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We consider extensions of games where some players have the option of signaling 
future actions by incurring costs. The main result is that in a class of games, if one 
player can incur costs, then forwards induction selects her most preferred outcome. 
Surprisingly, the player does not have to incur any costs to achieve this-- the option 
alone suffices. However, when all players can incur costs, one player's attempt to 
signal a future action is vulnerable to a counter-signal by the opponent. 
This vulnerability to counter-signaling distinguishes signaling future actions from 
signaling types. Journal of Economic Literature Classification Numbers: 026. 
�9 1992 Academic Press, Inc. 

1. INTRODUCTION 

The idea of using costly signals to convey private information has been 
researched extensively at both the theoretical level and in applications. 
Spence 1-17] has shown that a worker might pay for education even when 
it has no real value in order to signal that she is competent. Cho and Kreps 
[5]  studied a general class of such "signaling games," in which a player 

* This is a revision of "Coordination and the Potential for Self Sacrifice," first draft dated 
November 1987. We thank an associate editor, a referee, and Matthew Rabin for detailed and 
helpful comments. Financial support from the Miller Institute, IBER, the Sloan Foundation 
and NSF Grant SES-8808133 are gratefully acknowledged. This work was begun while the 
first author was at the Graduate School of Business, Stanford University. 
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D 0,0 1,5 

FIGURE 1.1 

incurs costs to signal her private information about a move by nature, i.e., 
her type (Harsanyi [10]). Cho and Kreps showed that the idea of forwards 
induction is useful for selecting among the multiple equilibria which often 
exist in these signaling games. In this paper we apply forwards induction 
to show that the option of incurring a cost can signal a player's future 
actions. It turns out that, in contrast to signaling games, future actions can 
be signaled without any costs being incurred.1 

The signaling of future actions can be demonstrated in a simple example. 
Consider the "battle of the sexes" game in Fig. 1.1. The outcome (U, L) is 
preferred by player 1 (the row player) to any other outcome, and is a strict 
Nash equilibrium. Suppose we extend the game to include a signaling stage, 
where player 1 has the possibility of burning, say, 2 units of utility before 
the game begins. This creates the extended game in Fig. 1.2. Burning and 
then playing D is strongly dominated for player 1 (by not burning and 
playing D) hence if player 2 observes 1 burning, then 2 can conclude that 
1 will play U. Therefore player 1 can guarantee herself 3 by burning and 

T 

not burn 2 
L r 

U 5,1 0,0 U 3,1 -2,0 

D 0,0 1,5 D -2,0 -I,4 

FIGURE 1.2 

1Saying that future actions are "signaled" is not precise because no costs are actually 
incurred. In fact, the "receiver" deduces the "sender's" future action because the sender couM 
have signaled. Nevertheless, we adopt the signaling terminology since it is more convenient 
than more precise alternatives, such as "the players deduce the future action of the player who 
has the potential to signal." 
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playing U, since 2 (having concluded that 1 will play U after burning) will 
play L. Now, we claim that even if player 1 does not burn, player 2 should 
conclude that 1 will play U. This is because, by playing D, player ! can 
receive a payoff of at most 1, while the preceding argument demonstrated 
that player 1 can guarantee 3 (by burning). Hence, if 2 observes that 1 does 
not burn then 2 will play L, leading to player l's preferred outcome which 
involves no burning and (U, L). The intuitive notion underlying this dis- 
cussion is that of forwards induction, introduced by Kohlberg and Mertens 
[12]. The solution concept underlying the argument above is iterative 
deletion of weakly dominated strategies. 

The main result of this paper is a generalization of the above example. 
In Section 2 we show that if one player can signal then she will attain her 
most preferred outcome whenever she has a unique best outcome that is a 
strict Nash equilibrium. Since the player who signals achieves her most 
preferred outcome, an important question is who can signal, and when. 
Occasionally the environment being modeled contains the answer to this 
question: e.g., if only one player can send costly signals.: But usually both 
players have the option of incurring costs. So the receiver can "counter- 
signal." We argue that if the receiver is given the option to counter-signal 
then it is no longer true that the sender can signal future actions. Thus 
signaling future actions is not robust to modifying the game by allowing for 
counter-signaling. On the other hand, signaling types is (trivially) robust to 
this modification. It is worth noting that any signaling of future actions, 
and not only signling by having the option of incurring costs, is vulnerable 
to counter-signaling. So, for example, signaling by forgoing an option (as 
in Kohlberg and Mertens [12, Section 2.3]) can also be invalidated by 
counter-signaling. We conclude that in many situations signaling future 
types is possible, while signaling future actions is, at the least, problematic. 

Van Damme [18] also suggested the possibility of introducing into a 
game a stage where players may burn money, and provided an example 
similar to that described above. 3 The reader is urged to read his paper 
which presents many other interesting examples that help clarify the rela- 
tionship between forwards induction and stable equilibrium. The role of 
forwards induction in the context of signaling games has been examined by 
Cho and Kreps [5], Banks and Sobel I-2], Milgrom and Roberts [ t3] ,  
and others; and in other types of games by Cho [4], Glazer and Weiss 

2 For example, in the Spence [17] signaling model it may be that only the worker can 
signal. In the Appendix we show that a Spence signaling model can be modified so that the 
worker can use education to signal both her type and her action in a subsequent bargaining 
stage. 

3 We learned of van Damme ' s  paper, which was written before ours, after the results and 
a draft of this paper had been completed. Our  research was conducted independenty. 
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[9], and Osborne [15]. 4 A different approach to selecting outcomes in 
games is developed in Farrell I-7]. He introduces a language, i.e., costless 
communication together with explicit assuptions on how the "suggestions" 
of one player are interpreted by the others, and examines the implications 
on the outcome of the game when only one player can talk. s 

2. SIGNALING FUTURE ACTIONS BY BURNING MONEY 

We focus on two-person games and assume that one of the players, say 
1, can burn utility before the play of a game G. We first formalize the 
extended game with signaling by burning. Let G = (S, T, u, v) where S, T 
are the strategy sets, and u, v are the utility functions, of players 1, 2, 
respectively. For simplicity we assume that player 1 can burn non-negative 
integer multiples of some positive number e. The extended game is denoted 
by 

G(e) = ( N •  S, T ~v, if, ~7), 

where N denotes the natural numbers, f l ( (n ,s) , t )=--u(s , t (n))-ne,  and 
O((n , s ) , t )=v(s , t (n ) )  for any strategies ( n , s ) e N •  t ~ T  N. It is con- 
venient to think of G(~) in terms of the following description (see Fig. 2.1 ). 
Player 1 first chooses how much to burn (ne); player 2 then observes the 
burning; and finally, the players simultaneously choose actions in the 
original game G (say (s, t)). The payoffs are then determined from G, where 
l's payoff is decreased by the amount she burned: player 1 receives 
u(s, t ) - n ~ ,  and player 2 gets v(s, t). For any set X, let 3(X) denote the set 
of probability measures on X. Mixed strategies can be identified with 
behavioral strategies which are denoted by (r/, a ) =  (t/, a(1), a(2) .... )~ 
A(N) • [A(S)] ~v for player 1 (where a(n) is what 1 plays if she burns ne in 
the first stage), and r =  (~(1), ~(2) .... )~ [A(T)]  N for player 2. For nota- 
tional simplicity u: A ( S ) •  denotes the extension of player l's 

4 This paper is also related to other work on equilibrium selection. Aumann and Sorin [1 ] 
show that if the Pareto optimal outcome is unique then it is the only equilibrium in a repeated 
game where one player is uncertain about his opponents' type, and the possible types have 
bounded memories. Kalai and Samet [11] show that a refinement of Nash equilibrium yields 
the mutualy preferred outcome in finitely repeated coordination games. Crawford and Haller 
[6] study learning in repeated coordination games when the description of the game is not 
common knowledge. Fudenberg and Levine [8] show that in a repeated game of incomplete 
information with one long-lived player against a series of short-lived players, the long-lived 
player attains her Stackelberg payoff. 

5 Proposition 1 below is similar to Proposition 1 in Farrell [7], but in general the two yield 
different results (e.g., in Fig. 6 of Ben-Porath and Dekel [3]). 
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utility function, u: S x T ~  ~,  to mixed strategies, and similarly v is also 
extended to mixed strategies. 

The solution concept we apply to games is iterated deletion of weakly 
dominated strategies. 6 In a game (S, T, u, v), the strategy s ~ S is weakly 
dominated if there exists a E A(S) such that u(a, t)>1 u(s, t) for all t ~ T, and 
u(o, f) > u(s, [) for some f~ T. We allow for any order of deletion that is 
maximal at each stage, where by maximal we mean that, if at any stage in 
the iteration any strategy of a player is deleted, then all the strategies of 
that player which are weakly dominated at that stage are deleted. (Thus, 
at any stage one can delete all weakly dominated strategies for either 
player, or for both.) The following proposition is the generalization of the 
example in the introduction. 

PROPOSITION 1. Let G be a game in which there exists an s* in S, and 
a t* in Tsuch that u(s*, t*)>u(s,  t ) for  all (s, t )~ ( s* ,  t*) and v(s*, t * )>  
v(s*, t) for all t r t*. Then there exists a 6 > 0  such that for any 6 > e > 0  
there is a unique outcome of G(e) which survives iterative maximal deletion 
of weakly dominated strategies. In this outcome (n, s) = (0, s*) and t (0)= t* 
so the utilities are u(s*, t*), v(s*, t*). 

We will prove Proposition 1 for the case where at each stage all weakly 
dominated strageties of both players are deleted. A trivial modification of 
the argument proves the result for the more general case where at each 
stage all the strategies of one or both players are deleted. The proof 
involves several lemmas. 

The following notation will be helpful: 

6 Proposition 1 below is also true when iterated deletion of weakly dominated strategies is 
replaced by stability (Kohlberg and Mertens [12]). This follows from Kohlberg and Mertens 
(I-12] Proposition 6) and the easily verifiable fact that in the games we consider the outcome 
which survives iterated deletion of weakly dominated strategies is a stable outcome. 
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u* = u(s*, t*); v* = v(s*, t*); 

c r ,=argmax rain u(a, r); u . =  max min u(a, r); 
creA(S) ~ A ( T )  a~A(S)~EA(T)  

S 2 ( n ) = { s e S : ( n, s) remains after j -  1 stages of deletion }; 

N s -  { n e N :  SJ(n) :~ ~Z~}; 

T j -  { t ~ T : t remains after j -  1 stages of deletion }; and 

TJ(n) - {t e T:  t(n) = t for some t ~ T J}. 

Now, set 6 = m i n { u * - u ( s ,  t ) :  (s, t ) 6 S •  T, (s, t ) ~ ( s * ,  t*)} and choose 
an e such that 0 < e < 6. 

LEMMA 1. T s= I~n~ TJ(n). 

Proof We show by induction o n j  that: (1)T J=  1-I,~0 TJ(n); and (2) a 
strategy t is weakly dominated at stage j if and only if for some n 6 N j, t(n) 
is weakly dominated in the game (SJ(n), TJ(n), u, v>. 

First we note that if (1) and (2) are satisfied for j -  1 then (1) is satisfied 
for j. This follows because T j is obtained from T j -  ' by deleting all the 
strategies t with the property that, for some n 6 N  j - ' ,  t(n) is weakly 
dominated in the game ( s J - l ( n ) ,  TJ-l(n) ,  u, v>. 

We now show that if (1) and (2) are satisfied for j -  1 then (2) is satisfied 
for j. First suppose that, at stage j, the strategy t is weakly dominated 
by z = (z(1),r(2) .... ). Then there exists a strategy ( n , s ' ) e N  j x SJ(n) 
such that O((n, s'), t) < f((n, s'), x). So, v(s', t(n)) < v(s', z(n)). Also, 
v(s, t(n))<~v(s, ~(n))VseSJ(n) .  Thus, t(n) is weakly dominated by z(n). 
Next, consider the converse. Given a t ~ T  j, suppose that t (n)e TJ(n) is 
weakly dominated by z e A[TJ(n)] ,  for some n ~ N j. Clearly t is weakly 
dominated by z where z is defined as follows: x (n)=z  and, Vn ' r  
x(n')=t(n ' ) .  It remains to show that ~ A ( T J ) .  This follows because x is a 
probability distribution over strategies tl,  ..., t,, such that t i (k)eTJ(k),  for 
i =  1 ..... m. By the induction hypothesis and the claim in the preceding 
paragraph, ti ~ T j, for each i = 1 ..... m. 

LEMMA 2. I f (n ,  s * ) e N J •  SJ(n) then t*6 TJ(n). 

Proof  If t * r  then, by Lemma 1, at some stage i<j ,  t* was 
weakly dominated by some z e A [ T i ( n ) ]  in the game (Si(n), Ti(n), u, v>. 
But this contradicts v(s*, t*) > v(s*, t)Vt ~ t*. 

LEMMA 3. I f  (n, s*) is deleted at stage j then there exists a strategy 
(~, e) such that q(n) = 0 and fi((r/, ~), t) >~ u* - ne, Vt 6 T j. 
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Proof Let (q,a) be the strategy which weakly dominates (n,s*). 
Assume first that , / (n)=0.  By Lemma2 there exists t ' ~ T  j such that 
t ' (n )= t* .  By Lemmal ,  given any t E T  j there exists a t " e T  j such 
that t"(n') = t(n')Vn' # n  and t"(n) = t*. Since q(n) = 0, fi((q, ~), t) = 
fi((q, ~), t") ~> fi((n, s*), t") = u* - he. If q(n) # 0 consider the strategy (~/', ~) 
where q ' (n ' )=  01(n')) /(1-q(n)) for all n' r  and q ' (n)=0.  Consider any 
t e T  j such that t (n )= t* .  Since u(~(n), t*)<~u(s*, t*) and fi((r/,~),t)~> 
u* - n g  it follows that ff((~/', ,~), t) >1 u* - he. For a t e T a with t(n) # t* an 
argument similar to that above can be used to construct a t" and show that 
fi((~/', ~), t) >1 u* - n e .  

LEMMA 4. I f ( m +  1, s*) is deleted at stage j, then (m,s),for any s #  s*, 
is also deleted at stage j. 

Proof It follows from the definition of 6 and the choice of 
that [ u * - ( m + l ) e ] - [ u ( s , t ) - m e ] > ~ 6 - e > O ,  for all s~s*  and all t. 
By Lemma3,  there exists at stage j a strategy 01,6) such that 
fi((~/, 6), t)~> u * - ( m  + 1)e, for all t ~ T  j. It follows that, at stage j, (~/, 6) 
(strongly) dominates (m,s), for all s#s*.  Therefore, for all sv~s*, the 
strategy (m, s) is deleted. 

Proof of Proposition 1. Assume that the iteration process has been com- 
pleted at stage i so that N*=N i+~, s i = s  i+l, and T i = T  *+1. Let 
m = m a x { n : n e N i } .  {Note that m is finite because if k is an integer such 
that ke> u * - u ,  then, for all s, (k, s) is strongly dominated by (0, a , ) .  
Therefore (k, s) is deleted at the first stage of the iteration.) Let j <  i be the 
stage at which (m+  1, s*) was deleted. By Lemma 4, all (m, s) such that 
s Cs* are deleted at stage j as well. So, S J(m)= {s*}. Therefore 
Ti(rn)= {t*}. If m = 0  the proof is complete. If not, then, as above, the 
strategies ( m - l , s )  for all sr  and all the strategies t e T  j with 
t ( m - 1 )  ~ t*, have been deleted. Therefore, at some stage l <  i, ( m -  1, s*) 
dominates (m, s*). But this contradicts our assumption that m e N *. Q.E.D. 

Next, several issues regarding the specification of the game and the 
signaling stage are discussed. After two remarks, the importance of the 
order in which players can signal is discussed. Henceforth, the pure 
strategies of player 1 in the extension of a game G are denoted by (b, s) 

L R 

U I 90,90 0,0 

0,0 72,72 

FIGURE 2.2a 
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90,90 0,0 90-b,90 -b,O 
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D 0,0 72,72 -b,O 72-b,72 

FIGURE 2.2b 

where b E ~ +  is the amount burned and s ~ S is the strategy played after 
burning b. (This should not be confused with the previous notation (n, s) 
which indicates player 1 burning ne as discussed above.) 

Remark 2.1. In the example in the introduction, player ! only needed 
the option of burning one particular sum in order to achieve the preferred 
outcome, rather than using several levels of burning as in the proof. To see 
that the latter is in fact necessary, even in a simple example, consider the 
game in Fig. 2.2a and its extension in Fig. 2.2b. For any value of b the 
procedure of iteratively deleting weakly dominated strategies will not delete 
the strategies (0, U) and (0, D) of player 1, nor will it delete the strategies 
of player 2 which specify playing L and R after observing 0. To see this 
note that the maximin payoff for player ! is 40. Therefore (b, D) is weakly 
dominated if and only if b i> 32. However, since 9 0 - 3 2  < 72 the iteration 
ends at this stage. Hence, for no b could player 1 guarantee her preferred 
outcome by having the option of burning b. Proposition 1 implies that if 
other amounts are available, then ((0, U); L) will be the outcome. 

Remark 2.2. Proposition 1 also holds if player 1 has a continuum of 
burning options (not only discrete amounts). The proof follows similar 
lines. On the other hand, if the players do not have finitely many strategies 
in the game G, then the signaling may fail. To see this consider an example 
where S = T = [ 0 , 1 ] ,  u(s , t )=v(s , t )=s if s---t, and u(s,t)=v(s,t)=O 
otherwise. This game has a continuum of Nash equilibria: {(s, t) :s = t}. In 
the extension of this game all these outcomes remain. (After burning any 
amount b ~ [0, 1 ] player 1 will not play s ~< b since then (b, s) is weakly 
dominated by (0, 0). This only implies that 2 will play some t (b )>  b and 
the iteration ends at this stage.) Nevertheless, in infinite games players can 
signal their future strategy if the outcome in the infinite game is defined as 
the limit of the outcomes in a sequence of finite approximations. 7 

A special class of games which satisfy the hypothesis of Proposition 1 are 
those where player l's opponent also prefers the outcome (s*, t*) to all 

7 For details see Ben-Porath and Dekel [3]. 
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a L R 

U 9,9 0,7 

D 7,0 6,6 

FIGURE 2.3a 

other outcomes. In these games, where the players' interests coincide, 
signaling by either player will yield the mutually preferred outcome. 
Moreover the result that signaling selects the mutually preferred outcome 
can be extended to n-person games of this form (i.e., with an outcome 
which is preferred by all the players) but only under a specific assumption 
about the order in which the signaling occurs. The assumption is that: 
(i) players signal in sequence; (ii)each player "leaves the scene after she 
signals," so that she observes only the signals of players who precede her 
in the sequence; and finally (iii)all the players choose their actions in G 
simultaneously. 8 

Consider now the extension of the game G in Fig. 2.3a, when both 
players first burn simultaneously, and then after they each observe how 
much the other has burned, they both chose their actions in G 
(simultaneously). We assume that the players can only burn one amount, 
namely 1.5. 9 The normal form for this extension of G is given in Fig. 2.3b, 
where a strategy is a triplet whose first letter indicates whether the player 
burns (B) or not (0); the second letter indicates what action in G the player 
chooses if the opponent did not burn; and the third lettter indicates what 
action in G is chosen if the opponent was observed to burn. In this game 
only bDD and bRR are weakly dominated, so simultaneous signaling need 
not select the mutually preferred outcome. 1~ In particular, both players 
burning and then not cooperating is an outcome that survives iterated dele- 
tion of weakly dominated strategies. Intuitively, this outcome arises when 
each player thinks that cooperation will follow if and only if she burns and 
the other does not burn. 

The preceding two paragraphs demonstrated that the timing of the 
signaling is crucial even in games where the players' interests coincide. This 
emphasizes a problem that occurs in applying signaling: how does a player 
obtain the right to burn? When the players' objectives differ they will both 
want to burn. Thus, if players signal one after the other and then play the 

s For details see Ben-Porath and Dekel [3]. 
9 The conclusion below holds even if players are allowed to burn arbitrary amounts. 
~o Van Damme [18] makes a similar point, 
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OUU 9,9 9,9 0,7 0,7 9,7.5 9,7.5 0,5.5 0,5.5 
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OIJD 9,9 9,9 0,7 0,7 7,-I. 5 7-1.5 6,4.5 6,4.5 

ODU %0 7,0 6,6 6,6 9,7.5 9,z5 0,5.5 0,5.5 

ODD 7,0 7,0 6,6 6,6 7,-i.5 7,-i.5 6,4.5 6,4.5 

BU[.] -K5,9 -I.5,7 75,9 -15,7 75,75 -I.5,5.5 75,75i-15,5.5 

B U D  75,9 -I.5,7 z5 ,9  -I.5,7 5.5,-I.5 4.5,4.5 5.5,-I.5 4.5,4.5 

BD(.. / 5.5,0 4.5,6 5.5,0 4.5,6 7.5,75 -I.5,5.5 7.5,75. -I.5,5.5 

BDD 5.5,0 4 .5 ,6  5.5,0 4.5,6 5.5,-I.5 4.5,4.5 5.5,-I.5!4.5,4.5 

FIGURE 2.3b 

game in Fig. 1.1, one might ask which player is more "powerful," the first 
or the second to burn? It is easy to verify that the player who can signal 
last is most powerful. This can be seen by noting that in any subgame 
following an amount burned by the first player, the second can achieve her 
best outcome. The first player cannot convincingly communicate her intent 
to play the strategy which leads to her preferred outcome. 

In the last two games discussed above a player was unable to signal 
credibly because after burning she could condition her choice of action in 
the game on whether another player burned or not. Thus, the ability of the 

I 

2 U 5,1 0,0 
2 

D 0,0 1,5 

FIGURE 2.4 
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2 1T 
2 2 

I / R  L', R 

U 5,1 0,0 u] 5,-I 0,-2 
I 

D 0,0 1,5 d Or2 1,3 

FTGURE 2.5 

receiver to counter-signal can invalidate the credibility of the sender's 
signal. It is worth emphasizing that any signaling of future actions, and not 
only signaling by having the option to incur costs, is vulnerable to counter- 
signaling. In particular, signaling by forgoing an option can also be 
invalidated by counter-signaling. To see this, consider the game in Fig. 2.4 
(due to Kohlberg and Mertens [12]). In this game iterated elimination of 
dominated strategies implies that player 1 plays B and then players 1 and 
2 coordinate on U, L. Intuitively, by giving up 2, player 1 credibly signals 
that she will subsequently play U. Assume now that if player 1 plays B, 
then player 2 has the option to burn 2, In this game, see Fig. 2.5, iterated 
elimination of dominated strategies selects the outcome where player 1 
plays A. Player 1 choosing B and forgoing 2 is no longer a credible signal 
because player 2 has the option to counter-signal by burning 2. 

This vulnerability to counter-signals distinguishes signaling future 
actions from signaling types. Obviously, when a player signals private 
information about something not under her control (as, for example, in 
Cho and Kreps [5])  there is no point for the receiver to object. 

3. CONCLUSION 

We have shown that forwards induction implies that in a class of games 
the potential of incurring a cost signals a future action. However, when all 
players can incur costs the receiver can "object" to a signal of a future 
action by counter-signaling. This vulnerability to counter-signaling 
distinguishes signaling future actions from signaling types, and suggests 
that in reality signaling future actions is problematic.ll 

H Rubinstein [16] makes a related point: he observes that people do not perceive some 
forms of costly signaling, such as burning money, as relevant to the game, and he proposes 
properties of signals that may be useful in determining whether they are relevant. 
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APPENDIX 

This appendix provides an example based on two standard models: 
the Spence [17] signaling model and the Nash [14] bargaining game. 
The example shows how models that focus on signaling types (such as 
Spence [17], Milgrom and Roberts [13], and Cho and Kreps [5]) can 
be naturally extended so that the option of incurring a cost enables the 
player not only to signal his type but also (at the same time) to signal 
a future action. The example also shows that in many environments 
"burning" is a naturally available strategy--all signaling games have such 
strategies. 

The intuition for the example is based on Proposition 1. In a simple 
signaling model player 1 may be one of several types, and she chooses a 
costly signal. This signal is observed by player 2, who then chooses an 
action. The type-signal-action triplet determines the payoffs for each 
player. Consider now replacing player 2's choice of action by a more 
general (simultaneous move) game between players 1 and 2, denoted G. 
The costly signaling can now be viewed as a "burning" stage--any type of 
player 1 could always "burn" by selecting a costlier signal. Proposition 1 
suggests that if there are multiple equilibria in G, then player l's ability to 
burn enables her to influence which of these equilibria will be played. 

The model analyzed is a modification of a stylized version of Spence's 
signaling model. In the stylized version (see also Cho and Kreps [5]) there 
is a worker who may be of high (h) or low (l) quality. This worker moves 
first, choosing an education level b in [0, co). The worker is paid a wage, 
w in W, by a firm. (How the wage is determined is described below.) The 
worker's worth to the firm is $2 if he is h and $1 if/. The worker's utility 
is w - b if he is /, and w -  b/2 if he is h. In the unmodified model the firm 
pays the worker his expected value, where the firm's beliefs are determined 
in an equilibrium by: (i)her prior over {/, h}; (ii) the worker's equilibrium 
strategy; and (iii) the observed signal b. (The specification that the firm 
pays the worker his expected value can be justified by a model where there 
are several firms competitively bidding for the worker in the style of 
Bertrand.) Our modification is to assume that the firm and worker 
determine the wage by a (modification of the) Nash [14-] non-cooperative 
bargaining game. That is, the firm and worker both simultaneously 
announce a wage. If the firm's offer is at least as large as the worker's 
request then the worker is paid his request and works for the firm. 
Otherwise the worker is not employed. In the latter case the firm's utility 
is zero and worker's utility is -b .  If the worker is employed then the 
worker's utility is as described above ( w -  b, or w - b / 2 )  and the firm earns 
1 - w  or 2 - w ,  depending on whether the worker is l or h, respectively. 
Formally, we denote the (pure) strategies for the worker by a quadruplet 

642/57/I-4 
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[(bl, w~), (bh, Wh)] which indicates the education the worker purchases and 
the wage he requests, if he is a low or high type, respectively. The firm's 
strategy is a function S: [0, o o ) ~  W determining the wage paid as a 
function of the education observed. 

Proposition 1 suggests that the worker can use the level of education to 
signal his wage demand in the bargaining game, as well as his type. This 
is demonstrated below by using a refinement of Nash equilibrium which is 
motivated by forwards-induction rationality. The refinement is a version of 
the intuitive criterion (Cho and Kreps [5]), and it tests the plausibility of 
equilibrium outcomes. An equilibrium outcome ~ is specified by the 
equilibrium path, ~--- {[(b t, wt), (bh, wh)], [S(bl), S(bh)]}. (We consider 
here only pure strategy equilibria; however, the arguments below can be 
extended to incorporate mixed strategies without effecting the conclusion.) 
A strategy of the worker fails the criterion if, regardless of the firm's 
strategy, and for ~ = h or ~ = l, the level of education and wage request of 
an c~ quality worker in this strategy lead to a lower payoff than the c~ type 
receives in g. Formally, given the outcome g, a strategy [(~;t, #t), (~h, Wh)] 
fails the criterion if w t -  b~ < w~- b~ or ~ h -  bh/2 < Wh-- bh/2. Strategies 
which are either weakly dominated or fail this criterion are iteratively 
deleted. If in the game which remains after these deletions there is no Nash 
equilibrium which leads to the same outcome as ~, then ~ is said to fail 
the test. It is important, as in the previous sections, that W be discrete. For 
simplicity assume that W - - { k / l O : k ~ N ,  k r  k r  As in Cho and 
Kreps [5], any outcome which fails such a test is not a stable outcome (in 
a game where the level of education, as well as W, is restricted to a finite 
set, since stable outcomes are defined for finite games). We prove below 
that the unique outcome which survives the test is {[(0, 0,9), (1, 1.9)], 
[0.9, 1.9] }. 

The conclusion is then that in the unique outcome which survives 
the test the worker signals his type and receives his best payoff in the 
bargaining subgame. Note that the method in which the worker's wage is 
determined in the subgame was modified from that in the original signaling 
game: instead of assuming that the firm pays the worker all the expected 
surplus, the worker and firm must bargain over this surplus. Despite this 
modification the unique equilibrium outcome which survives the test is the 
same. This is because the signaling power which is granted to the worker 
in order to signal his type, also gives the worker the power to signal his 
wage request. The firm's best response is then to accept the worker's 
demands rather than lose the worker. 

We now prove that the unique outcome which survives the test is 
g* -~ { [(0, 0.9), (1, 1.9)], [0.9, 1.9]}. The proof is made up of several 
claims. Let g = { [ (b ,  wl), (bh, Wh)], [S(bt), S(bh)]} be an equilibrium 
outcome which survives the test. 
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CLAIM 1. ~ & not a pooling outcome, i.e., bt ~ bh.12 
Proof. Assume by contradiction that o ~ is a pooling outcome, and let w 

denote the wage in g~. The employer is not making negative expected 
payoffs, and therefore w<~pt+ 2ph. 

Let w' be the largest element in W that is smaller than 2. By assumption, 
w < w'. It is easy to see that there exists a level of education, b, such that 
w ' - b / 2 > w - b h / 2 ,  w ' - b < w - b z ,  and for every ~ ,<w'  in W w e  have 
~, -  b/2 < w -  bh/2 (where bt= bh is the education level in ~). 

Clearly all the strategies where the employer makes an offer that is larger 
than 2 are weakly dominated and can be deleted. Next, all the strategies of 
the worker where the low type chooses an education level b or the high 
type chooses b and a wage that is smaller than w' fail the criterion and are 
deleted. At the next stage of the iteration all the strategies of the employer 
which offer less than w' in response to b are weakly dominated. (Because, 
if the worker chooses b he must be the high type, and therefore must be 
asking for w' or more. If the employer offers less than w' the worker will 
not be employed.) But now, in the game that remains after these deletions, 
there is no Nash equilibrium with the outcome ~, since the high type can 
benefit by deviating to education level b and wage demand w'. Q.E.D. 

CLAIM 2. The low quality worker receives the highest wage which is less 
than his value, i.e. w~ = 0.9. 

Proof Assume not, so that in g w~<0.9. Let bl satisfy b t < ~ t < b t + 0 . 1 .  
Then all the worker's strategies where either type gets an education level of 
~t and requests a wage less than or equal to wz fail the criterion and are 
deleted. Hence (in the next stage of the iteration) any strategy which offers 
w t or less to a worker with education Z; t is weakly dominated. This is 
because offering wt or less will surely lead to the worker being unemployed, 
while offering wz+ 0.1 leads to a positive profit if the worker is employed 
(since wz + 0.1 < 1). Hence in the game which remains after these deletions, 
there is no Nash equilibrium leading to the outcome 6 ~ (because the worker 
will prefer to deviate to [(b/, wt+0.1),  (bh, wh)]). Q.E.D. 

CLAIM 3. The high quality worker receives the highest wage which is less 
than his value, i.e., Wh = 1.9. 

Proof All the strategies of the firm which offer wages greater than 
1.9, for any b, are weakly dominated. Assume that in g w~ < 1.9. Then 
there exists bh such that wl--bt> 1.9--~h, Wh--bh/2< 1.9--bh/2, and 

12 In order to avoid a pooling equilibrium, W must  be chosen to be sufficiently fine. In 
particular, the largest element of W which is strictly less than 2 must  be greater than p~ + 2ph 
(where p~, ~ = l, h, is the prior probability of a worker of type a). 
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wh - bh/2 > 1.8 -- ~h/2. Then  all the strategies of the worker  where the low 
type gets an educat ion level of ~h are deleted. Also, all the worker ' s  
strategies where the high type gets an educat ion level of bh and requests less 
than  1.9 are deleted. So, as in the p roof  of Claim 2, any strategy for the 
firm which offers less than  1.9 in response to bh, is weakly dominated.  
Hence, in the game which remains after these deletions, the ou tcome ~o is 
not  an equi l ibr ium ou tcome (because the worker  will deviate to [(b~, wl), 
(b,,, 1.9)-]). Q.E.D. 

CLAIM 4. b t = 0 .  

Proo f  Assume that  in g ,  b l > 0 ,  and let bt satisfy b t - 0 . 1  < ~ l < b l  (and 
b~>0) .  Clearly any strategy of the worker  in which one of the types 
chooses the educat ion level of ~z and requests kz where kt  < Wl, can be 
deleted. So in response to ~ the firm should offer at least w t. Then, in the 
game remaining after these deletions, the worker  will deviate f rom any 
strategy which suppor ts  the ou tcome g. Q.E.D. 

CLAIM 5. b h = 1. 

Proo f  Since Wh = 1.9, bt = 0, and wt = 0.9 it must  be the case that  bh >~ 1 
(otherwise the low type will imitate the high quality worker) .  So assume 
that  bh> 1. Let  ~h satisfy b h - - O . l < b h < b h  (and 1 < ~ ) .  As before (see 
Claim 3) any strategy of the worker  where either: (a) the low type chooses 
an educat ion level of bh; or ( b ) t h e  high quality worker  chooses bh and 
requests less than 1.9, can be deleted. Hence,  in response to ~h, the firm 
should offer Wh. Again, this implies that  an ou tcome where bh ~ 1 fails the 
test. Q.E.D. 
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