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It is shown that the Pareto optimal outcomes in a two period simultaneous move 
bargaining model violate forwards induction rationality when the players are suf- 
ficiently patient. This bargaining model describes a situation where a principal is 
represented by an agent whose flexibility is restricted. Hence. a bargaining process 
with such agents can create costly delays. The result also provides another example 
of the power of forwards induction and stability. Journal of Econometric Litrrarure 
Classification Number: 026. ( 1990 Academic Press, Inc. 

1. INTRODUCTION 

In the recent literature on noncooperative bargaining, starting from 
Rubinstein’s [25] seminal paper, players make alternating offers in 
sequence, until agreement is reached about the division of a “pie,” which is 
discounted over time. Rubinstein showed that in the unique subgame 
perfect equilibrium of the perfect information game the first player’s offer 
is accepted by the second player. More recent papers [ 1, 4, 7, 12-15, 26, 
28, 3 1 ] have focussed on introducing incomplete information to the model. 
These papers have imposed various refinements and have then shown that 
the equilibrium involves delay,’ which acts as a screening device. 

This paper analyzes a bargaining game with imperfect, but complete, 
information and with simultaneous, rather than alternating, moves. The 
model is a twice repeated Nash [22] noncooperative bargaining game. 
Both players tender offers simultaneously, and if their offers agree then the 
pie is allocated accordingly. If no agreement is reached they try again, 

* I thank Elchanan Ben-Porath, Joseph Farrell, David Kreps, and an associate editor for 
helpful conservations and comments. Financial support from the Miller Institute for Basic 
Research in Science and NSF Grant SES-8808133 is gratefully acknowledged. 

i GUI, Sonnenschein. and Wilson 1161 have shown that for a general class of these models 
(excluding Admati and Perry [ 11) the delay disappears as the time between offers goes to 
zero. 
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whereupon if agreement is obtained the (discounted) pie is split, while if 
once again no agreement is attained the game ends without any division, 
or trade, occurring. 

This model is obviously very specialized. It does, however, incorporate 
one feature of bargaining which the model of alternating moves fails to 
capture. This feature is that the bargaining parties may come to the table 
with predetermined expectations and offers, and will not be influenced 
(in the course of one meeting) by what the opponent says. This may be 
because incorporating the information revealed by the opponent takes 
more time than is spent in one meeting; for example, if the bargaining 
party must confer with its principal if deviations from its offer are to be 
accepted.’ 

A difficulty with the model of this paper is the extremely large set of 
subgame perfect (Selten [27]) equilibria. Even after the fairly strong notion 
of forwards induction (Kohlberg and Mertens [ 19]), is imposed, as 
captured in stability [19], the equilibrium set remains large. However, 
qualitative conclusions are obtained. The main objective in this paper is to 
examine the set of Pareto efficient outcomes which are supported as stable 
outcomes, and in particular how this set changes with the discount rate. 
The main result is that as the players become more patient, less Pareto 
efficient outcomes remain, until a point is reached beyond which only 
inefficient outcomes remain.’ Thus, patience causes delay.4 This also 
suggests that delegating bargaining to agents who must confer with the 
principal can cause inefficiencies. 5 This necessity of inefficiency seems 
to me an important characteristic of noncooperative bargaining. In 
particular, this form of delay does not act as a device to screen among 
exogenously determined types, but as a method of indicating (endogenous) 
“stubbornness” (cf. [2, 301). 

This analysis is motivated above as clarifying certain aspects of bargaining 
situations. Another motivation is that this work contributes to the under- 
standing of forwards induction and stability, and as such adds to recent 
papers [2, 14, 23, 303, which have examined the role of forwards induction 
and stability in selecting among equilibria in other games of imperfect 

’ Another feature of the simultaneous offer model is that it is ex ante symmetric, whereas 
there is a procedural asymmetry in the alternating move model. 

’ In fact there exist subgame perfect equilibria which strongly Pareto dominte all the stable 
outcomes in a game with sufficiently patient players. This seems to raise doubts regarding the 
practice of focussing on Pareto dominating Nash equilibria (for example in the literature on 
renegotiation proof equilibrium [3, 9. 24, 391). 

’ This delay of course disappears as the time between the stages disappears. since only a two 
stage model is examined (cf. GUI, Sonnenschein, and Wilson [16]). 

5 Delegation to agents who play a game instead of the original players is shown by 
Fershtman. Judd. and Kalai [ 1 l] to lead to cooperation, 
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information. Arguments based on forwards induction restrict beliefs about 
an opponent’s “type” according to the possible gains to that “type” from 
deviating. Incomplete information bargaining models use such arguments 
[ 1, p. 349; 7, p. 2023, where a player’s “type” is a characteristic of his/her 
utility function (as in [17], and adverse selection models). Here the same 
intuition applies, where “type” refers to a strategy choice (as in moral 
hazard models). Thus, to the extent that the results here seem 
unreasonable, they may suggest that further work is needed to justify the 
use of forwards induction in other models (see also, [2]). 

2. THE MODEL AND RESULTS 

The (noncooperative) bargaining model of Nash [22] is specified by a 
utility possibility frontier, denoted by a non-increasing function f: 
[O, I] + [0, 11, and a disagreement point d= (0,O). (The strategies and 
payoffs are determined in such a way that (as long as utilities are bounded) 
f and d can be normalized to have these values by taking positive affine 
transformations.) The (first period) strategies of players 1 and 2 are to 
specify utility allocations in [0, 1 ] for player 1, denoted by s, and s2, 
respectively. If si Q s2 then player 1 receives s, and 2 receives f(sz), while 
if s, > s? they both receive 0. 

In this paper a two stage discrete version of this model is examined. 
Players are only allowed to suggest amounts in S = (M/,: m = 1, . . . . n - 11, 
for some n. Furthermore, when s1 > s2 the players proceed to a second 
round. The second round strategies, denoted t, and t, respectively, are thus 
functions in T= {f: S + S). A fully specified strategy of a player is then a 
pair in Sx T. When the players choose strategies (s,, tl) and (.sZ, tz), 
respectively, their payoffs are as follows. If in the first round si Q s2, then 
(as in the one stage game) they receive s, andf(s?). Otherwise s2 > s,, and 
if t,(sz) d r-J.s,) (i.e., if l’s second period suggestion after observing s2 in the 
first period is compatible with 2’s second period suggestion after observing 
s, in the first period), they receive 6, t,(s,) and c’?~~~(s,), respectively, where 
6, is player i’s discount rate. If their second period suggestions are not 
compatible (i.e., t,(s,) > tJ.si)), they both receive the disagreement alloca- 
tion of 0. Henceforth discount rates in { 6: s = s’/S for some s, s’ in S) are 
ruled out. This avoids (knife-edge) indifference between a first and a second 
period allocation, and thus serves the same purpose as tie breaking 
assumptions such as (Al) in [l] and (b-3) in [26]. The main result of this 
paper follows. 

In order to state the main result of this paper we review the definition 
of a stable outcome. If a set of Nash equilibrium is stable [ 19, p. 10271 and 
each of these Nash equilibria induces the same probability distribution on 
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endpoints of the game, then this distribution is called a stable outcome 
[6, pp. 189-1921. 

PROPOSITION 1. The set of Pareto qfficient and stable outcomes is the set 

K=C(s,,f(s,)):s,>6, andf(s,)>6,} 

Furthermore, even if K is empt)) there exists a stable outcome. 

Proof: The proof is an application of the forwards induction properties 
of stability [ 19, Proposition 61. First it is demonstrated that any Pareto 
efficient outcome which is not in K is not stable. Consider the set of Nash 
equilibria, denoted by A, leading to any Pareto efficient outcome not in K, 
say the allocation (s,, f(s,)), where s, 66,. (The case wheref(s,)b6? is 
similar.) For any (sz, tz) E A and for any s’, it is the case that s2 < 6,, and 
t?(s’,) <s,/6, since otherwise 1 would deviate to s’, Therefore, for any 
s; >s,, a strategy for player 1 in {(s’,, tl): t,(s,)<s,/cS,j is never a weak 
best reply against any strategy for player 2 which is in A. So consider the 
sub-(matrix)-game where these strategies are deleted. In this subgame, the 
strategies for player 2 in {(s?, t,): t2(s’,)<sl/6,, s’, >sl} are weakly 
dominated. Now consider the further sub-(matrix)-game obtained by 
deleting these weakly dominated strategies. In this game none of the 
equilibria in A are Nash equilibria, since player 1 would prefer to deviate 
from s, to the next higher amount in S, to which 2 would respond with 
more than s,/6,. Theorem 6 in [ 191 implies that if A is a stable set, then 
there is an element in A which is an equilibrium in the sub-(matrix)-game 
which remains after such deletions. Thus A is not a stable set. 

Next it is shown that any outcome in K is stable. In fact, these outcomes 
are hyperstable. In what follows let r, denote strategies for the full game, 
namely pairs (s;, t,), for player i Let (rl, rz) = ((s!, I,), (s2, r2)) be an equi- 
librium which determines an outcome in K, and let A be the set of Nash 
equilibrium which yield that outcome. For any r; such that (r,, rz) and 
(r,, r&) yield the same payoffs for 2, (rl, ri) is a Nash equilibrium. This is 
because the same payoffs can be obtained for 2 only if the players reach 
agreement in the first period. The payoffs for outcomes in K are greater 
than any possible second period payoff for either player. Thus player 1 
cannot gain by deviating from r, . So A includes all strategy pairs that yield 
player 2 (respectively 1) the same payoff as (r,, rJ and are in a row 
(respectively column) of the game in which there is an outcome that is the 
same as the outcome given by (r, , rz). Set E to be less than the smallest 
difference among payoffs in the game, excluding equalities. If any of the 
payoffs in the normal form are then perturbed by an amount less than e, 
one of the equilibria in A will still be a Nash equilibrium. 
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Finally, it is necessary to argue that a stable outcome exists when K is 
empty. Since this game has a non-generic extensive form, the claim does 
not follow from the generic arguments in Kohlberg and Mertens [19]. 
However, a completely mixed equilibrium can be constructed for this game, 
which is sufficient. This construction is straightforward. Q.E.D. 

The characterization result in Proposition 1 has several nice properties. 
It demonstrates inefficiencies in the bargaining process which are a direct 
consequence of the players’ patience, since for large enough hi, K is empty. 
On the other hand, as player’s discount rate is increased, some efficient 
outcomes which are less favorable for that player become unstable. So, in 
a sense, each player benefits from increased patience-until a point beyond 
which they both lose. It is also noteworthy that the delay is not a signal 
of a player’s preferences, but of his or her intent to play “tough.” The result 
also shows how forwards induction rules out efficient allocations which are 
“extremely one sided.” 

Simultaneous move bargaining games have also been examined by 
Fershtman [lo] and by Chatterjee and Samuelson [S]. The models differ 
from the above, and neither shows when delays must arise in equilibrium, 
as in Proposition 1. The former paper constructs an equilibrium which 
involves delay in a continuous time model, where it is assumed that 
players’ demands must decrease over time. The latter paper considers an 
infinite horizon model, and shows (for several equilibrium concepts) that 
the set of equilibrium payoffs is not smaller than in the one period game. 
However, they do not examine the discrete game, which may lead to 
different results when forwards induction arguments are used (e.g., in the 
model above and in [2]). 

In [25], if the discount rates are equal, then, as the player’s impatience 
decreases, the equilibrium allocation converges to the Nash [21] 
cooperative bargaining solution. Thus, a noncooperative basis for the Nash 
solution is provided. We show next that in our model qualified support is 
obtained for a minor modification of the Kalai and Smorodinsky [lS] 
solution (denoted MKS). When discount rates are equal, if any equilibrium 
outcome is Pareto efficient, then the MKS outcome is supported in an 
equilibrium (and no other Pareto efficient outcome has this property). That 
is, as the set of stable equilibrium outcomes that are Pareto optimal 
shrinks, it converges to the MKS outcome, before disappearing entirely. 
The KS solution to a normalized bargaining game with a convex utility 
possibility set is the allocation determined by the intersection of the 
diagonal with the Pareto frontier. Since this solution does not apply to the 
discrete version of the bargaining model (because this version is not 
convex) the solution must be modified slightly in order to retain the 
property that it is strongly Pareto optimal. The MKS solution is defined to 
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be any point on the Pareto frontier which weakly dominates the KS 
solution and is not itself weakly dominated. 

COROLLARY 1. Let 6, = S, = 6. Either the MKS solution is efficient and 
stable, or the ejficient and stable set is empty. Furthermore, no other outcome 
bus this property for all discount rates. 

Proof: Let ($,a’) be the point on the diagonal which intersects the 
Pareto frontier, and let the MKS solution be (sr , s?). For any 6 < 6’, s, > 6 
and sZ > 6. Hence the MKS solution is in K. For 6 sufficiently close to 6’, 
orzlr the MKS solution satisfies the last two inequalities. Finally if 6 > 6’, 
K is empty. Q.E.D. 

An example is now provided to illustrate the problems which arise in 
generalizing the previous results to a model with more than two periods.6 
The example shows that stability (in fact hyperstability) allows for efficient 
outcomes in a three-period model even when 6 is large. It is worthwhile 
noting that the forwards induction used above may be weaker than that 
assumed in incomplete information bargaining models (cf. [ 1, p. 3491). 
Nevertheless in the present context it is not clear how the assumptions may 
be strengthened in order to extend the results to n > 2 periods. Despite the 
difficulties in attaining such an extension I believe that the intuition that 
delegating bargaining can cause delays by creating (signalling) incentives to 
play tough is of interest. 

Consider a three-period game where in every period each player can 
either say low or high. Agreement is reached in the first period in which at 
least one player says low. If agreement is reached then low yields the payoff 
of 1, and high yields 2, while disagreement throughout the three periods 
yields zero. The discount rate is assumed to be S for both players. This 
determines the payoff matrix in Fig. 1, where L; HL; HHL; HHH indicate 
low in the first period; high in the first and low in the second period; high 
in both the first and second periods and low in the third; and high in all 
three periods for player 1 (and lower-case letters are used for player 2). 

It is easy to see that in the two-period version of this game (see Fig. 2) 
the outcome (2, 1) is not stable (hl is never a weak best reply against any 
strategy of player 1 which is used in a Nash equilibrium that yields (2, 1); 
HH is weakly dominated in the sub (matrix) game remaining after hl is 
deleted; 1 is weakly dominated after HH is deleted; and then HL is 
dominated, so (2, 1) is not an equilibrium outcome after these deletions, 
hence cannot be stable). Intuitively, by rejecting the outcome (2, 1) player 2 
indicates that s/he will be demanding the high payoff in the second period. 
In the three-period model such a rejection is ambiguous-player 2 could be 

’ The example actually involves a minor moditication of the previous model. 
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1 hl hhl hhh 

L 1.1 1.2 1.2 1.2 

HL 2,1 6.6 6,26 6,28 

HHL 2.1 26,ii iF.5’ 6’326’ 

HHH 2.1 ‘6.6 26’,S’ 0,O 

FIGURE 1 

indicating a demand for the high payoff in either the second or the third 
period. Formally it is proven below that (2, 1) is a hyperstable outcome of 
the game in Fig. 1. 

PROPOSITION 2. In the three-period model of Fig. 1 the outcome (2, 1) is 
hyperstahle. 

Proof: First the set of Nash equilibria, denoted M, which yields (2, 1) 
is described: 

M= {((M, HL, 8, HHL; 1 -cc-/3,HHH), 1): 2Sa+d2(1 -a)< 1 

26a+2S’j?6 1, CIE [O, l]fiE [O, 11, C(+bE [O, 111 

Here ((a, HL; j$ HHL; 1 - c( - fi, HHH), 1) denotes the strategy pair con- 
sisting of player l’s playing HL (respectively HHL, HHH) with probability 
a (respectively b, 1 - c( - 8) and player 2’s playing 1. In particular 
([(l-S’)/(26-6”), HL;(26- 1)/(26-d’), HHH], 1)~Mand ([(I -S2)/ 
(26 - 89, HL; (26 - 1)/46 - 26’), HHL; (26 - 1)/(46 - 2h2), HHH], 1) 
EM. Denote the strategy of player 1 in the former equilibrium by q, and 
in the latter by r, . 

Next it is argued that if any collection of payoffs in the matrix of Fig. 1 
are perturbed by some collection of E’S (where the E’S are sufficiently small) 
then the perturbed game has a Nash equilibrium which is close to one of 
the equilibria in M. Only the essential parts of this argument are provided 
below. 

Step 1. L and hl can be ignored since in no equilibrium close to A4 will 
either be assigned positive probability. 

1 hl hh 

L 1.1 1.2 1.2 

HL 2.1 6,6 &2b 

HH 2.1 2&rS 0,O 

FIGURE 2 
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Step 2. Assume that the only perturbations are to player l’s payoffs in 
the cells corresponding to (HL, l), (HH, 1) and (HHH, l), and denote 
these perturbations by E, , c2, and Ed, respectively. Perturbations of other 
payoffs in the matrix can be dealt with using arguments which involve the 
same steps and approximating equilibria as below-the arguments are 
similar but more tedious, hence are omitted. 

Step 3. If ~~ 3 E, and cj 3 E? then (HHH, 1) E M is a Nash equilibrium 
of the perturbed game. 

Step 4. If e, > Ed and E, 3 E~ then there is an equilibrium of the per- 
turbed game close to (q, , 1) E M. In particular ( ql, ( 1 - ~1, 1; I*, hhl) ) is an 
equilibrium of the perturbed game, where p solves 

(2fE,)(l -I*)+s/I=(2+Ej)(l-~)+26*~~(2+&~)(1-~)+6’~. (I) 

This equation makes player 1 indifferent between HL and HHH, with both 

preferred to HHL. Furthermore, as (Ed , Ed) -+ (0, O), p + 0, so this equi- 
librium is close to M. 

Step 5. If E, > Ed and F? > E, then either there is an equilibrium of the 
perturbed game close to (q, , 1) E M, or there is an equilibrium of the per- 
turbed game close to (r, , 1 ) E M. The former holds if there is a p E [0, 11 
such that (1 ) is satisfied. The latter is the case if there are 0, 11 E [0, 11 with 
II + 11 E [0, I ] such that 

(2 + E, )( 1 - v - r/) + 60 + 6Y/ = (2 + e3)( 1 - 0 - r/) + WI, 

=(2+E2)(1-u---)+~?v+~Z~. (2) 

For ~1 solving Eq. (1 ), we can proceed as in Step 4. For v, t/ solving Eq. (2), 
if player 2 plays rz = (1 -u - ‘I, 1; v, hhl; ‘1, hhh) then player 1 is indifferent 
among HL, HHL, and HHL, so (Y, , rl> is an equilibrium of the perturbed 
game. It is easily verified that, as (Ed, Ed, Ed) -+ (0, 0, 0), v + 0 and 4 + 0, 
and it can also be demonstrated, by comparing Eqs. (1) and (2), that at 
least one of these equations can be solved with p, II, u, and v + q in [0, 11. 

(Q.E.D) 
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