > 0. 
Also, by Lemma 4, it is easy to see that D(x, x') = D(x(A) x'(A)) for all A > 0. By continuity of >-, 

there exists A > 0 such that x(A) -< '(A). Hence if one or both of x and x' have empty interiors, we 
can replace them with x(A) and x'(A) for A sufficiently small. So we may as well assume they have 
nonempty interiors. 

Consider the family of sets x cX such that the following three conditions hold. First, x cx cx'. 
Second, x -< x. Finally, D(x, x') C D(x, x'). It is easy to see that this collection of sets is nonempty as 
x itself satisfies these conditions. Suppose we have an increasing chain of sets in this family 
x1 CX2 C *-- . Let x * denote the closure of the limit of this sequence. We claim that x * also satisfies 
the three properties and is in X. To see this, note that the first property is trivially satisfied. By 
continuity of preferences, the second holds as well: if we have a sequence {x,} with x, -< x for all n, 
then continuity of >-, the fact that x,n > U k= 1 Xk in the Hausdorff topology (see Lemma 5), and 
Lemma 2 imply that x * -<x. To see that the third property is satisfied, first note that if x cx', then 
D(, x') is the set of s such that 
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So consider any s cD(x*,x'). Since x* cx', we have ,Bs < o.-,(s) for all /B ex*. Since xcx*, the 
same is true of all /3 c x, so s c D(x, x'). Hence D(x , x') c D(x, x'). Since x * is closed and 
convex, we have x * E X. 

Hence any increasing chain of sets in this collection has an upper bound that is also in this 
collection. Therefore, by Zorn's lemma, this collection of sets has at least one maximal element. Let 
x* denote any such maximal element. That is, x* satisfies the above three properties and there is no 
x strictly containing x* that does so. We now derive a contradiction by showing that such an x must 
exist. 

Recall that x and hence x* have a nonempty interior and that x* is closed and convex (since it is 
an element of X). Hence by Theorem V.9.8 of Dunford and Schwartz (1958), there is a dense subset 
of the boundary of x* such that x* has a unique tangent at each point in this set. Let 7- denote such 
a dense set. Because x* -< x -< x', we have x * x'. Hence x* cx', implying that there exists a / * c 7 

such that /3 * is in the interior of x'. 29 Fix any such / l*. Because /3 * c 7, we know that there is a 
unique s c SK such that o>,*(s) = /3* s. Let s* denote this s. Because / * is in the interior of x', we 
know that o>r*(s*) = /s * s* < o-,,(s*). Hence s* c D(x*, x'). Another implication of /3 * being in the 
interior of x' is that there is a sequence {f,8B} such that /,, cx'\x*, 3,, 5s* > ,3* .s*, and lim,, X3 8, 
= /3 *. Fix such a sequence and let x,, = conv(x* U { /}). It is not hard to see that x,, c X and 

D(x*, x,1) - {s c SK I /3, is unique /3 cx,, such that / 3s = orX (s)}. 

To see why this holds, note that x* cx,, implies D(x*, x,,) is the set of s such that / 3s < o-rX(s) for 
all /3c x*. Clearly, /,, Ox* implies that if /,, is the unique / elx,, such that /3s = o-r(s), then 
cr*(s) < ox(s), so s C D(x*, x,,). If /3,1 -s < ox (s), then /3 s < o- (s) for all /3 cx, \x*, so o>r*(s) = 

o-x (s). Finally, suppose /,,, s = ox- (s) but there is a /3' # /,,1 3la' Ix, , such that /3' 5 = /t, s. 
Obviously, if /3' c x*, then o>x*(s) = ox- (s). If /3' 0 x*, then there must be some / c x* and A c (0, 1) 
such that /3' = A/,8 + (1 - A):3. But then /3' *s = A/,8 s + (1 - A)f3s, so /' s = /3, s implies that 
there is a /3G cx* with / 3s = /3, s. Hence, again, o-r* (s) = ox (s). 

By /3,s* > /3*.s* = ox*(s*), we see that s* cD(x*,x,,) for all n. On the other hand, consider 
any s #As*. For such an s, /3* s < o>x*(s) since s* is the only s with /3* s = cr,*(s). Hence for n 
sufficiently large, /,, will be close enough to /3 * that /,, s < o*(s), implying that s 0 D(x*, x,). 
Hence 

n D(x*,x, ) = {s*}. 
nI = 1 

So for n large enough, we can make D(x*, x,,) an arbitrarily small set containing s*. 
Recall that D(x, x') nl S* = 0. Hence since s* c D(x*, x') cD(x, x'), s* S* . Therefore, there 

is a neighborhood N of s* with the property that for every x and x' with x cx' and D(x, x') 5N, 
x >- x'. Note that if this is true for N, it is also true for any open subset of N that contains s*. Hence 
without loss of generality, we can assume N 5D(x*, x'). Also, by the above, for n sufficiently large, 
D(x*, x,,) must be an open subset of N containing s*. Fix such an n. 

By construction, x cx* cx,_ cx'. Because D(x*, x,,) 5N, x, < x* -<x so x, -<x. By construction, 
D(x*, x,) cN 5D(x*, x') 5D(x, x'). Hence for all s O D(x, x'), o-,<(s) = o-x(s) = ox (s). Hence 
D(x,, x') 5D(x, x'). Therefore, we see that x,, satisfies the same properties as x* and is strictly 
larger than x*. Since x* was the maximal set satisfying these conditions, we have a contradiction. 

Q.E.D. 

29 To see this, note that the denseness of 7- implies that we only need to verify that there is a 
point in the boundary of x* and the interior of x'. Because a closed convex set equals the convex 
hull of its boundary, the boundary of x* cannot equal the boundary of x'. Hence there is some 3' in 
the boundary of x' that is not in x*. Fix any /3" in the interior of x*. Because x* is closed, there is a 
largest A such that A/3' + (1 - A): " c x*. The point so defined must be in the boundary of x* and 
the interior of x'. 
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This implies S* is sufficient. If not, there is some x and x' with x Yx' and S* nlD(x, x') = 0, 
contradicting Lemma 6. Given the facts shown above, then, S* is the smallest closed sufficient set. 

To complete the construction of the weak EU representation, then, let S = S*. By nontriviality 
and Lemma 6, we know that S #A0. For each x, let -r. denote the restriction of o-, to S. Let C 
denote the set of these restricted support functions. By the definition of sufficiency, if 5r = ,, then 
we must have x - x'. Hence there is no ambiguity in defining W: C-> R by W(-) = W(oc). Define 

U(, /, s) by restricting UK to A(B) x S. Finally, let u( ) = W() on C and extend to the rest of Rs in 
any fashion. This is a weak EU representation as long as every s c S is relevant. 

To show that every s c S is relevant, suppose s c S is not relevant. That is, there is a set N that is 
open in the relative topology and contains s such that for every x and x' with 5r(s') = -W(s') for all 
s' c S\N, we have x - x'. But then S\N is sufficient. Recall that S is closed. Since N is open in 
the relative topology, it equals S n N' for some open N'. Hence S \N = S \N' is closed. Hence 
S\N is a closed sufficient set strictly contained in S, contradicting the minimality of S. Q.E.D. 

C.4. Proof of Theoteem 3.A 

Given a representation (S, U, u) and a set x, let U*(x) c Rs be defined by U*(x)(s) = 

sup,s,E x U( a, s). 

LEMMA 7: Suppose >- has a weak EU representation (S, U, u). For any U* c ,<*, define 

x(U*) = nl{/3 Ez(B) I U(/3, s) < Us*}. 
seS 

Thenz U*(x(U*)) = U*. 

PROOF: Since U* c *, there must be some x c X with (max, e U(,/, s))s e S = U*. Fix any 
,/ c x. Clearly, U( /, s) < max,,, , U( 8', s) = Us* for all s. Hence /3 c x(U*). So x cx(U *). There- 
fore, for every s, 

maxU(,a,s) < max U(,a,s). 
/3ex E3ex(U*) 

But we cannot have max,0 E x(U*) U( ,, s) > max,8 E x U( ,, s) = Us* since no /3 with U( ,, s) > Us* 
can be contained in x(U*) by definition. Hence max, E x(U*)U( /, s) = Us* for all s. Q.E.D. 

We now add the assumption that >- satisfies weak independence and monotonicity and show that 
this implies that the u constructed in the proof of Theorem L.A is strictly increasing on the 
appropriate subset of Rs, so that this representation is an ordinal EU representation. Because we 
are entirely concerned with properties of u on '*, it is convenient to begin by translating two key 
facts into statements about it. 

First, fix any s c S. Since s must be relevant, we know that for every neighborhood N of s, there 
are menus x and x' such that x >- x' and 

sup U( /, s') = sup U( /, s') Vs' c S\N. 
f3ex f3E x' 

Without loss of generality, we can assume x' cx. If this is not true, we can replace x with x U x'. To 
see this, note that by monotonicity, x U x' >- x >- x', so x U x' >- x'. Also, 

sup U( /, s') = max sup U( /, s'), sup U( /, s') = sup U( /, s') Vs' c S \N. 
/3 Ex x Ux px' 0 E=_ X 0 E-= X/ 

0ex' 

Hence x U x' satisfies the same properties as x, so we can use it instead if x' ? x. So we have x' cx, 
implying U*(x) > U*(x), and we have u(U*(x)) > u(U*(x')). Because every open subset of S is a 
neighborhood of each of its points, this implies that for every open N, there exists30 U, U' c ',* with 
U > U', U(s) = U'(s) for every s 0 N, and u(U) > u(U'). 

30 In what follows, we abuse notation slightly by using U to denote a vector of utilities in ,* 
instead of the utility function. 
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Next, in the notation of Lemma 7, if U> U', then x(U') cx(U). Hence Lemma 7 and weak 
independence imply that if U > U' and u(U) > ut(U'), then for any menu 

Ax(U) + (1 - A)x >- Ax(U') + (1 -A) 

or, by Lemma 4, 

u(AU+ (1 - A)U*(G)) > u(AU+ (1 -A)U*(x) 

Since x is arbitrary, if U > U' and u(U) > u(U'), then for all A E (0, 1] and all U E 8 

(5) u(AU+ (1 - A)U) > u(AU' + (1 -A)U). 

To complete the proof, we show that for any U1, U2 E D* with U1 > U2, there is a U E D'* such 
that either U1 > U and u(U) > u(U2) or u(U1) > u(U) and U> U2. By monotonicity, this will 
establish that whenever U1 > U2, we must have u(U1) > u(U2). 

So fix any U1, U2 E D'* with U1 > U2. First, suppose U2 is in the interior of W'*. Colnsider the set 

{5 E S I U1(S) - U2(S) > e} 

for e > 0. Clearly, there must be an e > 0 sufficiently small that this set is nonempty. Fix such an 8 

and let N denote the set above. It is easy to see that N must be open. Hence there are U1, U2 E= 9/: 
differing only on N such that U1 > U2 and 1l(L1) > 11(L2). 

Because U2 is in the interior of f* and because V' is convex, there must be a A E (0, 1) and 
U 0 U2 such that AU2 + (1 - A)U = U2. Furthermore, we can choose A > 0 arbitrarily small and still 
find a U 0 U2 satisfying AU2 + (1 - A)U = U2. 

In light of this, choose any A strictly between 0 and the smaller of 1 and 

8 

SUps E N[Ul(S) U2(s)] 

Fix the associated U and define U = AU1 + (1 - A)U. By (5), u(U) > tt(U2). Hence we are done with 
this case if U1 > U. For any s, U1(s) ? U(s) iff 

U1(s) - U2(s) ? AU1(s) + (1 - A)U(s) - U2(s) or 

U1(s) - U2(s) ? A[U1(s) - U2(s)] 

For s 0 N, the right-hand side is zero, so U1 > U2 implies this. For s E N, we have 

L1(S) -L2(S) 
U1(S) U2(S) > s2 esu [Us'- (5t] > U(S) U 2(S)], 

so U1 > U. 

The case where U1 is in the interior of * is completely analogous and so is omitted. Hence we 
are done if we can show the result for the case where both U1 and U2 are in the boundary of V . To 
handle this case, note that monotonicity already implies u(U1) ? u(U9), so if the result does not hold, 
we must have u(U1) = tt(U2). So suppose this is true. Fix any interior U and A E (0,1) and define 
Ut' = AUi + (1 - A)U, i = 1, 2. Clearly, U1 > U2 implies Uf > U2 and both points are in the interior of 
W*, By weak independence,31 u(U1) = u(U2) implies u(U') = u(U2). But the argument above applied 
to U1 and U2 shows that we must have u(Ul) > u(U2), a contradiction. Q.E.D. 

31 The usual proof that the "strict form" of independence (p >- q implies Ap + (1 - A)r >- Aq + (1 
- A)r) implies the same for indifference (that is, p q implies Ap + (1 - A)r Aq + (1 - A)r) is 
easily used to show this. Because U1 corresponds to a superset of U2, AU1 + (1 - A)U will correspond 
to a superset of AU2 + (1 A)U for any A and U. Hence one can use weak independence exactly the 
way independence is used in the usual proof. 
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C.5. Proof of Theorem 4.A 

We now assume that >- satisfies independence and drop the assumption that it satisfies 
monotonicity. Instead of continuing with the construction above, it is more convenient to demon- 
strate additivity on all of SK before removing the "irrelevant" states. 

We first state another useful property of support functions, the proof of which can be found in 
the same references as given for the proof of Lemma 3. 

LEMMA 8: For all x, xE X dHausdorff(X, X') = dsupnorm((Jx 0:9') 

Next we prove Proposition 2. We do so by verifying that the mixture space axioms (see Kreps 
(1988, page 52)) hold for X. The only mixture space condition that is not trivial to verify is the 
Herstein-Milnor continuity condition. We now show that our continuity condition implies that if 
x, x', x" c X and x >- x' >- x", then there is a A1 c (0, 1) and A2 c (0, 1) such that Alx + (1 - Al)x" >- 

X' >_ A2X + (1 - A2)x". To see this, let Ax + (1 - A)x" x(A). Then for any A, 11t C [0,1], 

dHaUSdOrff (X(A), X( tl)) dsupnorm( x(A) - 
0x( )) 

= IA - /ILIdSlpnorm ( o-CX 

where the first equality is Lemma 8, and the second follows from Lemma 4. Hence the function from 
[0,1] to X with the Hausdorff topology defined by x(A) is continuous. Now the result follows from 
continuity of >- . 

REMARK 1: The restriction to X is needed for the mixture space axioms because A[A'x + (1 - 

A')x'] + (1 - A)X' might not equal AA'x + (1 - AA')x' if x and x' are not convex. 

So by the Herstein-Milnor theorem, there is an affine V that represents the preferences and is 
unique up to an affine transformation. By this uniqueness and Lemma 1, V is continuous in the 
Hausdorff topology, completing the proof of Proposition 2. 

LEMMA 9: 1. C is convex. 
2. The zero ftunction is in C, in particular ({(1 /K_.,1/K)}(S) = 0 for all s. 
3. There exists c > 0 such that the constant ftinction equal to c is in C. That is, o' c C, where 

C(s) = c for all s. 
4. The supremum of any two elements in C is in C: o- C and o-' c C => o- V 0' c C, whete 

(o- v o-')(s) = max{o-(s), o-'(s)}. 

PROOF: 1. Given o-. and o-, in C, using Lemma 4 and the convexity of X, any convex 
combination of o-J and o-,' is in C. 

2. For any s c SK, we have -i si = 0 so by definition (j(1 /K. /K)}(S) = Li(1/K)si = 0. 
3. First note that QA(B)(S) = maxi{si} 2 1/(2K). The equality follows from the definition of the 

support functions. The inequality follows from the definition of SK. (If maxi{sj} < 1/(2K), then 

_[ I Si > O}si < 1/2. Then, since Li si = 0, also Z,i I Si < 0oIsil < 1/2. But then, -ilsil < 1, which contra- 
dicts the definition of SK.) Now consider x { I31 Z- f(bi)si <c for all s cSK}, where 0 <c < 
1/(2K). Clearly x is a closed, convex, and nonempty subset of RK. It is easy to see that we could 
have defined our mapping from X into C(SK) to have as its domain all convex, closed nonempty 
subsets of RK without affecting any of our lemmas on support functions. With this definition, 
clearly, o-J is the constant function c. It remains to show that x c X. By part (2) of Lemma 3, since 

0:y < ?(B) we know that x c A(B), so x c X. 
4. Given oJx and o>x in C, it is easy to see that 0(conv(x u x') = 

(0x VoX is in C. QE.D. 

Recall that V is unique up to affine transformations, so we can normalize V by setting 
V({1/K,... 1/K}) = 0 and V(x,,C) = c. Now let W: C- R be defined by W(o-) = V(x,). 
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LEMMA 10: 1. Wis linearon C, i.e., W(o-+ Ao-') = W(o-) + AW(o-'), if o-,o-', and cr+ Acr' ate all 
in C. 

2. W is continuouls on C with respect to the suip noim topology. 

PROOF: 1. That W satisfies affinity, i.e., W(Ao-? (1 - A)o-') = AW(0-) + (1 - A)W(o-') follows 
immediately from Lemma 4. Our choice of normalization implies that W is linear: W(AO-) = W(AO- 
+ (1 - A)0) = AW(oJ) + (1 - A)W(0) = AW((J). Finally, then, 

1 1 
W(o(J+ o') = 2W 2( j+ 2 'J = W(0J) + W(0r'). 

(Usually we would not think of V as linear in this sense, since x E X=> Ax X. But if we "define" 
{1/K,...,1/K} as 0 and so define Ax to be Ax + (1 - A){1/K,...,1/K}, then V is linear in this 
fashion as well.) 

2. This follows from continuity of V and Lemma 8. Q.E.D. 

In this part of the proof, we extend W to C(SK) in a series of steps. First, we restrict W to 
C+ -o- E=- C I (J(s) 2 0 for all s}. Note that all the properties of C described in Lemma 9 hold for 
C+. Next, define rC+ to be the set of functions equal to r times some function in C+ and let 
H=U - > 0 rC+ . Finally, let 

H* = H-H = {o: E- C(SK) I ,J = ,- 1 _ (J2 for some o- 1, OJ2 E H}. 

Now extend W to H* by linearity. Specifically, for any (J E H, there is an r such that (1/r)(J E C+, 
so define W(o-) = rW((1/r) o-). Similarly, for any o E H*, there are o- 1 and o- 2 such that o- i H, 
for i = 1,2, so let W(oJ) = W((o-1) - W(( 2). That these definitions do not depend on the precise r 
and o-i chosen follows from the linearity of W (see Lemma 10). To extend W to C(SK), we show 
that H-1 is dense in C(SK), so we can extend W by continuity since all points in C(SK) that are not 
in H* are limits of points in H*. 

LEMMA 11: H* is dense in C(SK). 

PROOF OF LEMMA: By the Stone-Weierstrass theorem (see, e.g., Meyer-Nieberg (1991, Theorem 
2.1.1, page 51)), we only need to show that: 1. H* is a vector sublattice of C(SK); 2. H* separates 
the points of SK; 3. H* contains the constant function 1SK. 

Step 1: First note that H is a convex cone (i.e., a convex set that is closed under positive scalar 
multiplication), since it equals U .> 0 rC+ and C+ is convex and contains the zero function.32 
Lemma 9 implies that H contains the supremum of any two of its elements. Next, note that C(SK) 
is a vector lattice, i.e., an ordered vector space that is a lattice (that is, contains the supremum and 
infimum for any two elements of C(SK)).33 

32 The details are as follows. If f E H, and t E R+ then clearly tf E H. If f E H, i = 1, 2, then 
fi = rIg;, gi i = 1, 2; say r 2 < r1 - So if A E [0,1] then 

Af1 + (1-A)f2 = Arlgl + (1-A)-r'i1g2 = r1 Ag+ (1-A) 2 [Api r1 

But the function in square brackets is in C+ because (r2/r1)g2 E C+. This last statement follows in 
turn because (r2/r1) E (0, 1), and C+ is a convex set that contains the zero. 

33 We defined the supremum, o- v o-', in part (4) of Lemma 9; the infinimum, denoted 0- A 0(', iS 
defined similarly. For o-, o- ' E C(SK), and for r E R, addition, o- + o-', and scalar multiplication, r o-, 
are both defined in the usual way, under which C(SK) is obviously a vector space. It is ordered in 
the usual way and for that order it is an ordered vector space. Moreover, it also obviously contains 
the sup and inf of any two of its elements. 
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Now we show that since H* = H - H, where H is a convex cone that includes the supremum of 
its elements, and H* is a subset of a vector lattice, we can conclude that H* is a vector sublattice. 
That H* is an ordered vector space is trivial. That it includes the supremum of any two of its 
elements follows from the fact that H does. To see this, first note that ((X - o2) V (o' - o2) = [(O1 
+ 20 V (0f1' + v2)]-(0-2 + o), because ((X1 - 2) V 0f = (0f1 V 0f + v2)-o2 for any - E_ H*. Using 
this we prove that ((X1 - o- ) E H*. The elements o-( + o', o- + o-2, and O2 + o2 are all 
in H; therefore ((X1 + -2-) V (o-{' + O2) E H since it is closed under taking supremums. Therefore 
(O-1 - O-2) V (o-l' o-') E H * from the preceding argument and the definition of H K. Finally we 
prove that it includes the infimum of two of its elements. While H is not closed under taking 
infimums, this follows for H* = H - H by taking negatives. Specifically, 

(0f1 -2) A (0f-2 -) - [(0f2- -1) V (0f-' -)] 

= W(((1 + 0J20 V (0-J1 + 0J2)) (0f2 + 0_201 

= (f2 + 02) - (R 1 + 02) V ( 0f1 + 02)] - 

Now repeat the preceding argument. Q.E.D. 

Step 2: Let s, s' E SK, s 0 s'. Note first that for any x EX which contains (1/K, . . . ,1/K), one 
has o-x E C+. Now it is easy to construct a set with this property such that jx(s) > o(js'). Find an 
element a E- RB such that (s, a) > max{O, (s', a)} (where (s, a) is the inner product-this can be 
done, for instance, by appeal to the separation theorem), and Z- B a' = 1. For A small enough, 
Aa + (1 - A)(1/K,...,1/K) a(A) E A(B), and if we let 

x {0a(A) + (1 - 0)(1/K,...,1/K) I 0 E [0, 1]} 

then we have o-(js) = A(s, a) > o.(s') as claimed. Q.E.D. 

Step 3 follows from Lemma 9 and the definition of H. Q.E.D. 

LEMMA 12: There exists a constant K such that for all f EH*, W(f) ? KIIfII where If II is the 
supremum norm in C(SK). 

PROOF OF LEMMA: By compactness of X and the continuity of V, we know that there are best 
and worst sets in X. Let x denote a best set and y a worst set in X. By nontriviality, x >-y. Let 

%(o-y) denote the subset of C(SK) within e of o-Y. By continuity, there exists an e > 0 such that for 
all f EH* n-(o-Y), W(f) < W(or-). Because H* is closed under addition, this implies that for every 
z EH* with IIzII < , W(z + oY) < W(x). By linearity, W(z) + W(o,) < W(o-) or W(z) < W( x)- 
W(Y). Equivalently, for all z E H* with lIzil < 1, 

W(ez) < W(o(J)-W(o-y) 

or W(z) < [W(o-J) - W(oJ,)]/e K. So for every f E 

W(f) lIf IIw f < IlK. Q.E.D. 

LEMMA 13: The fiunctional W on H* has a unique extension to a continuous linear functional on 
C(SK). 

PROOF OF LEMMA: H* is a subspace of C(SK) and W is a real linear functional on H*. Given 
the bound established by Lemma 12, we can apply the Hahn-Banach theorem (see Theorem 4, page 
187 of Royden (1968)) to conclude W has an extension to a continuous linear functional on C(SK). 
That this extension is unique follows from the fact that H* is dense in the supremum norm in 
C(SK), as shown in Lemma 11. Q.E.D. 
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By the Riesz representation theorem (see, e.g., Royden (1968)), every linear functional can be 
represented as integration against a measure. Hence V can be so represented. 

PROPOSITION 3: These is a measure ,t on the Borel subsets of SK such that for all f c C(SK), 

W(f) = f (s),u(ds). 
sK 

Thus, letting S be the support of ,t on SK, we have for all x E X, 

V(x) = (s)(ds = max U( /, s) ,t(ds). 
fs fs f3Ex 

This gives our additive EU representation. Q.E.D. 

C.6. Proof of Theorems 1.C and 2 

To show Theorem LC, recall that in the proof of Theorem LA, we showed that every closed 
sufficient set contains the subjective state space we constructed, the set of strongly relevant ex post 
preferences. Since the subjective state space for any weak EU representation must be sufficient, the 
subjective state space we constructed is contained in the closure of the subjective state space of any 
other weak EU representation. Because SK contains all possible EU preferences, it is convenient to 
translate any alternative subjective state space to SK. So let S* denote the state space identified in 
our construction and let S C SK be the set in SK corresponding to the subjective state space for any 
other weak EU representation, so S8 5 cl(S'). Suppose this containment is strict. Since cl(S')\S* is 
open, there must be some s c S' \S*. (If not, there is an open set in cl(S') that does not intersect 
S', a contradiction.) By the definition of S*, there is a neighborhood N of s such that for any 
x, x' cX with o-J(s') = o-x (s') for all s' c SK\N, we must have x -x'. Since any subset of N will 
also have this property, we can assume that N c S' \ S *. But then s is not relevant, contradicting its 
inclusion in S'. 

Given this, it is easy to prove Theorem 2. Starting with Part 3, for ex ante preference >- j, let SV 
be the set of s such that >- * is strongly relevant for >- . That is, it is the set of s such that for every 
neighborhood N of s, there are menus x and x' such that x "j x' and o:J(s') = o-x (s') for all 
s' c SK\N. Let Pi = P(S>bU). 

The proof above of Theorem 1.C shows that Pi is the unique (closure of the) subjective state 
space for a weak EU representation of >- j. Hence what we need to show is that if >- 2 is more 
uncertain than >- 1, then P1 c P2, which is equivalent to showing Si c S*. So fix any s c S*. By 
definition, for every neighborhood N of s, there are menus x and x' with ox(s') = oJx (s') for all 
S E c SK \N with x ,-1 x'. Because x "' x', it must be true that either x U x' ,'i x or x U x' '-1 x'. 
Without loss of generality, suppose x "' x Ux', so by Theorem L.A and IR, conv(x u x') "' x'. Note 
that for all s' c SK\N, 

Q-conv(xu x')(S ) = max{o0x(s'), 0ox'(s')} = 0jx(s') 

2 is more uncertain than -1 implies that x "-2 x Ux', so X "2 conv(x Ux'). By the above, 
o(Js') = 0Oconv(x u x'(s') for all s' E SK\N. Since N is arbitrary, s c S*. 

The proof of Theorem 2 Parts 1 and 2 is similar. Fix a representation (S, U, it) and let SD denote 
the closure of its set of positive states. First, we claim that the set of ex post preferences 
corresponding to S* must equal 0. As before, it is convenient to think of S and SD as subsets of 
SK. Recall that s c S* implies that for every open N, there are menus x and x' with x cx', x' >- x, 
and o:J(s') = o:Jx(s') for all s' C SK\N. Hence o-J(s') = o:Jx(s') for all s' E S\N, implying s E='. 

Hence S*C0. 
Suppose this inclusion is strict. Then there is an s E9D\S*. Because S* is closed, there is a 

neighborhood N of s such that N c9'\S* . By definition of SD, there must be x and x' with x cx', 
x' >-x, and o:J(s') = o:J (s') for all s' c S\N. By continuity of expected utility, then, the same is true 
for all s' c cl(S)\N. However, we know that S+ c S* and that S* must equal the closure of S, so 
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S* 5 cl(S)\N. Hence we have x and x' with x cx', x' >- x, and D(x,x ) n S* =0, contradicting 
Lemma 6. Hence 0 = S*. The analogous argument shows that .zV= S*. 

So fix > 1 and >- 2' where >- 2 desires more flexibility than >- , and any s E-01. The above 
implies that for every neighborhood N of s (in SK), there are menus x and x' with x cx', x' > 1 x, 
and o:J(s') = o(Jx(s') for all s' c SK\N. Since >- 2 desires more flexibility, x' >- 2 X. Since this is true 
for every neighborhood N, we must have s E92. Hence SDP CP2 An analogous argument covers 
the negative states. Q.E.D. 

C.7. Proof of Theorem 3, Parts B and C 

This proof makes use of a proposition that is an adaptation and generalization of Kreps' (1979) 
Theorem 2. This proposition, in turn, makes use of the following lemma. Given an ordinal 
representation, R = (S, U, u), let PR = P(S, U). For any preference >- * over A(B) and any c E(B) 
let 

Y, J( 0) = I O E- AB) I ,8 >8Ot} . 

That is, ., * /) is the (weak) lower contour set for >- * at /. Let ., * denote the collection of 
these lower contour sets for >- * and let 

jR U > 
>-* E PR 

LEMMA 14: For any ordinal r epresentation R of >- and any x ER, x -< x U { /3 } for any 0 0 x. Also, 
x is convex if >- satisfies IR. 

The proof is straightforward and so is omitted. 

PROPOSITION 4: Let Ri = (Si, U;, ui), i = 1, 2, denote ordinal representations of an ex ante piefetence 
>- . Then for evety ex post prefetence in the state space of R1 and eve;y lower contouir set x for that 

preference, x equals the intersection of some collection of lower contour sets in R2. More precisely, for all 
> * C PR , for all x E2Y , there is an index set N, a nonrepeating sequence of states in representation 2, 

ISdit E N C S2, and a sequence of lower contour sets {Xd}n E N such that x, EY> * and 

x= fx,.- 
nEN 

PROOF OF PROPOSITION: Let x denote any element of iR4. For each s c S2, let 

Xs ={3' A(B) U2(', s) < suP U2( s, S)} 

Clearly, each xs EC2R Let 

x= n xs. 
SES2 

Clearly, x cxs for all s E S2, so x cx'. We now show that x x'. 
The proof that x = x' is by contradiction, so suppose that x is a strict subset of x'. Let 

/3' x' \x. Clearly, x cx U {I '} cx'. Because these are ordinal representations, >- must satisfy 
monotonicity. Hence x -<x U { /'} -<x'. However, by the construction of x', for every s c S2, 

sup U2( /, s) < sup U2( /, s), 

13Ex' f3Ex 

so the fact that the aggregator is increasing implies x' -< x. Hence x x U {/ '}. But, by Lemma 14, 
x E-RI implies x U { /'} >- x, a contradiction. Hence x = xI. Q.E.D. 
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We now prove Theorem 3.B and C. 
3.B: Fix an ordinal EU representation with finite subjective state space P. Let (S?, U?, it') be any 

ordinal representation of the same ex ante preference and let P0 be its subjective state space. 
Clearly, the result holds if P' is infinite, so assume it is also finite. 

We construct a function f: P x int( A(B)) -- Po (where int( A(B)) is the interior of A(B)). Fix any 
>-* E P and any : E- int(A)(B). Because / is interior and P is a collection of EU preferences, 

/3-1 ) 2*(/) whenever >L t > 2. Let x =Y*(). 
From the fact that all the preferences in P are expected-utility preferences, we see that x is a 

half-space. By Proposition 4, x must be the intersection of some collection of lower contour sets in 
Y2 - > U ,:d E po Y *- One way this can happen is if x itself is in Y2. If so, let f(>- 8,/) equal the 
preference in Po that generates this lower contour set. 

So suppose x 0Y2. Then there exists an index set N, a nonrepeating sequence of states s, E- So 
for n E N, and lower contour sets x, for ex post preference >- * for n E N such that 

kEK 

Without loss of generality, we can assume that if s and s' are distinct states in this sequence, then 
> * / >- *, since effectively only the smaller lower contour set appears in the intersection. Hence N 
must be smaller than the cardinality of Po and so is finite. Because >- has an ordinal EU 
representation, Theorem L.A implies that it must satisfy IR. Hence Lemma 14 implies that each x,! 
must be convex. It is impossible for a finite intersection of convex sets to equal a half-plane unless 
one of the sets is the half-plane, so there is some >- * E Po such that Y' :h( /) EY, *. As noted, 

f(f> k/) is any such > *O. 
We claim that f(-, /) is one-to-one. To see this, recall that for any : E- int(A(B)), none of the 

2, * /) sets is contained in any other. Hence there is no ex post preference relation, expected-util- 
ity or otherwise, which has more than one of these as a lower contour set. Also, for every >- E p, 

O'> *(3) is a lower contour set for f(>- *, /). Hence f(>- 1* /) =f(> * /3) iff >- * = > 2 so f, /) is 
one-to-one. Hence IP01 2 IPI. 

We now show by contradiction that P0 = P or else IP?0 > IP1. So suppose P?0 P but that IP01 = IP1. 
Note that if f(> , )=f( > *) for every /, then >- * has the same lower contour sets as f( *), 

implying >- * =f( *). Hence Po 0 P implies that there is some > - E- P and some: 1, p 2 in the 
interior of A(B) such that f(>_ -,1) of(>_*,/ 2). Letting >- =f(>-1,/31), the fact that IP01 = IPI 
implies that there must be some >- * + such that >- * =f(> *2, 32). Furthermore, for every /', 
there must be some >- * E P such that Y, E( /') 2Y *. We now show that this cannot occur. 

To see this, note that the ordinal EU representation has parallel indifference curves for each of 
its ex post preferences so the indifference curve for ex post preference >- * through /1 has a 
different slope than the same preference's indifference curve through : 2. Consider the line between 
/31 and p 2. For each point / on this line, the indifference curve through / for preference >- * 
must be the indifference curve through / for some preference >- * E P. Since P is finite, the 
indifference curve must have one of finitely many slopes. For any such /, then, there is a 8 > 0 
such that for every P' that is a distance less than e away from /, the slope of the >- * indifference 
curve through / is the same as the slope of the >- * indifference curve through P' to ensure that 
distinct indifference curves never intersect. Let d be the infimum of the distance from /1 along this 
line to a point /' where the slope of the >- * indifference curve through /' differs from the slope at 
/31. Since /32 is such a point, d must be weakly less than the distance to: 2. By the argument above, 
we see that d > 0. Let /' be the point a distance d along the line from 1. Suppose the slope of the 
> * indifference curve through /' differs from the slope through /1 Then moving an arbitrarily 
small distance back toward /1 must reach a point /" where the slope of the indifference curve 
through /" differs from the slope through /', a contradiction. So the slope at /' must be the same 
as that through /31. But then moving an arbitrarily small distance from /' toward /2 must reach a 
point /" where the slope of the indifference curve through /" differs from that through /3', again a 
contradiction. Hence the slope through /1 equals the slope through / 2, a contradiction. 
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3.C: The proof of part B shows that if there is an ordinal representation with a finite subjective 
state space, then the subjective state space for any ordinal EU representation must be of smaller 
cardinality. Hence if there is no ordinal EU representation with a finite subjective state space, there 
cannot be any ordinal representation with a finite subjective state space. 

To show that an ordinal EU representation with a countable subjective state space must exist, 
suppose (S1, U1, it1) is an ordinal EU representation of >- with uncountable subjective state space 
P1. Let P2 denote a countable subset of P1 that is dense in cl(P1) and let S2 denote the associated 
countable collection of states. Let U2 denote U1 restricted to S2. Finally, define it2 on ?2* as follows. 
Given U2* E- 4, compute U1* (U* ) E W?/8 by 

U1* (U2* )(s) = U2* (s) if s E S2 

and 

U1* ([U2* ) (s) = lim U2* On)t 
)I CG 

for some sequence s, - s (where this refers to convergence of >- * to >- *). By the denseness of P2, 
such a sequence must exist. Then define u2(U2) = u1(Ul* (U2* )). It is easy to see that for any set x, 
U2(l2 (X)) = l1(U1* (X)), so this generates an ordinal EU representation of the same ex ante 
preference that has a countable state space. Q.E.D. 

C.8. Proof of Theotem 4.B 

Let (S1, U1, it1) denote any weak EU representation of >- and let (S2, U2, i2) be the additive EU 
representation that Theorem 4.A tells us must exist. By definition, for any U2* E W*(S2, U2), 

ii2(U2*) = f U2* (S2)1t2(ds2) 
S2 

By Theorem 1.B (see Definition 6 in Appendix B), this implies that, up to a monotone transforma- 
tion, we have 

U1(Ul ) = f g(UW ) t2(dS2) = fs [y(S2)U? (T(S2)) + 8(S2)] 1-2(dS2) 

for all U1* E W4. Dropping out J598(s2) t(ds2) constitutes another monotonic transformation, so up 
to a monotone transformation, 

u(U * ) = f U1*(IT(S2))A2(dS2) 
S2 

where A2(ds2)= Y(s2)t2(ds2). Now take the change of variables s1 = r7(S2) and let il be the 
resulting measure. Then we obtain 

11(Ul* ) = f| U1* (s1)1_t(ds1), 
SI 

completing the proof. Q.E.D. 
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