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The Role of Common Knowledge
‘Assumptions in Game Theory

ADAM BRANDENBURGER AND EDDIE DEKEL

1. Introduction

The notion of common knowledge has been increasingly used in game
theory, although usually in an informal, not fully appreciated or
articulated, manner. By ‘common knowledge’ is meant the idea that
something is not merely known by all the players in a game, but is also
known to be known, known to be known to be known, and so on ad
infinitum. The concept has been deployed with sufficient frequency to
necessitate an assessment of its role. Thus the purpose of this chapter is
to examine the common knowledge assumptions that underlie the various
solution concepts in non-cooperative game theory.

Much of the work to be surveyed here is of recent origin in the context
of game theory. It represents an attempt to integrate the theory of
individual decision-making under uncertainty—often called Bayesian
decision theory—with the theory of games. In so doing, the research
marks a departure from the conventional view of the function of
Bayesian decision theory. Traditionally, Bayesian decision theory has
been perceived as appropriate only to ‘exogenous’ uncertainty, not to
uncertainty about the actions of players in a game. For the latter,
‘endogenous’, variety, it has usually been argued that an equilibrium, or
other game-theoretic, concept must be employed. Thus Harsanyi has
~written: ‘every player i. .. will assign a subjective probability distribution
£, to all variables unknown to him—or at least to all unknown
independent variables, i.e. to all variables not depending on the players’
own strategy choices’ (Harsanyi 1967--8: 167).

In contrast, the predominant theme of the work to be discussed in this
chapter is that the players in a game assign subjective probabilities to all
uncertainty, including the actions of other players. The distinction
between the various game-theoretic solution concepts can then be seen to
depend on the common knowledge assumptions respected by the players’
subjective probabailities.

The basic datum for the players in a game is the structuze of the game
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itself, that is, the description of the payoff functions, strategy spaces, and
so on. At first sight it would seem that, if the structure of a game is not
taken to be common knowledge among the players, then any analysis is
impossible. This seems to have been the viewpoint, at least implicitly, of
early workers in game theory (see e.g. Luce and Raiffa 1957: Ch. 3).
Nevertheless, in a seminal series of papers Harsanyi {1967-8) argued
that, even if the structure of a game is not common knowledge, there is a
well-defined larger game in which Nature first chooses the version of the
game to be played, and this larger game can be taken to be common
knowledge among the players. Harsanyi’s arguments have recently been
given formal mathematical expression by Boge and Eisele (1979),
Mertens and Zamir (1985), and others. This work is described in Section
5 below.

The second crucial piece of common knowledge is that all the players -
are rational. By rationality is meant the assumption that each player
conforms to the axioms of Savage (1954) (or to some related set of
axioms), and hence acts to maximize expected utility calculated using
some subjective probability distribution over all uncertainty that the
player faces—which, as indicated above, will include the actions of the
other players. Actually, as will be seen in Section 6, for the purpose of
discussing refinements of Nash equilibrium, the theory of subjective
expected utility is not sufficiently ‘detailed’. At that point a more
elaborate theory—subjective expected utility with lexicographic beliefs—
will be described and rationality will be taken to mean that the players
act in accordance with this modified theory. To sum up, the assumption
will be made that the rationality of the players, in one or other sense, is
- indeed common knowledge.

What does common knowledge of rationality in a game setting amount
to? The answer depends on what further a priori information there is
about the setting. Sections 3 and 4 flesh out this observation. It is shown
that, if there is no additional information, then the appropriate solution
concept is rationalizability (Bernheim 1984; Pearce 1984); if the players
share a common prior, then the correct concept is correlated equilibrium
(Aumann 1974, 1987); if the players’ beliefs are common knowledge,
then common knowledge of rationality is equivalent to Nash equilibrium.
Section 6 extends this last characterization to two refinements of Nash
equilibrium: perfect equilibrium (Selten 1975) and proper equilibrium
(Myerson 1978).

2. Formalizing the Notion of Common Knowledge

An event or proposition is common knowledge among a group of people
if it is known to all, known to all that it is known to all, and so on ad
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infiniturn. The term ‘common knowledge’ was used in this context by
Lewis (1969), who attributes the basic idea to Schelling (1960). Aumann
(1976) proposed the notion independently and offered a precise mathe-
matical formulation in terms of a model of differential information which
is by now standard in economics.

There is a finite set Q of states of the world. There are [ individuals
where each person i € I has a partition P’ of Q, representing i’s private
information about the true state. That is, if w € Q is the true state, then i
is informed of the element of P’ that contains @ (to be denoted P'(w)). P
denotes the partition that is the finest common coarsening (or meet) of
P!, ..., P". Write P(w) for the element of P that contains @. Aumann’s
definition of common knowledge can now be stated.

DeriNmion 1 (Aumann 1976). An event E < Q is common knowledge at
a state of the world w e Q if P(w) < E.

In order to relate this definition to the intuitive notion of common
knowledge, it will be helpful to have the following definitions. Given an
event £ < Q, say, person i knows E at a state w if P'(w)c< E. This
captures the idea that i is informed that the true state lies in P(w), and
hence also in any set that contains P’(w). The event that i knows E, to be
written K'E, is then given by

KE={weQ:P(w)cE}. |

It is easy to check that X', considered as a function from 22 to 29 (where
2% is the set of all subsets of ), has the following properties:

(P1) Forany Ec Q, K'EcE;

(P2) For any Ec Q, K'EcK'K'E

(P3) Forany E, FcQ, K'(ENF)=KENK'F;

(P4) For any E = Q, (K‘E)° = K'(K'E)" where the superscript ¢ denotes
complement.

(P1)-(P4) capture some intuitive (and some rot so intuitive!) aspects of
knowledge formalized in terms of partitions. (P1) says that i can know E
only if E happens. (P2) says that if i knows E then { knows that i knows
E. (P3) says that { knows E and F if and only if i knows E and i knows F.
(P4) says that if i does not know E, then i knows that i does not know E.*

Suppose for simplicity that there are just two people, i and j. Using X'
and K’ (the latter being defined analogously to K’ using the partition P/ in
place of P), it is now easy to write down directly the statement that £ is

! Actually, .(PQ_(P? are characteristic of partition information in the following sense. If
a function K':2"—2" satisfies (P1)-(P4) then there is a partition P* of Q such that
K'E ={w:P'(w)cE}. To sec this, define the class of sets F'={FcQ:K'F=F}. Flisa
field. Let P* be the partition which generates F* and set K'E = U{mw e P': 51 c E}. K’ defined
in this way is casily seen to satisfy (P1)—(P4). (Sec Bacharach 1985).
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common knowiedge at w. Let
LE=KENKKENKKKEN...
UVE=KENKKENKKKEN...

Then one would say that £ is common knowledge at @ if w € L'E N
LJE. Tt is straightforward to check that this definition is indeed equivalent
to Aumann’s definition.

ProrositioN 1. P(w) < E if and only if w € L'E N I/E.
The proof of this proposition is essentially contained in the discussion
of ‘reachability’ in Aumann (1976: 1237).

A potentially troublesome aspect of this formalization of common
knowledge lies in the interpretation of the condition P(w)c< E. To
interpret this as the statement that E is common knowledge at w, it must
be assumed that the information partitions are themselves common
knowledge in an informal sense. Aumann (1976, 1987) has argued that
this 1s not really an extra assumption since, if a state of the world w is to
be all-inclusive, it should include lists of those other states w' that are,
for i and j respectively, indistinguishable from w. That is, @ should
describe the manner in which information is imparted to ¢ and j.

The element of self-reference built into this line of argument raises the
possibility of some version of the Liar’s Paradox being applicable, and
hence of a contradiction arising. In fact, problems of self-reference
already arise in the single-person case. Properties in the spirit of
(P1)-(P4) above, when combined with the axioms necessary for mathe-
matics, lead to the ‘Knower’s Paradox’ (Montague 1974). The nature of
Aumann’s argument has been much discussed (see e.g. Brandenburger
and Dekel 1985; Gilboa 1986; Kaneko 1987; Tan and Werlang 1985).2 On
a related issue, Samet (1987) and Shin (1987) have explored an
alternative model of knowledge that satisfies the properties (P1)-{P3)
defined earlier, but not the rather less palatable (P4).

3. Common Knowledge of Rationality in Games

This section discusses how to formalize the idea of common knowledge of
rationality in the context of games described in normal form. An
n-person game in normal form is a 2n-tuple = (AY, .. ., A" ut, .. u")
where, for each i=1,...,n, A" is a finite set of pure strategies
(henceforth actions) of player i and u’: X7_, A’ — R is i’s payoff function
(assigning a von Neumann—Morgenstern utility to each combination of
strategies chosen by the players). In games in economics it is typically

% There are also relevant literatures in computer science, artificial intelligence, linguistics,
and philosophy—see Halpern {1986) and the references therein.
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assumed that the players’ strategy spaces are infinite; for example, player
i’s strategy space might be taken to be R™ if i’s strategy is to choose a
price. But for present purposes it seems preferable to restrict attention to
finite games, on the premise that extending many of the results to the
infinite case raises technical rather than conceptual questions.

The discussion will also be confined to games in normal form rather
than to the more familiar context of games in extensive form, or trees.
Although the map from extensive- to normal-form games is many-to-one
(see Figure 3.1), and thus an apparent loss of information is entailed in
using the normal form, the adequacy of the normal form was the
traditional position among game theorists (vorn Neumann and Mor-
genstern 1944). Such a stance must be founded, at least implicitly, on an
argument of strategic equivalence, for example between the two game
trees in the figure. This type of argument can be constructed from the
work of Thompson (1952), Dalkey (1953), and Elmes and Reny (1987).
These authors demonstrated that, given two game trees with the same
normal form (up to duplicated pure strategies), one can be transformed

(a) Extensive forms

0 2

b) Normal form

Fig. 3.1
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into the other by a sequence of elementary and ‘inessential’ transforma-
tions of the game tree. (Kohlberg and Mertens 1986, from whom this
discussion is derived, supply a description of the transformations.) If one
is convinced that the transformations are inessential, then two trees with
the same normal form must be equivalent. From this it follows that a
‘good’ solution concept should be defined on the normal rather than on
the extensive form, in order to avoid any dependence on the presentation
of the decision problem facing the players. A further point is worth
emphasizing. Despite being defined on the normal form, a ‘good’ solution
concept may well be required to conform to some notion of extensive-
form rationality (e.g. backwards induction or sequential rationality—see
Kreps and Wilson 1982: 272 and Krep’s Chapter 2 above) in any tree with
that normal form. Proper equilibrium (Myerson 1978) is such a solution
concept—see Section 6.

Ultimately, the choice of normal versus extensive form is best viewed
as a choice of axiom. It is of course possible to argue that the
Dalkey/Thompson transformations are not inessential, in which case two
trees with the same normal form may well' have to be analysed
separately. Chapter 2 above by Kreps surveys the literature on solution
concepts defined on the extensive form. There is a final caveat to this
discussion: the arguments in favour of the normal form certainly rely on
the standard assumption that the players have unlimited computational
power. As soon as one takes explicit account of computational com-
plexity, it may be that a single n-way choice for a player is not equivalent
to a sequence of n — 1 binary choices (as is implied by a normai-form
approach). Related arguments against a normal-form approach can be
found in Binmore (1987b). |

Returning to the objective of this section, the question to be addressed
is, Which normal-form actions ‘€ A’ can a player i choose under the
assumption that the rationality of the players is common knowledge? As
described in the introduction, by ‘rationality of player i’ is meant that i
chooses an action to maximize expected utility calculated using some
subjective probability distribution over the uncertainty that i faces. This
uncertainty is the choice of actions by the other players. Given sets
XY ..., X" let X denote the set X' X...X X' x X' x...xX"
For any finite set X, let A(X) denote the set of probability distributions
on X. Rationality requires that i choose an action a’ which solves

max 3, o(a~ (@, a”)

dleA’ pigq-i
where o € A(A7Y) is a subjective probability distribution over the actions
of the other players. Following standard game-theoretic terminology, a’
will be called a best reply to 0. So the knowledge that { is a rational
player immediately rules out certain actions of i, in that they are not best



52 Adam Brandenburger and Eddie Dekel

replies to any o € A(A™"). Formally, let Aj= A’ and
P = {ai e Aj:a’ 18 a best reply to some o€ A(A—s)}-

A’ is the set of actions that a rational player i can choose. If i knows that
each other player j is also rational, then i knows that j can only choose
actions o' in A4 (defined in analogous fashion to Aj). A probability
distribution of i will be inconsistent with this knowledge if it assigns
positive probability to an action @’ ¢ A}. So if i not only is rational, but
also knows that every other player j is rational, i should only choose an
action a’ € A, where

L= {a' € A}:a' is a best reply to some g € A(A[)}.

If the rationality of the players is assumed to be common knowledge,
then this reasoning can be extended indefinitely. Define inductively

i ={a’' € A},_,:a' is a best reply to some o€ (A;1))}
By finiteness, there must be a K such that A}, = A #J for all k= K. The
sets AL, . .., A% are the sets of actions that the players can choose under
the assumption of common knowledge of rationality.

It should be emphasized that the structure of the game I'=
(AY, ..., A" ut, ..., u”) itself, as well as the rationality of the players,
is assumed to be common knowledge in deriving the sets A%. If player i
does not know cach other player j’s utility function «/, then i cannot
calculate the sets A), and hence cannot restrict him/herself to a
probability distribution on A7’ Extending this argument shows that the
structure of I' must be taken to be common knowledge.

At fizst sight, it appears somewhat perverse to be assuming that the
utility functions of the players are common knowledge but that their
beliefs are not. In Savage (1954), utility functions and subjective
probability distributions are derived jointly from preferences over ac-
tions. If it is common knowledge of the players’ preferences that gives
rise to common knowledge of the utility functions, then why are not
beliefs also common knowledge? Aumann (1987), Bernheim (1985), and
Brandenburger and Dekel (1987) present expanded models with private
information in which this objection does not bite. The players’ prior
probability distributions, as well as their utility functions, can be assumed
to be common knowledge. But the players’ beliefs about other players,
which are their posteriors calculated using their private information, need
not be common knowledge.

The sets AL, ..., A% are the sets of actions of the players that remain
after iterated deletion of strongly dominated actions. Recall that an
action ' of player i is strongly dominated if there is a ¢ € A(A') such that

> @)@, a ) >u(@,a ) Va e AL

a'ed’
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It is well known (e.g. Ferguson 1967; Pearce 1984: Appendix B) that @' is
strongly dominated if and only if there is no o € A(A™) to which @’ is a
best reply. Hence the sets Aj, ..., A} are the sets of actions remaining
after deletion of strongly dominated actions. Proceeding inductively,
Al ... A} are the sets of actions remaining after k£ rounds of deletion.

Arguments based on dominance and iterated dominance are nothing
new in game theory (see Luce and Raiffa 1957: 108-9), but, rather
surprisingly, it is only recently that the foundations have been spelled out
in detail by Bernheim (1984, 1985), Pearce (1984), and Tan and Werlang
(1988). In fact, the ‘rationalizable’ actions of Bernheim and Pearce are
not quite the same as the sets Ak, ..., A%, the difference being that
Bernheim and Pearce require it to be common knowledge that each
player’s probability distribution on the actions of the other players is
stochastically independent. While this makes no difference in the context
of two-person games (since a player faces only one opponent), there are
three-person games in which the rationalizable actions are proper subsets
of Ak, . .., A%. Stochastic independence may be an appropriate assump-
tion in a scenario where each player supposes that his/her opponents are
selected independently and play independently. However, in many
situations it seems more natural to allow for correlated beliefs.

L C R
10 0 3
.
; 4 3 1 T,
0 10 3
B
0 2 10
Fig. 3.2

In some games, iterated dominance arguments are successful 'in the
sense of reducing the set of possible actions for each player to a
singleton. Consider for example the game I'; of Figure 3.2. R is strongly
dominated by the mixed strategy of j which assigns probability 1/2 to L,
1/2 to C. In the reduced game, after deletion of R, T strongly dominates
B. Finally, after deletion of B, L strongly dominates C. So iterated
dominance leads to i playing 7 and j playing L. Nevertheless, iterated
dominance is often a ‘weak’ solution concept, placing few or no
restrictions on which actions the players can choose. In the game I, of
Figure 3.3 (based on a game in Bernheim 1984), iterated dominance does
not eliminate any actions of i or j from consideration.
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i C R
0 5 7
T
7 0 0
0 2 0
i M I's
5 2 5
7 5 0
B
0 0 7
Fig. 3.3

4. Nash Equilibrizm

Consider again the game T,. Player i can justify choosing T by the
hierarchy of beliefs: i believes j chooses L, i believes j believes i chooses
B, i belicves j believes i believes j chooses R, and so on in the cycle
T'-L-B-R~-T-... . Notice that i’s choice of T can be justified only if i
believes that j’s belief about i’s action is wrong: if j believed that i’s
choice was T then j would choose R, to which T is not a best reply for i.
Although this ‘inconsistency’ seems to be an accurate reflection of the
players’ ignorance about each other’s beliefs, such a situation can be
eliminated by supposing that the players’ beliefs are common knowledge.
This assumption leads to a characterization of Nash equilibrium (and in
the game I'; singles out the unique Nash equilibrium, in which i plays M
and j plays C). In order to state the characterization, a preliminary result
(Proposition 2 below) will be needed. Write player i’s belief over j’s
choice of action as ¢/ € A(A4’), and j’s belief over i’s choice of action as
o' e A(A).

ProPOSITION 2. Assume that the beliefs (o, o/) € A(A") X A(A') are
common knowledge. Then common knowledge of rationality is satisfied if
and only if

o'(a’) >0=> 4’ is a best reply to ¢ (1)
(@) >0=>d’ is a best reply to o'. (2)

Proof. To prove this proposition, assume first that ¢’, ¢/ are common
knowledge and that commen knowledge of rationality is satisfied. If ¢
assigns positive probability to an action @’ of j, that is, if ¢/ (¢/) >0, then
by common knowledge of rationality &’ must be optimal for j given some
belief over A’. But since beliefs are common knowledge, this belief is just
&', so condition (2) is satisfied. A similar argument establishes condition
(1). To prove the converse direction, assume that ¢’, ¢/ are common
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knowledge and that conditions (1), {2) hold; i knows that j is rational
since, by condition (2), i’s belief ¢’ assigns positive probability only to
actions @’ of j which are optimal for j given the belief ¢’ which i knows j
to have. Continuing in this fashion establishes that all sentences of the
form ‘i {or j) knows that j {or i)...is rational’ are true. So common
knowledge of rationality is satisfied. [J

Recall the conventional definition of a Nash equilibrium: it is a pair of
mixed strategies (0, o) € A(A’) X A(A’) such that ¢’ is optimal against ¢
and ¢ is optimal against ¢’. It is easy to check that ¢' is optimal against
o' (resp. ¢ is optimal against ¢*) if and only if condition {1) (resp. (2))
holds. Hence the following result follows immediately from Proposition
2.

COROLLARY 1. Assume that the beliefs (o', o) € A(A7) X A(A') are
common knowledge. Then common knowledge of rationality is satisfied if
and only if {¢', ¢} is a Nash equilibrium.

The characterization of Nash equilibrium contained in Corollary 1 can
be extended te m-person games (n>2) by supposing that there are
commonly known beliefs (o', ..., 0"} e X/; A(A"). In writing the be-
liefs this way, two assumptions are being made: first, that, for any player i,
all players other than i share the same belief ¢’ about i’s choice of action;
second, that (as for rationalizability) each player’s probability distribution
on the actions of the other players is stochastically independent.

Corollary 1 offers a characterization of Nash equilibrium which seems
preferable to the conventional interpretation of Nash equilibrium.
According to the orthodox view, player i actually performs a randomiza-
tion over the set of actions A’ in accordance with the probabilities
prescribed by o’. Player i is prepared to carry out this randomization
provided player j performs the randomization o’. But i is indifferent
between the precise randomization and any other randomization over the
same set of actions, or indeed between ¢ and choosing for sure any
action assigned positive probability by ¢’. Why in fact should i perform
the randomization ¢’? Yet if i does ‘deviate’ from &', then j may no
longer be prepared to play ¢. The lack of a clear rationale for a player to
randomize i1s a serious drawback of the conventional view of Nash
equilibrium. The view espoused here is to think in terms of an
equilibrium of beliefs rather than of strategies: ¢ is no longer a
randomization of player i but rather reflects the uncertainty of player j
over i’s choice of action.

An early attempt to advance this viewpoint of equilibrium was made in
Harsanyi (1973a). In Harsanyi’s formulation a mixed-strategy equilibrium
is interpreted as a pure-strategy equilibrium in an augmented game where
there is some exogenous uncertainty. The notion of an equilibrium of
beliefs is developed in Aumann (1987). Aumann shows that, under the
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assumption that the players share a common prior (the Common Prior
Assumption), his 1974 concept of objective correlated equilibrium can be
viewed as a consequence of common knowledge of rationality.

5. Games with Incomplete Information

It was assumed in Sections 3 and 4 that the structure of the game is
common knowledge among the players. However, this may not always be
the case: players may begin a game with different private information
about their possibilities, preferences, and the like. The term ‘incomplete
information’ was introduced by von Neumann and Morgenstern (1944) to
describe games of this type, and the key work on these games is that by
Harsanyi (1967-8).

Incomplete information about the game may arise in several ways: it
may concern how many players there are in the game, the spaces of
actions of the players, how the outcome of the game depends on the
actions chosen, the players’ preferences. Harsanyi (1967-8: 167-8)
argued that all these cases can be reduced to uncertainty about the payoff
functions by appropriate expansion of the number of players and spaces
of actions. So, following Harsanyi, let the (expanded) number of players
be n and, for each i=1,...,n, let A’ be i’s (expanded) finite set of
actions and v': X/-; A’ x §— R be i’s payoff function where § 1S a space
of unknown parameters. '

Let us try to analyse this game. Player i’s optimal choice of action
depends on what i thinks each player j # i will do—and this depends on
what i thinks each other player j’s payoff function is. But what player j
will do depends in turn on what j thinks are the payoff functions of the
players k #j. And so on. This argument leads to each player having an
infinite hierarchy of beliefs—over S, over the other players’ beliefs over
S, and so on. o

The basic result for games with incomplete information is that a model
of infinite hierarchies of beliefs can be closed in the following sense. For
each player i there is a well-defined space T! of all possible infinite
hierarchies of beliefs of i such that 7* is homeomorphic to A(S X 779,
That is, it is possible to summarize an infinite hierarchy of beliefs of i in a
single object, namely, i’s type ¢ € T, which is associated with a joint
probability distribution over the parameter space S and the types of the
other players. The proof of this result when $ is compact is contained in
Mertens and Zamir (1985); for an alternative proof which covers the case
when S is a complete separable metric space, see Brandenburger and
Dekel (1985). (See also Myerson 1985.) It is worth pointing out that,
even if the parameter space S is finite, the type spaces T are uncountably

3 The notation A(X) has not been formally defined when X is infinite. A(SXT7")
denotes the set of all probability measures on the Borel field of S X T7'; see Billingsley
(1968) for definitions.
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infinite.” In fact, it is clear that the type spaces T* could not be finite:
A{S X T7) is uncountably infinite and so could not be homeomorphic to
a finite T°. It is only once the type spaces are uncountable that they can
be used to ‘encode’ the set of probability distributions on themselves.

The tools with which to analyse a game with incomplete information
are now assembled. Each type # € T of player i induces a belief ¢*(¢)
over S X T™". The parameter s can be integrated out by defining new
payoff functions u’(a, ) and beliefs p'(¢') by

u'(a, t)= L v'(a, s)q' () (ds | £7)

p'(¥") = marg,— q'(t).

(Here margz- ¢'(f) denotes the marginal of ¢'(t') on T7".) A game with
incomplete information, often called a Bayesian game, is then a 4n-tuple
Tp=(AY, ..., A~ TY...,T% p',...,p" u',...,u") where, for
each i and e T, p'(t) is a probability distribution over 7T~° and
u' szlAf X Xiq T/— R. Unlike the game T we began with, the
structure of T'y can be assumed to be common knowledge among the
players. )

The Bayesian game I'y in its full generality is too unwieldy a tool to be
useful in practice. In applications it is typically assumed that the players’
types lie in a finite ‘belief-closed’ subset of 7' X ... x T A finite subset
Vix...xXV"of T'X...XT" is said to be belief-closed if, for every i
and each ¢ € V*, p(t) (V") = 1. That is, each player knows that all the
players’ types lie in V! X . .. X V", each player knows that all the players
know this, and so on. In other words, it is assumed to be common
knowledge that the players’ types lie in V' x... x V"

6. Refinements of Nash Equilibrium

In many games it is agreed that some Nash equilibria are more
‘reasonable’ than others. There is by now a considerable literature on
refinements of Nash equilibrium, which is concerned with formulating
criteria for choosing among the set of Nash equilibria. Starting with
Selten (1965), one strand of this literature focuses on refinements of the
extensive form; the other on refinements on the normal form. This
section will be predominantly, though not exclusively, concerned with the
second approach, since Chapter 2 above provides a detailed discussion of
the first. Some simple examples will be provided to motivate refining the
set of Nash equilibria, and some of the proposed solution concepts will be
reviewed. Finally, in keeping with aims of this chapter, some recent work
will be described revealing how refinements of Nash equilibrium can be
understood as a consequence of common knowledge of rationality—
albeit of a different type of rationality from that described in Section 3.
The basic idea behind normal-form refinements is to use ‘trembles’ to
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Fig. 3.4

rule out Nash equilibria that are not robust to smail perturbations, in
particular, equilibria that involve weakly dominated strategies. Consider
for example the game Ty of Figure 3.4. (/, d) is a Nash equilibrium but
does not seem robust. If j thinks there is any chance of i choosing 7, then
j would strictly prefer u to d. Expressed differently, 4 is weakly
dominated by #. The only sensible Nash equilibrium of I'; is (r, u). The
idea of a (trembling-hand) perfect equilibrium was introduced by Selten
(1975} in order to rule out equilibria such as (/, d).* .

In order to state Selten’s definition, some extra notation will be useful.
Given a game ['=(4', ..., A" ul .., ut), let v, 077 denote i’s
expected payoff from choosing the action a‘ when the other players
choose the mixed strategies o~ e X #,-A(Af}. For any finite set X, let
A%(X) denote the set of all strictly positive probability distributions on X.
A mixed strategy of i is called completely mixed if it lies in A”(A").

DEFINITION 2 (Selten.1975_). An n-tuple of completely mixed strategies
(6, ..., 0") e X[ A°(A") is an g-perfect equilibrium (for £>0) if, for
each i and every @', @ € A’, v'(a', 07%) <v(@, ¢7') implies o’(a’) <e.

So an e-perfect equilibrium is an n-tuple of mixed strategies such that
every pure strategy receives positive probability, but only best replies get
more than € weight.

DEerFNITION 3 {Selten 1975). A perfect equilibrium is a limit (as e —0) of
g-perfect equilibria.

Selten showed that a perfect equilibrium is a Nash equilibrium, and
every finite game possesses a perfect equilibrium.

Perfect equilibrium behaves as desired on the game T's: in any g-perfect
equilibrium d must receive weight less than & so the unique perfect
equilibrium is (r, u). _

T, is also the normal form of the game in Figure 2.3 in Kreps’s chapter.

4 Tn fact, most of Selten’s paper is concerned with developing a notion of perfection for

extensive-form games. The reference is to Section 13 of Selten-(1975), which deals with
normal-form games,
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There the Nash equilibrinm {/, d) was ruled out by a backwards induction
argument. This suggests that there is a close relationship between
robustness/weak dominance arguments on the normal form and back-
wards induction/sequentiality arguments on the extensive form. Indeed,
one may ask whether a perfect equilibrium in the normal form always
gives rise to backwards induction, or perhaps even sequentially rational,
behaviour in the extensive form. The answer is no, as the game T, of
Figure 3.5 shows. (dd’, D) is a perfect equilibrium (it is the limit of
((1 -3¢, ¢, ¢, €), (1 — ¢, £)) strategies). T, is the normal form of the game
in Figure 2.9 in Kreps’s chapter, which has the unique backwards
induction solution (aa’, A). As Kreps discusses, the equilibrium (dd’, D)
can be ruled out by arguing that a costlier ‘mistake’ by a player is
infinitely less likely than a less costly one. In T,, given j’s strategy
(1—¢, €), ad’ is a costlier mistake for i than aa’. But, once i puts much
less weight on ad’ than aae’, j will prefer A to D and the equilibrium
(dd’, D) will collapse. A normal-form refinement that captures this line
of reasoning is the notion of proper equilibrium due to Myerson (1978).

DerinTION 4 (Myerson 1978). (o', ..., 0®)e XL A“(A") is an e-proper
equilibrium (for £>0) if for each i and every a', @ e A", vi(a', 67 <

vi(@, o7°) implies o'(a’) <& o'(@). A proper eqmllbnum is a limit (as
g~> 0} of e-proper equilibria.

It 18 not hard to show that the unique proper equilibrium of T, is
(aa’, A). In fact, one can demonstrate: a proper equilibrium of a
normal-form game gives rise to a sequential equilibrium in any tree with
that normal form. For a precise statement of this relationship and proofs,
see van Damme (1982) and Kohlberg and Mertens (1986). The latter
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paper should also be consulted for a comprehensive discussion of the
issue of refinements and for the definitions of further refinements
(hyperstable, fully stable, and stable sets of equilibria). .

The ideas in this section might appear somewhat removed from the
strictly ‘decision-theoretic’ approach taken in the preceding sections. The
emphasis there was on understanding sclution concepts in game theory
from the perspective of single-person decision theory: players were
assumed to be rational in the sense of Savage (1954), and different
solution concepts were characterized in terms of varying common
knowledge assumptions. But how are the ‘trembles’ and ‘mistakes’ of this
section to be interpreted within the context of decision theory? Two
recent papers (Blume 1986 and Brandenburger and Dekel 1986) have
shown that perfect and proper equilibrium can in fact be understood as a
consequence of common knowledge of a modified form of rationality a la
Savage.

In Section 3 rationality of a player i was taken to mean that { has a
subjective probability distribution over the actions of the other players,
and chooses an action to maximize expected utility calculated using this
distribution. This type of behaviour is justified by supposing that player ¢
conforms to the axioms of subjective expected utility in Savage (1954).
The papers by Blume and by Brandenburger and Dekel propose a
different set of axioms which ieads to an alternative theory of decision-
making under uncertainty—subjective expected utility with lexicographic
beliefs. According to this theory, player i has some finite hierarchy of
subjective probability distributions over the actions of the other players,
say (o9, . .., Ox), where or€ A(A™Y) for each k=1, ..., K, with the
property that, for each a~fe A, o,(a™)>0 for some k. i chooses an
action 4’ € A° over another action @ € A' if the first yields a higher
subjective expected utility in a lexicographic sense, that is if

{ > Uk(a*f)u"(a“, a“)]izl > L[

aleA™

X

> ola (@, a'i)}
atedA™! k=1
Here >* means that the first vector is lexicographically greater than the
second. In other words, player i has a ‘primary’ belief ¢, over the actions
of the other players and computes expected utilities using ;. Only if two
actions are deemed indifferent under o, does i then consult his/her
‘secondary’ belief ¢, and compute expected utilities using o, and so on.

The connection of these ideas with refinements of Nash equilibrium is
apparent from the condition on the hierarchy (o, ..., Ox) that each
sic A~ must be assigned positive probability by some Oj. This
condition says that player i considers all choices of actions by the other
players to be possibie, although actions assigned positive probability by
o, are infinitely more likely than those assigned zero probability by o
but positive probability by o2, and sO On.
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Subjective expected utility with lexicographic beliefs can be used to
provide axiomatic characterizations of perfect and proper equilibrium
which are analogous to the characterization of Nash equilibrium dis-
cussed in Section 4. Both refinements arise from the assumption that the
players’ lexicographic hierarchies of beliefs are common knowledge—the
distinction between perfect and proper equilibrium lies in the precise way
in which common knowledge of rationality is formulated. Blume (1986)
and Brandenburger and Dekel (1986) should be consulted for further
details of the characterizations.

7. Concluding Remarks

The work surveyed in this chapter only analyses certain ‘coherent’
sitnations of common knowledge in games and does not explain how the
common knowledge itself arises. As in any analysis founded on Bayesian
decision theory, the issue of formation of beliefs is side stepped. This
deficiency could be remedied by supplementing the formal analysis with
either an informal model or a model of learning behaviour by the players.
In the first case, the analyst must evaluate the economic or other
situation being modelled and judge which common knowledge assump-
tions seem appropriate. In this respect this chapter complements the one
by Kreps, which emphasizes the importance of making a choice,
depending on the context, among alternative theories of out-of-
equilibrium behaviour in extensive-form games. _

The second approach would aim to develop an understanding of how a
player learns to predict another player’s choice of action. This appears to
lead to a new version of the old infinite regress problem: I learn that you
learn that I learn . ... Introducing elements of bounded rationality and
computational complexity into the analysis may help to avoid this pitfall.’
The paper in this volume by Hahn (Chapter 5) contains examples of
learning behaviour which highlight the problems in this area. Although
this route will probably prove to be the more fruitful, at present there are
few results along these lines.

3 The recent work on applying automata fheory to repeated games (Neyman 1985,
Rubinstein 1986 and others) marks a first step in bringing complexity theory to bear on
game theory.



