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Abstract: 

The COVID-19 pandemic demonstrated that the process of global vaccination against a novel virus can be a 
prolonged one. Social distancing measures, that are initially adopted to control the pandemic, are gradually 
relaxed as vaccination progresses and population immunity increases. The result is a prolonged period of high 
disease prevalence combined with a fitness advantage for vaccine-resistant variants, which together lead to 
a considerably increased probability for vaccine escape. A spatial vaccination strategy is proposed that has the 
potential to dramatically reduce this risk. Rather than dispersing the vaccination effort evenly throughout a 
country, distinct geographic regions of the country are sequentially vaccinated, quickly bringing each to 
effective herd immunity. Regions with high vaccination rates will then have low infection rates and vice versa. 
Since people primarily interact within their own region, spatial vaccination reduces the number of encounters 
between infected individuals (the source of mutations) and vaccinated individuals (who facilitate the spread 
of vaccine-resistant strains). Thus, spatial vaccination may help mitigate the global risk of vaccine-resistant 
variants.  
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1. Introduction 

A prime goal of vaccination during an ongoing pandemic is the rapid attainment of herd immunity, a state in 
which the proportion of immunized individuals is large enough to block the spread of the virus. The literature 
has focused on optimization strategies for efficient vaccination campaigns of large populations during a 
pandemic. These strategies are often designed to exploit the structure of social networks, based on the idea 
that the transmission dynamics are strongly intertwined with the network’s intrinsic connectivity patterns [1]. 
Thus, for example, network heterogeneity motivates the prioritized vaccination of “super-spreaders” [2]. At 
the mesoscopic scale, it was found that pandemic intervention strategies that target local network structures 
significantly outperform those that solely focus on the entire network structure simultaneously [3]. 

In addition to rapid eradication of the current pathogenic strain, an important aim of a vaccination campaign 
should be to minimize the chance of emergence, due to mutation, of a next strain, and in particular a vaccine-
resistant strain that may undermine the entire campaign [4-16]. Indeed, if a vaccine-resistant variant appears 
by spontaneous mutation during a vaccination campaign it may have a clear advantage over the original strain, 
against which vaccines were targeted, since it can infect both vaccinated and unvaccinated individuals. Recent 
mathematical modeling has, in fact, shown that averting such escape scenarios is only possible under a 
combination of rapid vaccination and strict social distancing [17], a situation which the current campaign has 
shown to be unfeasible. 

Given the relatively slow pace of vaccination, is it possible to mitigate the risk that vaccine resistance will 
emerge? The solution proposed here is based on spatial vaccination, a new vaccination strategy that has the 
potential to dramatically reduce the probability of this undesired evolutionary development. We focus on the 
current COVID-19 pandemic as a case study and in particular on the period preceding the appearance of the 
highly contagious though less severe Omicron variant. 

Since the initial COVID-19 strains (namely, Wuhan and Alpha) were relatively severe, and since no vaccine 
existed at the time, strict social distancing measures were employed to keep the pandemic under control and 
prevent it from proliferating. These measures were both imposed by the authorities and also driven by 
individuals’ independent response to the spread. The result was an ongoing adaptive behavior that reacted 
to the severity of the spread, thus maintaining the effective reproduction number R at around unity (Figure 1) 
[18]. In particular, social distancing measures were gradually relaxed as vaccination progressed and population 
immunity increased. Such a combination of vaccination and adaptive social distancing may have crucial 
implications for vaccine escape. Indeed, we depart from the canonical SIR models and explicitly take into 
account adaptive social distancing. 

 
Figure 1: The global reproduction rate (R) during the period 2/20 to 8/21 [19,20]. As a result of adaptive social distancing, society 
converges to a state in which R is maintained in the vicinity of unity (dashed line). It can therefore be expected that as vaccination 
progresses and population immunity is gradually acquired, social distancing practices will be relaxed, thus maintaining R at about 1.  
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To understand the effect of adaptive social distancing more clearly, consider the gradual buildup of population 
immunity as vaccination gains prevalence. Instead of consistently pushing R to below 1, the increase in 
population immunity is offset by a relaxation of social distancing, keeping R around 1 and maintaining a 
significant rate of infection, a rate that will likely persist until vaccination prevalence approaches herd 
immunity levels [19]. Indeed, such a pattern has can be observed in countries such as the UK and the US 
(Figure 2). 

 
Figure 2: Actual vs. predicted pandemic status in the UK and US during the vaccination campaign. As the fraction of the (first-dose) 
vaccinated (green line) increases, the extrapolated R (dotted blue line) declines. This extrapolation assumes that factors such as the 
social distancing restrictions, variant composition, weather, etc. remain unchanged from the start of the vaccination campaign. The 
empirically measured R (solid blue line) has remained in the vicinity of unity (with a temporary jump to 1.5 just after the introduction 
of the more infectious delta variant). Furthermore, the extrapolated number of infections (dotted red line) declines much faster than 
the actual number (solid red line). These trends indeed confirm that adaptive social behavior leads to a relaxation in prophylactic 
measures, in response to the accumulation of population immunity. 

These conditions create a potentially fertile breeding ground for vaccine escape [21]. Once a significant share 
of the population is vaccinated, a vaccine-resistant variant, which can potentially infect anyone, whether 
vaccinated or not, has a selective advantage relative to the wild-type strain, as the latter can only infect 
unvaccinated individuals. Since the wild type’s R is maintained around 1, this relative advantage translates 
into an absolute positive growth rate of R>1 for the resistant variant, allowing it - if it occurs by a random 
mutation - to quickly spread throughout the population. This, together with the large number of infections 
expected during the slow vaccination process, might create a high probability that a mutation will occur and 
take over the population. Such a mechanism for vaccine escape is, indeed, unique to situations in which 
mitigation involves both vaccination and social distancing, with the latter being relaxed in response to the 
progress of the former [18, 19, 21, 22]. 

The straightforward solution is to avoid the extended period in which high vaccination prevalence coexists 
alongside a high rate of infection. Ideally, this would dictate a policy to vaccinate the entire population within 
a short period of time. Such a solution, however, ignores the main bottleneck to vaccine rollout, namely the 
inherent limitations on vaccination capacity. To overcome this obstacle, we propose a spatial vaccination 
strategy which will be shown to dramatically reduce the risk of vaccine escape, even under the existing 
constraints on the vaccination rate. 

The proposed spatial strategy takes advantage of the geographic segregation that often characterizes the 
population distribution, and the fact that people mainly interact within the region they reside in. We propose 
to divide each country (or possibly a smaller geographic unit such as a state) into smaller regions that are 
sufficiently disconnected in terms of social interactions and then sequentially vaccinate one region at a time, 
thus concentrating the entire country’s vaccination capacity in order to quickly bring that region towards herd 
immunity. Such partitioning would replace the gradual accumulation of nationwide herd immunity. The 
obvious advantage is that the rapid achievement of herd immunity in each individual region should avoid the 
prolonged period of interaction between infected individuals and the vaccinated population. Thus, the 
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dangerous combination of high infection rates (the source of mutations) and high vaccination rates (which 
provide an advantage to resistant strains) is dramatically reduced. Since the majority of infectious interactions 
are local in nature [23], namely they occur within a single region; cross-infection between regions is rare. 
Therefore, vaccinating all regions one by one may be able to facilitate a safe and rapid accumulation of local 
herd immunity in each region, until it is finally achieved for the entire population. The result will be to reach 
country-level immunity in roughly the same amount of time, but with a significantly lower risk of an escaping 
variant.1 

Other considerations may also be important in devising an effective vaccination strategy, and in particular the 
prioritization of the vulnerable population. We therefore also examine the application of spatial vaccination 
only after a uniform vaccination of up to 15% of the population (i.e. the most vulnerable groups). As we 
demonstrate, this has limited impact on the outcome of the proposed spatial vaccination strategy. The reason 
for this is that most of the additional risk of vaccine escape due to uniform vaccination occurs only once the 
vaccine coverage is well above 15% - prior to that the resistant variant’s selective advantage is small. 

Spatial vaccination allows for additional (relatively low-cost) measures that further reduce the risk of vaccine 
escape and are not applicable or are too costly under a uniform vaccination regime. First, an effort can be 
made to identify and isolate infections by the resistant variant in the vaccinated areas. Such variant contact 
tracing is likely to be successful since in vaccinated areas, which are clear of wild-type infections, every short 
infection chain is highly likely to originate from the resistant variant. This measure is difficult to apply under 
the current vaccination regime, in which resistant variant infections may be hidden among the predominant 
wild-type infections. Second, the authorities can impose limitations on population movement between the 
vaccinated and unvaccinated regions. Such limitations would not be overly burdensome if the order of 
vaccination is wisely planned, with the goal of keeping the vaccinated and unvaccinated areas geographically 
contiguous, with one (moving) border between them. Third, the authorities may impose a short, moving 
lockdown that is applied in each region during or just prior to vaccination. Such a localized and brief lockdown 
can be more easily enforced relative to prolonged countrywide lockdowns, which impose a devastating 
individual and societal burden. 

Finally, the spatial strategy is effective not only in mitigating vaccine escape, but also in reducing the overall 
number of infections. This is because, as vaccination progresses, the infections in regions that reach herd 
immunity will cease much earlier than under uniform vaccination. In fact, if the number of regions is 
sufficiently large, the total number of infections is reduced by close to 50%, since the infections in a region 
will on average end after half of the nationwide vaccination time.  

Looking to the future, spatial vaccination may be useful if humanity will face a virus with two crucial 
properties. First, it is sufficiently harmful that – until vaccination can control it – social distancing must be 
imposed.  imposed until a vaccine is developed. This is because it is the relaxation of social distancing following 
vaccination that generates the increased risk of resistant variants. Second, that R0 is not sufficiently high to 
prevent the vaccination from achieving herd immunity. The ability to quickly bring each specific region to herd 
immunity, so that infections cease there, is at the core of spatial vaccination. A future pandemic with these 
two properties may involve a completely new virus or a new variant of COVID-19 which escapes the immunity 
conferred by infection with the current strains or by vaccination, yet has a much lower R0.2 

                                                           
1  The model emphasizes the small-numbers evolutionary dynamics that determine whether a mutation will survive 
under different vaccination strategies. This key factor yields an opposite conclusion as compared to [16], whereas the 
mutant with an advantage is assumed to survive for sure.   
2 Note that an escape variant can proliferate even if it is deficient relative to the current strain. 
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2. Analysis 

We consider the susceptible-infected-recovered (SIR) model and augment it with vaccination and mutations 
(Appendix 1) [24, 25]. The population is assumed to adapt its behavior by means of social distancing in order 
to maintain R at approximately 1. As a result, we observe a roughly constant rate of new infections, which we 
set at 10% of the population per year.3 Following one year of such dynamics, we introduce the vaccine whose 
rollout and production rates make it possible to vaccinate the population within one additional year.4 The 
vaccinated territory (a country, state or other distinct geographic unit) is divided into K regions such that, on 
average, only C=1% of a person’s interactions are out-of-region.5 We vaccinate all regions sequentially up to 
80% coverage. Hence, a specific region k (k=1,...,K) can be in one of three states at any given moment: pending 
vaccination as it awaits its turn, undergoing vaccination, and post-vaccination, at which point the campaign 
progresses to vaccinating region k+1. Regions that are pending vaccination continue to accumulate infections 
at the constant rate of 10%/year. Similarly, regions undergoing vaccination also experience a constant 10% 
annual infection rate until they reach herd immunity. This is a consequence of their adaptive social distancing, 
which is relaxed as immunity accumulates [18, 19]. After herd immunity is surpassed, infections quickly 
decrease and social distancing ceases. 

Mutations occur with a small probability, denoted by 𝜇𝜇, at each infection event. Hence, an individual carrying 
the wild type may infect a susceptible individual who may then, with probability 𝜇𝜇, acquire a vaccine-resistant 
strain.6 If such a mutant occurs, we model the process of subsequent infection using a discrete random walk 
process until it either dies out or takes over (see Appendix 1). For expositional simplicity, we assume for now 
that the resistant strain (1) has the same basic reproduction number as the wild-type strain, (2) is fully resistant 
to the vaccine, and (3) cannot infect those who have recovered from prior infection with the wild type. These 
assumptions are relaxed in Section 5. 

Illustrative example 

To demonstrate the merits of the spatial vaccination strategy, in Figure 3 we illustrate the different vaccination 
scenarios for K = 3 regions over a one-year vaccination phase. First, we examine simultaneous vaccination, in 
which all three regions are treated concurrently (Figure 3: panels a-c). The vaccine rollout (purple line) occurs 
at the same pace in all three regions over the course of the year. During this period, as the population adapts 
its behavior to maintain R at around 1, we continue to observe a roughly constant stream of infection (red 
line) in all regions. This roughly stable level declines sharply once the herd immunity threshold is crossed (the 
dashed grey line). (Note that the different variables have different scales and are presented together in order 
to show the interplay between them.) 

Sporadic instances of the resistant strain (the black lines) occur at random locations/points in time, denoted 
by 1,2,3 and 4. For example, instance 1 occurs in Region 1 one month after the start of the vaccination 
campaign (t=1). At that time, the vaccine prevalence is still low. The resistant mutant thus has no significant 
                                                           
3 This rate represents a reasonable global 4:1 infection-to-case ratio (the total number of world cases in the last 12 
months is about 170 million within a population of 7.8 billion). Changing the rate of infection (as long as it is not too 
high) has almost no effect on our comparative results. More precisely, if we take an infection rate of 5% and double the 
mutation probability, then the escape probabilities under all of the various regimes are almost identical. 
4 For simplicity, we consider one-dose vaccination and immediate full immunity following vaccination. 
5 We can imagine a world made up of many countries, each divided into K regions, such that in step k each country 
vaccinates the population in its own region k. In terms of the model, world region k is the union of all region k’s 
worldwide.  
6 This simplistic model of resistant variant emergence ignores various biological facts, which are discussed in detail in 
Section 6. 
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selective advantage and therefore fails to proliferate. A similar pattern is observed in instance 3, which occurs 
at t = 3 months in Region 2. However, as the vaccination rollout progresses, the effective reproduction number 
of the resistant variant increases. Thus, the risk that a mutant will survive and proliferate, indicated by the 
shaded background, increases from low (light shading) to high (dark shading). This risk then rapidly drops 
again after herd immunity is surpassed and the infection streams cease. Indeed, instances 2 and 4, which 
occur at t = 9 months and t = 7 months, respectively, both have a significant selective advantage and are hence 
able to spread (steep ascent of black lines). These mutants eventually reach a number of infections beyond 
which it becomes inevitable that they will take over the population. As a result, we witness vaccine escape, 
and the simultaneous vaccination campaign fails.    

We next consider the same scenario, except that instead of vaccinating the entire population over the course 
of one year, we sequentially vaccinate the regions in three rounds, with each campaign lasting four months 
(Figure 2: panels d-f). The two escaping variants in instances 2 and 4 are now averted. Instance 2 does not 
occur since at t = 9 months Region 1 is already cleared of the virus. Instance 4, on the other hand, also occurs 
in this scenario. However, it fails to proliferate since at the time of its appearance, i.e. at t=7 months, Region 
4 has not yet begun to vaccinate, and therefore, in contrast to the previous scenario, this mutant has a low 
reproduction number (light rather than dark shading), and poses little risk of escape. 

Hence, by splitting the yearly nationwide vaccination cycle into shorter regional ones, we significantly reduce 
the risk of vaccine escape, thus replacing the extended high-risk time window of potential vaccine escape 
(Figure 2a-c) with a sequence of narrow time windows, one in each region (Figure 2d-f). 

 
Figure 3: Illustration of uniform vaccination (top panels) vs. spatial vaccination (bottom panels) with 3 regions. As the proportion of 
the vaccinated population (green line) increases from 0 to 1, social distancing measures are gradually relaxed. Thus, the resistant 
variant’s R increases and with it the chance that a mutation will survive and become dominant (degree of orange shading). The large 
number of wild-type infections (red line) remains roughly constant until vaccination crosses the herd immunity level (dashed line). At 
that point, infections quickly decline and the risk of escape (orange shading) diminishes. Four potential instances of resistant mutants 
(1-4, black lines) are considered and the random walks of the (very small) number of infections in their early stages are illustrated. 
Under uniform vaccination (top panels), instances 2 and 4 occur in an environment with a large R (dark shading) and succeed in 
proliferating to numbers from which takeover is almost guaranteed. Under spatial vaccination (bottom panels), in instance 4 the 
mutation encounters a low R and dies out; mutation 2 does not even occur since in region 1 the stream of wild-type infections ends 
early on due to the rapid vaccination campaign. Instances 1 and 3 occur, under both scenarios, in environments with a small R and 
therefore die out. 
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Simulation results 

We now turn to computing the probability of vaccine escape. The risk of such an event depends, first and 
foremost, on the probability of a resistant mutation 𝜇𝜇. It is worth emphasizing that vaccine escape is a global 
problem, since a mutation in any country, even outside the territory currently being vaccinated, will eventually 
reach all countries and potentially undermine the vaccination campaign globally. Therefore, even if 𝜇𝜇  is 
extremely small, given the large-scale transmission of infection worldwide, the risk is not negligible. To 
account for this in our analysis, we focus not only on instances of mutation within the population of our 
simulated territory, but rather on all potential mutations on a global scale, i.e. among a population of 𝑁𝑁 =
7.8 × 109 . The challenge is that the value of 𝜇𝜇  is unknown. Thus, while the probability of a single point 
mutation in SARS-COV-2 can be computed from its genetic properties, the probability that a combination of 
mutations will generate a variant resistant to the current vaccines cannot be calculated. We thus consider a 
broad range of mutation probabilities, spanning three orders of magnitude, from extremely rare (𝜇𝜇 = 10−10) 
to highly frequent (𝜇𝜇 = 10−7). Under a mutation rate of 𝜇𝜇 < 10−10(< 𝑁𝑁−1 ), it is unlikely that even one 
mutation will occur, even in the case that 10% of the world population is infected over the course of one year, 
and therefore escape is very unlikely. With a rate of 𝜇𝜇 > 10−7 mutants are present at any given moment 
among the estimated 107  infected individuals in each infection cycle, and therefore an escape is almost 
certain even under instantaneous vaccination. For each value of 𝜇𝜇  within the range of interest, namely 
10−10 < 𝜇𝜇 < 10−7, we simulated 50000 realizations and calculated the escape probability P from the number 
of realizations in which a resistant strain was able to propagate and take over the population.7 

The results are presented in Figure 4. We first consider the ideal scenario in which the entire population is 
vaccinated instantaneously, i.e. in a single day (the black curve). Under these conditions, the only risk of 
vaccine escape originates from mutations that occurred prior to the vaccination campaign. We find that for 
𝜇𝜇 > 10−7 escape is practically unavoidable (𝑃𝑃 = 1). This marks the upper bound on 𝜇𝜇, beyond which we 
cannot hope to avert vaccine escape. Of course, instantaneous vaccination is unattainable in practice. 
Therefore, the black curve in Figure 4 represents our ideal benchmark to which we will compare the different 
strategies.  

We next consider simultaneous vaccination over the course of one year (the red curve). As expected, we find 
that the extended vaccination period exhibits a higher probability of escape. Specifically, we observe a window 
of 10−7 > 𝜇𝜇 > 10−10 in which the year-long vaccination campaign leads to significant additional risk. 

Finally, we consider our proposed spatial vaccination strategy, which divides the vaccinated territory into K=10 
regions, each with ~10% of the population (the dark blue curve). The results clearly show that spatial 
vaccination eliminates a large part of the excess risk, bringing us closer to the desired benchmark. For K=100 
(light blue curve), we only observe a marginal additional benefit, which is an indication of the bounds on the 
potential benefit of spatial vaccination. 

                                                           
7 Additional parameter values for the simulation are: R0=4; infection cycle of 4 days. 
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FIGURE 4: Probability of vaccine escape as a function of the mutation rate under various vaccination regimes. For mutation rates 
between 10−10 and 10−7, the probability of escape under the current regime of uniform one-year vaccination (red curve) is far higher 
than under the benchmark of instantaneous world vaccination (black curve). Spatial vaccination with K=10 regions (dark blue curve) 
subject to the same one-year constraint restores about 50% of the excess risk. Increasing the number of regions to K=100 (light blue 
curve) generates a modest additional gain. 

Quantifying the differences in escape risk 

Obtaining a single number that measures the differences in escape risk under the various vaccination regimes 
is not straightforward. For example, the difference in escape probability is large for intermediate mutation 
rates but small for very low or very high ones. Using the ratio of escape probabilities does not solve the 
problem either since again its value is not constant, becoming smaller at high mutation rates. We therefore 
propose a more suitable metric for comparing vaccination regimes: the difference in the respective mutation 
rates that lead to the same escape probability under the two regimes. In Appendix B, we formally prove that 
this measure is constant across different escape probabilities. Thus, the curves in Figure 4 are lateral shifts of 
one another, and one number, i.e. the horizontal distance, suffices to compare two regimes. 

With this metric in hand, we can quantify the results of the simulation above. The excess risk due to a uniform 
one-year vaccination regime relative to the instantaneous vaccination benchmark is 0.8 orders of magnitudes. 
That is, uniform vaccination increases the escape risk to the same extent as in the case that mutations were 
100.8 = 6.3 times more frequent. Spatial vaccination with K=10 regions restores 0.42 orders of magnitudes 
or in other words about 50% of the excess risk. Thus, moving from uniform to spatial vaccination allows for a 
mutation rate that is 100.42 = 2.6 times higher for the same escape risk. 

The importance of reducing the risk by 0.4 orders of magnitudes depends on our assumption regarding the 
probability distribution of 𝜇𝜇. We discuss ways to address this issue in Section 6. Note also that this result 
hinges on the simplistic assumption that resistant variants are as infectious as the wild type, which was made 
for purposes of simplifying the exposition. In section 5, we make a more realistic assumption that the escape 
variant has a lower basic reproductive number than the wild type in view of the fact that immune evasion may 
require deleterious mutation in the virus [26, 27]. Under such assumptions, we obtain an even stronger 
advantage of spatial over uniform vaccination. Moreover, we show in Section 4 that using spatial vaccination 
makes it possible to employ a number of complementary measures that are infeasible under uniform 
vaccination. These measures improve the effectiveness of the spatial strategy to an even greater extent. 

Reducing the total number of infections 

Apart from reducing the risk of vaccine escape, spatial vaccination has a second advantage: a dramatic 
reduction in the number of infections with the wild-type strain. This is because in vaccinated regions which 
reach herd immunity, the stream of infections ceases much earlier than under uniform vaccination. As a rough 
approximation, if the number of regions is sufficiently large, the total number of infections is reduced by close 
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to 50% as compared to the uniform vaccination regime. To see this, note that region k=1...K experiences 
infection from time 0 until time k/K and thus, for the average region infections end at time (1+K)/K, which 
approaches ½ for large K. Thus, for the average region, infections last for half a year rather than one year, as 
under uniform vaccination.8 

3. The partition into regions  

The setting of the parameter K, i.e. the level of spatial partitioning, involves a critical tradeoff. On the one 
hand, the larger K is, the smaller each region will be and therefore the faster will be a region’s attainment of 
herd immunity. This limits the time window in which vaccinated and infected individuals are interacting and 
thus reduces the escape risk for each region. At first glance, It would therefore seem preferable to partition 
the territory into as many regions as possible. However, increasing K comes at a price: if the regions are too 
small they may not be socially separable. For example, if we try to partition a city or a densely populated 
country, individuals from different regions are likely to interact, undermining the potential benefit of the 
spatial strategy. We therefore need to seek an optimal balance between the number of regions (K) and the 
level of inter-regional coupling (C).  

To systematically examine this tradeoff, in Figure 5 we present the escape probability P vs. the number of 
regions K, under various values of the coupling parameter C. We first observe that the benefit from increasing 
K reaches saturation for K > 20, which is in line with our previous results in Figure 4, which showed only a 
marginal gain from increasing K from 10 to 100. As expected, we also find that as C increases the effectiveness 
of the spatial strategy declines. Specifically, for C > 5% the spatial vaccination strategy ceases to offer a 
significant benefit.  

 
Figure 5: The number of regions vs. the separation between regions (for 𝜇𝜇 = 10−8): In the case of a contact ratio of 1% (blue line)  
or 2% (light blue line) we observe a steep reduction in the probability of escape as the number of regions K increases up to about 20; 
the benefit of increasing K further is limited (the curves almost flatten out). With a contact ratio of 5% (orange) or 10% (red) the benefit 
of increasing K is small, so that C=5% and K=10 is equivalent to C=1% and K=3. The black line indicates the ideal limit at which there 
are no contacts between regions (C=0). 

                                                           
8 This back-of-the-envelope calculation assumes that the threshold at which we end vaccinating one region and move 
to the next is fixed and is equal to that reached after one year under uniform vaccination. In fact, there is an interesting 
tradeoff between minimizing infections and minimizing the probability of a resistant variant, with the vaccination 
threshold lower for the former strategy. This is because the tail of infections that occur after the herd immunity level 
has been reached, and when the variant has a high R, poses an increased risk of vaccine evasion. To reduce this risk, it 
is important to continue vaccination in order to achieve a steep decline in infections down to zero. In contrast, if the 
main purpose is to reduce the total number of infections, then it is better to move to the next region earlier on, 
allowing the infection stream to diminish more quickly. 
 



9 

This makes it possible to establish guidelines for spatial partitioning. Each country or equivalent geographic 
unit should seek to establish naturally separated regions that satisfy C ≅ 1%, namely that only 1% of the 
population’s interactions are out-of-region. Therefore, partitioning for example a city or large metropolitan 
area is likely to be inefficient, while separating at the county, province or state level is more likely to achieve 
the desired effect. In Appendix C, we discuss the realization of this limit in realistic settings. 

It is important to note that even if a considerable percentage of the population lives in a large metropolitan 
area that cannot be divided for purposes of partial vaccination, it is still beneficial to divide the remaining 
population according to region. This is because the escape risk from each region is cumulative. That is, the 
factor that determines the probability of a resistant variant takeover is the proportion of infections (i.e. 
mutation opportunities) that will occur while there is a highly vaccinated population in that region (resulting 
in a high reproduction rate for resistant variants). Thus, for example, if 25% of the population lives in a 
metropolitan area that takes three months to vaccinate, and the remaining 75% can be divided into 9 regions 
that take one month each to vaccinate, then 75% of the K=1 probability is reduced by the factor that K=12 
generates, and 25% is reduced by the factor that K=4 generates. 

The role of inter-region coupling and the order of vaccination 

To better understand the role of inter-region coupling C, consider a region that has already been vaccinated. 
Having reached local herd immunity, infections in that region have ceased and hence, given adaptive social 
behavior, practically all restrictions have been lifted. Due to the vaccination, the wild-type’s reproduction 
number is kept below one, and thus any wild-type infection that arrives from another region dies out quickly. 
However, if the resistant strain arrives, then, absent social distancing, it benefits from a very high R (which 
equals R0) and therefore quickly ignites a new breakout of infection. Note that for any region, this risk only 
exists post-vaccination since prior to vaccination social distancing restrictions limit the ability of a mutant to 
take off, and incoming infections are negligible relative to the flow of within-region infections. 

The implication is that interactions between vaccinated regions or between unvaccinated regions do not pose 
a problem. What matters is the separation, at each point in time, between the vaccinated regions and the 
not-yet-vaccinated regions. Thus, the partitioning into regions and the order of vaccination should be designed 
such that bordering regions, which are likely to have a high level of contact, are vaccinated adjacently in time, 
so that there is one “moving” border between the vaccinated and unvaccinated regions. Therefore, C should 
be interpreted as the ratio of an average person’s interactions with people on the other side of the “border” 
to his interactions with people on his own side of the border. Under this interpretation, C∼1% or lower appears 
to be reasonable. 

4. Complementary measures 

The spatial vaccination strategy makes it possible to employ a few simple and relatively low-cost 
complementary measures that reduce the risk of vaccine escape even further, including travel limitations 
between vaccinated and unvaccinated regions, contact tracing for resistant variants and temporary regional 
lockdowns during vaccination. Importantly, these measures are not applicable or are too costly under a 
uniform vaccination regime. We assess the effectiveness of each of these measures by repeating the 
simulation carried out in Section 2 with the necessary modifications (see Appendix 1 for a formal treatment). 

a. Limitations on travel between vaccinated and unvaccinated regions 

The authorities can impose temporary limitations on travel between vaccinated and not-as-yet vaccinated 
regions. This will avoid the potential spillover of mutations from unvaccinated to vaccinated regions. In the 
latter restrictions are lifted and any entering mutant will enjoy a large reproduction number and a high 
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likelihood of success. Indeed, the coupling between same-type regions has only little effect and thus the effect 
of reducing travel just between vaccinated and not-as-yet vaccinated regions is almost the same as that of a 
reducing travel between all the regions (i.e., reducing the coupling parameter C). Importantly, if the vaccinated 
regions as a whole and the unvaccinated regions as a whole are each kept contiguous, with one moving border 
between them as explained above, then the limitations on travel - only across that border - will not be overly 
burdensome. 

Figure 6a presents the effect of travel limitations between vaccinated and unvaccinated regions. The red and 
black lines represent, as they did in Figure 4 above, the escape probabilities under uniform vaccination and 
instantaneous vaccination, respectively. We observe that the probability of escape under spatial vaccination 
with K=10 regions and c=1% (blue curved) is reduced when travel is restricted by a factor of 5 (light blue curve). 
We also consider the case of C=5% (brown curve). We see that restricting travel between vaccinated and 
unvaccinated regions by a factor of 5 (light brown) is almost as effective as having C=1% initially (blue curve). 

b. Contact tracing of the resistant variant 

Recall that, in vaccinated regions, the wild-type strain has been eradicated and moreover, any wild-type 
infection imported from other regions dies quickly due to the high vaccination level. Therefore, any infection 
chain among vaccinated individuals - even if short - is highly suspected of belonging to the resistant strain. As 
a result, contact tracing targeted specifically at resistant variants will be highly effective. It is worth 
emphasizing that variant contact tracing can be effective only under the spatial vaccination strategy. Indeed, 
under uniform vaccination resistant-variant infections are hidden among the many wild-type infections, and 
hence contact tracing becomes infeasible. 

We repeat the simulation under the assumption that contact tracing of infections with the resistant strain can 
be effectively applied only when - due to vaccination - the stream of new wild-type infections in region k falls 
to below 1/10 of the pre-vaccination level and that when contact tracing is implemented it reduces the 
resistant variant’s reproduction number by a factor of 2. The outcome is depicted by the green line in Figure 
6b. 

c. A moving temporary lockdown 

A third measure that can further reduce the escape risk under spatial vaccination is the application of a short-
term, moving lockdown of the region currently being vaccinated. Indeed, a month-long lockdown will be more 
acceptable to the population than the year-long lockdown required to achieve the same objective under 
uniform vaccination, and it has a much better cost-benefit ratio. Figure 6b (purple line) presents the outcome 
under stricter temporary restrictions, only in the region being vaccinated, such that the reproduction number 
there is further reduced to 0.8 (rather than 1). 

Note that an alternative scenario which leads to the same outcome is a delay in the behavioral response to 
the increased level of vaccination. Since the increasing beneficial effect of vaccination is counteracted by a 
delayed relaxation of social distancing, the region being vaccinated will enjoy a reproduction number of less 
than 1. 
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Figure 6: Complementary measures. (a) Restricting travel between vaccinated and unvaccinated regions by a factor of 5 reduces the 
probability of escape (light brown vs. dark brown and light blue vs. blue curves). In particular, if the initial inter-region coupling is large 
(C=5%, dark brown), the outcome under travel restrictions (light brown) is almost as good as in the case of C=1% (blue), i.e. implying 
that travel between same-type regions has little effect. (b) A short temporary lockdown of the region being currently vaccinated, that 
reduces the effective reproduction number there to 0.8 (rather than 1) reduces the escape probability (purple vs. blue curves).  Contact 
tracing for the resistant variant - which is assumed to be feasible only in vaccinated regions that are almost clear from wild-type 
infections, and in that case reduces the variant’s effective reproduction number R by a factor of 2 - has a dramatic effect on the escape 
probability (green vs. blue curves). 

 

5. Practical and ethical concerns 
 
Although a spatial vaccination strategy will reduce the likelihood of escape variants, policy makers may have 
other considerations as well. Thus, they may also care about the total level of infection among the population, 
including of course infection with the current variant. Therefore, they may want to vaccinate certain 
populations sooner, either due to their increased vulnerability or higher contact rate. Furthermore, they may 
want to adopt a policy that is fair and also perceived to be so.    
 
The total number of infections 

It turns out that the spatial strategy is effective not only in mitigating vaccine escape, but also in reducing the 
overall number of infections. This is because, as vaccination progresses, the spread of infection in regions that 
reach herd immunity will cease much earlier than under uniform vaccination. In fact, if the number of regions 
is sufficiently large, then the total number of infections will be reduced by close to 50%, since infections in a 
specific region will on average end after half of the nationwide vaccination time.  

On the other hand, spatial vaccination might slow the vaccination process. Thus, there are two kinds of 
limitations on the ability to concentrate effort in small regions in order to accelerate vaccination: vaccine 
production capacity and logistic capabilities. The former is in fact a global constraint and therefore there is no 
difficulty in directing global output to specific regions. Therefore, this constraint does not limit the 
effectiveness of the spatial strategy. The second and binding constraint is dependent on logistics, such as how 
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easily medical personnel can be moved from one region to another, or the availability of facilities in which 
vaccination can take place. Thus, the overall pace of vaccination might be slowed by adopting the spatial 
strategy, and policymakers need to take this into account. However, the experience with COVID-19 shows that 
although vaccination is slow at first, the pace quickly improves. Therefore, it may turn out to be more effective 
to create the necessary logistics infrastructure and move it from region to region, thereby saving time. 

Prioritizing selected populations 

Considerations of morbidity and mortality might argue for prioritizing the vaccination of vulnerable 
populations, such as the elderly or those with certain pre-existing conditions, while the desire to lower 
infection rates may lead to earlier vaccination of populations with high contact rates, such as doctors or 
teachers (see [3]). We therefore consider a mixed vaccination regime, in which a policy of uniform vaccination 
is initially adopted for some proportion of the population (the prioritized group), followed by spatial 
vaccination of the remaining population. 

The outcome is presented in Figure 7. It can be seen that in the case where the prioritized group accounts for 
15% of the population, most of the benefit of spatial vaccination is preserved. This is because most of the 
additional risk of vaccine escape due to uniform vaccination occurs only once the vaccine coverage is well 
above 15%; prior to that the resistant variant has little selective advantage, if any. 

 

Figure 7: Prioritizing a defined population.  Allowing 15% of the population (such as the more vulnerable) to be vaccinated first and 
only then proceeding to the spatial vaccination strategy eliminates only a small part of the benefit from spatial vaccination. 

“Fairness” considerations 

Is the spatial vaccination policy “fair”? Section 3 described the benefit of a spatial strategy, where a minimal 
border is maintained between vaccinated and unvaccinated regions. However, people may prefer a policy that 
randomizes equally across the population, or within groups that are ordered according to some clear policy 
consideration. Note that the minimal-border policy does not preclude randomizing since the campaign can 
proceed in any direction – for example, from north to south or south to north – thereby maintaining some 
degree of fairness. However, this is not the case for a policy that prioritizes groups by, for example, degree of 
vulnerability, and hence the spatial vaccination policy may not be suitable when the ethical considerations of 
“fairness” dominate. 
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6. Viral environments in which spatial vaccination is advantageous 

Range of R0  

The advantage of spatial vaccination crucially depends on the feasibility of bringing regions to herd immunity, 
thus putting an end to infection and to the potential emergence of mutants. In the ideal case of a vaccine that 
provides perfect immunity against the wild type, achieving herd immunity requires that a proportion of at 
least 1-1/R0 of the population be vaccinated or infected. That level might be hard to reach in the presence of 
vaccine hesitancy or of populations that cannot be vaccinated.  

Thus, in the case of the COVID-19 pandemic, the spatial vaccination strategy would have been advantageous 
in the case of the original Wuhan strain (R0 of between 2 and 3) and the Alpha variant (R0 of between 3 and 
4). Since in the case of these strains the Moderna and Pfizer vaccines were almost fullproof in preventing 
transmission, herd immunity could have been reached with between 60% (Wuhan) and 70% (Alpha) of the 
population being vaccinated. However, in the case of variants such as Delta (R0 of between 5 and 8) or Omicron 
(R0 well above 10 and significantly reduced vaccine effectiveness) herd immunity is not feasible before a large 
proportion of the population is infected, and thus spatial vaccination is not helpful. 

The effect of the unvaccinated proportion of the population on the probability of vaccine escape (in the case 
of a vaccine that provides perfect immunity against the wild type and with R0=4) is described in Figure 8a. It 
can be seen that the benefit of spatial vaccination vs. uniform vaccination diminishes once the proportion of 
the unvaccinated exceeds 0.25 (which is about 1/R0) and is completely lost above 0.35. 

The difficulty of reaching herd immunity will be exacerbated when the vaccine is imperfect. This can occur in 
two cases: when the vaccine is “leaky,” i.e., less than fully effective in preventing transmission, or when its 
effectiveness wanes over time.   

“Leaky” vaccines 

Even at a reasonable level of R0, herd immunity is harder to reach with “leaky” vaccines. One would expect 
that with vaccines that have greater than 95% effectiveness, as in the case of the Moderna and Pfizer vaccines, 
the advantage of the spatial vaccination strategy will remain significant, though not in the case of less effective 
vaccines. Figure 8b describes an extension of our model to a leaky vaccine (assuming no unvaccinated). The 
qualitative effect of employing an imperfect vaccine is similar to that of having less than 100% vaccinated 
(Figure 8a).  

Vaccine waning 

A related form of vaccine imperfection is that its effect may wane over time. Thus, vaccine effectiveness will 
be diminished for those vaccinated early by the time the entire population has been vaccinated. Since our 
focus is whether herd immunity can be achieved, the question becomes the extent to which the vaccine’s 
effectiveness wanes during the time it takes to vaccinate the entire population.  

The effect of waning is demonstrated in Figure 8c. The waning parameter (on the horizontal axis) captures the 
speed of decline (assumed to be linear) in vaccine effectiveness (leakage) over a period of one year. The 
simulation assumes that it takes one year to vaccinate the entire population and that it is re-vaccinated yearly. 
Thus, while the group of people vaccinated at time 𝑇𝑇 is fully protected at that point in time, the average 
vaccine effectiveness for them at time 𝑇𝑇 + 𝑡𝑡 (where 0 < 𝑡𝑡 < 1 is the time in years after 𝑇𝑇) is 1 −𝑤𝑤𝑡𝑡 due to 
waning. At time 𝑇𝑇 + 1 the group is vaccinated again and vaccine effectiveness returns to 1, and so forth. We 
immediately see that as long as the waning is not excessively fast (not more than about 35% per year), spatial 
vaccination dominates uniform vaccination, as in the case without waning. 
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At some level of waning, the ability to reach herd immunity is lost. With uniform vaccination, this occurs when 
𝑤𝑤 reaches ½. To see this, note that after one year or more, at each point in time the population is always a 
mix of people who were vaccinated at different dates, from one year earlier (so that their leakage is 𝑤𝑤) to just 
now (so that their leakage is 0). On average, the leak is 𝑤𝑤/2, and if it is greater than 0.25 (= 1 − 𝑅𝑅0) then 
herd immunity is not achieved. Thus, at 𝑤𝑤 > ½ we see a jump in the escape probability. 

In the case of spatial vaccination, the loss of herd immunity occurs earlier. This is because the groups (which 
are differentiated by the period of time since their vaccination) do not mix, unlike in the case of uniform 
vaccination. Thus, the average protection in the regions vaccinated early on is below herd immunity, even 
when 𝑤𝑤 < ½. Importantly, note that when a region falls below the herd immunity level, it is quickly re-
infected through travel to and from other regions where infection is occurring. Unlike the small chance that a 
rare mutant will move between regions, it is very likely that some people infected with the wild type will travel 
across regions, unless there are severe limitations on movement.  

Thus, there is an intermediate range of 𝑤𝑤 where uniform vaccination dominates spatial vaccination. However, 
once 𝑤𝑤 is sufficiently high that herd immunity is lost even under uniform vaccination, the outcome under 
spatial vaccination dominates. The reason for this is straightforward: under uniform vaccination all regions 
have the same average protection, which is a little below herd immunity, implying both a maximal flux of 
infections and a high R0 for the escape variant. Under spatial vaccination, some regions have higher than 
average protection while others have less than average. Thus, some regions will be above the herd immunity 
level (and therefore will have no infections) while regions with lower protection will have the same number 
of infections but with a lower R0, which translates into a lower likelihood for a new escape variant to survive. 
Both effects are in favor of spatial vaccination. 

To compete the picture, it is worth emphasizing that if waning is fast and the disease is sufficiently severe that 
society is willing to bear the costs of achieving extinction, then spatial vaccination – coupled with a severe 
travel ban between vaccinated and unvaccinated regions – becomes the preferred policy. By quickly 
vaccinating regions successively, herd immunity is achieved before waning precludes it. And when protection 
in those regions declines to below herd immunity because of waning, reinfection is prevented thanks to the 
restrictions on movement between regions. 

 

Figure 8: The effect of incomplete or imperfect vaccination (for 𝜇𝜇 = 10−9). (a) When the proportion of unvaccinated people exceeds 
1/R0, such that herd immunity is not attained, the advantage of spatial vaccination is lost. (b) A similar outcome is achieved if the 
vaccine is not fully effective in preventing transmission (“leakage”). (c) If the vaccine’s effectiveness wanes over time, the advantage 
of spatial vaccination is lost for an intermediate rate of waning. 
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7. Extensions 

To simplify the exposition, we have so far assumed that an “ideal” escape variant, which (1) has the same 
basic reproduction number as the wild type, (2) cannot infect people with antibodies from a prior wild-type 
infection (i.e. we assumed two-way cross immunity) and (3) is fully resistant to the vaccine. In reality, there 
are a large number of conceivable combinations of mutations, in which each of the above assumptions may 
be violated. In this section, we examine the consequences of relaxing these assumptions. 

a. Escape is costly 

It is reasonable to assume that a vaccine-resistant variant will be deficient relative to the wild type with 
respect to its ability to infect unvaccinated individuals. This follows from our definition of the wild type, as the 
dominant variant prior to vaccination, i.e. that with the maximal R0 vs. unvaccinated among all variants. The 
resistant variant, which is selected from a strict subset of the variants - those resistant to the vaccine, will 
typically have a lower R0 vs. unvaccinated. Moreover, vaccines such as Moderna’s and Pfizer’s SARS Cov2 
vaccines are designed to target a conserved protein, such as the spike protein. This design is based on the 
rationale that targeting conserved and highly essential viral proteins is likely to impose a high cost on immune-
evading mutations [28].9 (Mutant binding data of the type produced in [29, 30] may be used to assess the 
existence and sign of potential correlation between, for example, antibody and receptor binding.) 

We capture this idea using the deficiency ratio, denoted by 𝑑𝑑, which is the ratio between the reproduction 
number of the mutant strain and that of the wild type, both in a naive population. Hence, 𝑑𝑑 = 1 implies no 
deficiency, which is what has been assumed up to this point, while 𝑑𝑑 = 0.5, for example, means that the 
variant’s reproduction number is half that of the wild type. In Figure 9(a,b) we present the probability of 
vaccine escape vs. the variant’s deficiency ratio 𝑑𝑑 and the mutation rate 𝜇𝜇, under simultaneous vaccination 
(9a) and spatial K=10 vaccination (9b). For completeness we consider the range 0.4 ≤ 𝑑𝑑 ≤ 1.2; however, as 
argued above, the middle of this range should be seen as more probable. As expected, in both cases we 
observe low risk (blue) in the bottom-right corner, either because mutations are rare (small 𝜇𝜇) or because 
they are deleterious to the virus (small 𝑑𝑑). In the opposite corner, where 𝜇𝜇 and 𝑑𝑑 are large, we observe a high 
risk (red) under both regimes. The two areas are separated by a band of intermediate risk (green). The crucial 
point is that under spatial vaccination the low-risk blue area is expanded, while the high-risk red area contracts 
to only the extreme upper-left corner. This clearly shows that spatial vaccination consistently mitigates the 
risk of vaccine escape throughout the entire range. 

Importantly, it can be seen that the benefit of spatial vaccination, namely how far it shifts the green and red 
areas to the right, is greater when the variant has higher deficiency (smaller d): while for 𝑑𝑑 = 1 the rightward 
shift is about 0.42 orders of magnitude (× 2.6) of 𝜇𝜇, for 𝑑𝑑 = 0.8 it is about 0.56 orders of magnitude (× 3.6) 
of 𝜇𝜇 (these are the respective horizontal distances in between the dotted and solid black curves in Figure 7b). 
The reason for the difference lies in the variant’s ability to survive before vaccination gives it an advantage. 
With 𝑑𝑑 << 1, the variant has an 𝑅𝑅 << 1 before vaccination and in its early stages. Thus, if it appears in these 
early stages then it will likely not survive. Only variants born late in the vaccination process, when their R 
exceeds unity, are able to survive, implying that spatial vaccination has a major advantage due to the 

                                                           
9 The fact that some of the existing variants (such as Beta) show some degree of vaccine escape together with a higher 
reproduction number does not imply that a typical escape variant would not have a fitness deficiency. These variants, 
which emerged during a period with no vaccination and hence no fitness advantage for vaccine resistance, have 
proliferated because they improve upon the previous dominant strain with respect to their infectiousness parameters 
(an improvement that is expected as part of the virus’s adaptation process to the new human host). In other words, 
their proliferation is not due to their improved ability to escape the vaccine. For a very helpful review of SARS-CoV-2 
variants and immune escape see [7]. 
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shortening of the high-risk period. With 𝑑𝑑 = 1, in contrast, variants born in the earlier stages have a higher 
chance of survival - under any vaccination regime - thus reducing the relative advantage of spatial vaccination. 

b. A variant that also infects the recovered 

We next examine the effect of the variant’s ability to also infect individuals with antibodies from prior infection 
with the wild type. As expected, the results, for both K = 1 (Figure 9c) and K=10 (Figure 9d), indicate that such 
a scenario increases the risk of escape relative to the case in which the variant cannot infect the recovered 
(Figures 9a and 9b). Note however that even under this scenario, in which the variant also infects the 
recovered, the spatial vaccination continues to maintain a clear advantage, as can be seen in the enlarged 
low-risk area (blue) and the diminished high-risk area (red).  

c. Escape is partial 

Another important issue we examine is partial vaccine escape, i.e. the vaccine provides some protection 
against the escape variant. This scenario appears to fit our current experience with some of the SARS-CoV-2 
variants [31, 32].10  

To quantify this scenario, we introduce a parameter measuring the severity of vaccine escape, denoted by 𝑒𝑒. 
Setting 𝑒𝑒 = 1 represents full escape, which is the scenario considered up to this point; 𝑒𝑒 = 0.5, for example, 
means that the vaccine is partially effective against the variant so that the variant escapes it with only 50% 
probability. In Figure 9(e,f), we set 𝑑𝑑 = 0.7 and examine the impact of introducing 𝑒𝑒 < 1. It can be seen that 
the contour lines now have a steep, almost vertical slope in both heat maps. Hence, the risk is largely 
independent of 𝑒𝑒  within the range 0.4 ≤ 𝑒𝑒 ≤ 1 . Importantly, this risk continues to fall as we shift from 
simultaneous vaccination (K = 1) to spatial vaccination (K = 10). 

d. A combined parameter space 

To complete the analysis, a combined parameter space is considered in which we vary both the deficiency and 
escape parameters. Thus, for each combination of 𝑑𝑑 ∈ [0.4,1.2] and 𝑒𝑒 ∈ [0.4,1], the mutation rate 𝜇𝜇 that 
generates an escape probability of P=50% is plotted. Figure 10a indeed shows that – over the entire parameter 
range – spatial vaccination tolerates a higher mutation rate for the same escape probability. Figure 10b 
investigates how we investigate how the advantage of spatial vaccination depends on the two parameters, by 
computing the ratio of the above mutation rates. Thus, while a higher rate of evasion increases the advantage 
of spatial vaccination, that advantage is maximized at intermediate values of the deficiency parameter. 

 

                                                           
10 Note, however, that as of now the existing variants have emerged in countries that have not yet achieved high levels 
of vaccination. As vaccination progresses, we might encounter variants that are able to better escape the vaccines. 



17 

 
Figure 9: Probability of escape for different mutation rates under spatial uniform vaccination (left) vs. spatial vaccination (right) 

(a,b) As a function of the variant’s deficiency ratio d relative to the wild-type strain. 
(c,d) Same as (a,b) except that the variant can infect individuals who have recovered from infection with the wild type. 
(e,f) As a function of the variant’s escape capability e. 
 
 

 
Figure 10: Mutation rate that leads to 50% escape probability (as a function of the variant’s deficiency d and escape capability e). 
(a) Spatial vaccination dominates over the entire parameter space. (b) The advantage is maximized for large e and intermediate d, 
and minimized for low e and extreme d.  
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8. Concluding remarks 

● A uniform global SIR model. The simplified SIR model we present assumes a homogeneous world in 
which social distancing maintains the reproduction number R at unity and the stream of infections is 
identical in all countries and regions. Of course, the real world is characterized by a high degree of 
heterogeneity even across proximate regions [19, 20]. Nonetheless, we believe that our qualitative 
results still hold. The key idea is that a slow and uniform vaccination regime, and in view of the 
adaptive nature of social distancing measures, the outcome is inevitably a continued high infection 
rates for an extended period of time. A significant proportion of these infections will occur when 
vaccination levels are high, implying a high reproduction rate and therefore a high probability of 
survival for an escape variant. Our analysis, which “mistakenly” uses the average R in each of the 
regions, ignores the nonlinearity of the survival probability in R.11 However, this effect is small and 
more importantly, the effectiveness of spatial vaccination - which in each locality dramatically 
shortens the time during which a high infection level and a high R coexist - remains. 

However, if different localities have different infection rates, this can be exploited by the spatial 
vaccination strategy. Figure 11 shows a situation in which 10 regions have different infection rates 
(specifically, region 𝑖𝑖 > 1 has 𝑖𝑖 times more infections than region 1). It can be seen that there is a 
slight advantage to vaccinating the regions with higher infection rates first. However, optimizing the 
order of spatial vaccination has a much smaller added benefit than that achieved by spatial 
vaccination over uniform vaccination. 

 
Figure 11: Exploiting heterogeneous infection rates. Even up to a 10-fold difference in infection rates, there is only a slight 
benefit in vaccinating regions with higher infection rates first. 

● The mutation process. Our model treats the complex process of mutation in a highly simplified 
manner, assuming that upon each instance of infection, the virus mutates with some probability. In 
reality, a complex mutation that enables vaccine escape does not take place at the time of infection, 
but rather it is the result of a combination of single-point mutations occurring within the host, as the 
virus reproduces within his body. However, this internal process is of little relevance to our analysis 
since - apart from very rare cases - infections almost always involve a single strain randomly drawn 
from the cloud of mutations within the infector. 12  Hence, for simplicity we assume that with 

                                                           
11 A mutant’s survival probability is approximately 1/(1+1/R) for sufficiently large R.  
12 The characteristics of the internal process are more important in studying drug resistance, as in [35, 36], or in 
studying partial (one-dose) vaccination which may generate an inter-host fitness advantage for a resistant variant 
together with a continued increased viral load [37]. 
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probability 𝜇𝜇, a specific host acquires a vaccine-resistant mutation, which is then passed on to other 
individuals via further infection. We model this hidden process as if the virus mutates upon infection. 
Our model, however, ignores the possibility of a drift by which a sequence of single-point mutations 
occurs during the transmissions between individuals, such that only the sum of these mutations 
generates vaccine escape.  

● The range of the mutation rate and the significance of the reduction in escape risk. While the 
probability of a single-point mutation in the case of the SARS-COV-2 virus can be computed from its 
genomic properties, the probability that a combination of mutations generates a variant that is 
resistant to the current vaccines is unknown at this stage. On the optimistic side, none of the currently 
prevailing variants fully escapes the current vaccines [33, 34], and it appears that most of them are 
simply improvements of the virus that are to be expected in its adaptation process in the human host. 
On the pessimistic side, this can be explained by the fact that mass vaccination, which leads to 
selective pressure for vaccine resistance, has taken place until recently only in countries that account 
for a small proportion of the world’s population [17,38].  

In Section 2 we showed that the type of vaccination regime matters when the mutation rate 𝜇𝜇 is 
within the range of 10-10 to 10-7. That is, within that range there is a gap between the best-case 
instantaneous vaccination benchmark and the worst-case slow vaccination regime that has actually 
been adopted. We have shown that spatial vaccination eliminates 50% of the excess risk (and even 
more with the help of the complementary measures described in Section 4). 

Another way to assess the benefit of spatial vaccination is to consider the metric introduced in Section 
2, according to which spatial vaccination permits a higher mutation rate for the same escape risk - by 
about 0.5 orders of magnitude on average (across possible values of d) before taking into account 
complementary measures. Translating this number into a probability that escape will be avoided 
depends on our prior on 𝜇𝜇, namely what range of values do we view as being reasonable. Lobinska et 
al. [38] provides a methodology to compute an upper bound based on the fact that a vaccine-resistant 
variant has not appeared until now in the highly vaccinated countries (which currently account for 5-
10% of world population) and arrives at an estimate of about 10-6. However, without a lower bound 
it is hard to justify employing the spatial strategy. Such a lower bound will be generated if we 
encounter the adverse scenario that a resistant variant emerges during the first round of global 
vaccination (and the lower bound will be stricter the earlier the variant is encountered). If this leads 
to a second round of vaccination with an updated vaccine, then the spatial strategy might be 
considered. Moreover, the combination of the lower and upper bounds may provide us with a fairly 
narrow range, which will justify the use of spatial vaccination. 
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Supplementary Materials: 

Appendix A: The Model 

A world with population 𝑁𝑁  is naturally divided into 𝐾𝐾  identical regions 𝑘𝑘 = 1. . .𝐾𝐾  with little interaction 
between them. Let 0 < 𝑐𝑐 << 1 (the contact ratio) denote the proportion of a person’s interactions that are 
with people living outside of her own region. The dynamics of the wild-type infection in each region follows a 
deterministic SIR model, with interactions between the regions. We set the recovery rate 𝑟𝑟 to 1 so that time 
is measured in infection cycles (about 4 days in the COVID-19 case) and for simplicity set the death rate to 0. 
The wild type’s basic reproduction rate 𝑅𝑅0 is set to 4, which is about that of the current dominant strains, so 
that the infection rate is 𝛽𝛽0 = 𝑟𝑟𝑅𝑅0 = 4. We assume that social distancing measures - multiplicative factors 𝑙𝑙𝑘𝑘 
- are set such that the rate of infection in each region does not exceed an acceptable proportion ℎ of the 
population (per 4-day infection cycle). 

We augment the model with a vaccination process 𝑣𝑣𝑘𝑘(𝑡𝑡)  that starts at time 𝑡𝑡0  (= one year after the 
pandemic’s start) and is subject to an aggregate capacity constraint 𝛴𝛴𝑣𝑣𝑘𝑘(𝑡𝑡) ≤ 𝑣𝑣  such that 80% of the 
population can be vaccinated within one year (i.e., 𝑣𝑣 = 80% ⋅ 4/365  is the proportion vaccinated per 
infection cycle). Both the susceptible and the recovered are vaccinated. Under uniform vaccination, 𝑣𝑣𝑘𝑘(𝑡𝑡) =
𝑣𝑣, i.e. a proportion v of every region’s population is vaccinated per infection cycle. Under spatial vaccination, 
𝑣𝑣𝑘𝑘(𝑡𝑡) = 𝑣𝑣 ⋅ 𝐾𝐾  for 𝑡𝑡𝑘𝑘−1 ≤ 𝑡𝑡 ≤  𝑡𝑡𝑘𝑘 , where  𝑡𝑡𝑘𝑘  is the point in time at which 80% of region 𝑘𝑘 ’s population is 
vaccinated; otherwise 𝑣𝑣𝑘𝑘(𝑡𝑡) = 0. Thus, when it is region 𝑘𝑘’s turn, it is vaccinated at a 𝐾𝐾-fold faster rate than 
under uniform vaccination. Under “mixed” vaccination, we start at time 𝑡𝑡0 with the uniform regime until 15% 
of the population in each region is vaccinated and then switch to the spatial regime. 

Each wild-type infection has a probability 𝜇𝜇 of turning into a vaccine-resistant variant (“mutant”). While the 
wild type cannot infect vaccinated individuals, the mutant can. However, it suffers a fitness deficiency such 
that its basic reproduction number 𝑅𝑅0𝑚𝑚 equals 𝑑𝑑 ⋅ 𝑅𝑅0 (while we typically expect 𝑑𝑑 to be lower than 1, we also 
analyze the case in which it is above 1). If a new mutant occurs, we track the (discrete) number of infections 
using a random walk process until it either dies out or succeeds in generating a large number of infections 
(and then becomes dominant). The parameter 𝑒𝑒 ≤ 1 captures the degree of the variant’s escape from the 
vaccine (1 means full escape; 0 means no escape). We also consider two cases: that the resistant variant can 
or cannot infect individuals who have recovered. 
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The deterministic SIR equations for the wild-type strain in each region 𝑘𝑘 are as follows (all state variables are 
defined as proportions of the population, i.e. between 0 and 1): 

W1. Infected:        İ𝑘𝑘 = 𝑙𝑙𝑘𝑘𝛽𝛽0𝑆𝑆𝑘𝑘𝐼𝐼𝑘𝑘(1− 𝜇𝜇) − 𝑟𝑟𝐼𝐼𝑘𝑘 

          where  𝐼𝐼𝑘𝑘 = (1 − 𝑐𝑐)𝐼𝐼𝑘𝑘 + 𝑐𝑐
𝐾𝐾−1

𝛴𝛴𝑗𝑗≠𝑘𝑘𝐼𝐼𝑗𝑗 is the effective infection pool for region 𝑘𝑘, 

                        and where  𝑙𝑙𝑘𝑘 = 𝑚𝑚𝑖𝑖𝑚𝑚 �1, ℎ
𝛽𝛽0𝑆𝑆𝑘𝑘𝐼𝐼𝑘𝑘(1−𝜇𝜇)

�  so that İ𝑘𝑘 = 𝑚𝑚𝑖𝑖𝑚𝑚�𝛽𝛽0𝑆𝑆𝑘𝑘𝐼𝐼𝑘𝑘(1− 𝜇𝜇),ℎ� − 𝑟𝑟𝐼𝐼𝑘𝑘 

W2. Susceptible:  Ṡ𝑘𝑘 = −𝑙𝑙𝑘𝑘𝛽𝛽0𝑆𝑆𝑘𝑘𝐼𝐼𝑘𝑘(1− 𝜇𝜇) − 𝑣𝑣𝑘𝑘
𝑆𝑆𝑘𝑘

𝑆𝑆𝑘𝑘+𝑅𝑅𝑘𝑘
 

W3. Recovered:    Ṙ𝑘𝑘 = 𝑟𝑟𝐼𝐼𝑘𝑘 − 𝑣𝑣𝑘𝑘
𝑆𝑆𝑘𝑘

𝑆𝑆𝑘𝑘+𝑅𝑅𝑘𝑘
 

W4. Vaccinated (and were not infected earlier)13:  �̇�𝑉𝑘𝑘𝑆𝑆 = 𝑣𝑣𝑘𝑘
𝑆𝑆𝑘𝑘

𝑆𝑆𝑘𝑘+𝑅𝑅𝑘𝑘
 

W5. Vaccinated (and were infected and recovered earlier): �̇�𝑉𝑘𝑘𝑅𝑅 = 𝑣𝑣𝑘𝑘
𝑅𝑅𝑘𝑘

𝑆𝑆𝑘𝑘+𝑅𝑅𝑘𝑘
 

       The initial conditions are:  𝐼𝐼𝑘𝑘 = ℎ, 𝑆𝑆𝑘𝑘 = 1 − ℎ, 𝑅𝑅𝑘𝑘 = 𝑉𝑉𝑘𝑘𝑆𝑆 = 𝑉𝑉𝑘𝑘𝑅𝑅 = 0. 

The process for the resistant strain is discrete. Initially, the (absolute) number 𝐼𝐼𝑘𝑘𝑚𝑚 of mutant infections in 
region 𝑘𝑘 is 0. Each 𝐼𝐼𝑘𝑘𝑚𝑚 evolves according to a random walk, dictated by three Poisson processes: (1) arrival of 
new mutations; (2) infections by the resistant variant; and (3) recoveries. The arrival rate of these processes 
are given by: 

M1.       Mutation (𝐼𝐼𝑘𝑘𝑚𝑚 increased by 1):  𝜇𝜇 · 𝑙𝑙𝑘𝑘𝛽𝛽0𝑆𝑆𝑘𝑘𝐼𝐼𝑘𝑘 · 𝑁𝑁
𝐾𝐾

   

      (Note that for not yet vaccinated regions his is simply 𝜇𝜇 · ℎ · 𝑁𝑁
𝐾𝐾

.) 

M2.       Infections (𝐼𝐼𝑘𝑘𝑚𝑚 increased by 1): 
○ Case 1 (variant does not infect the recovered):  𝑙𝑙𝑘𝑘𝛽𝛽0𝑚𝑚(𝑆𝑆𝑘𝑘 + 𝑒𝑒𝑉𝑉𝑘𝑘𝑆𝑆)𝐼𝐼𝑘𝑘𝑚𝑚�  
○ Case 2 (variant infects the recovered):  𝑙𝑙𝑘𝑘𝛽𝛽0𝑚𝑚(𝑆𝑆𝑘𝑘 + 𝑒𝑒 ( 𝑉𝑉𝑘𝑘𝑆𝑆 + 𝑉𝑉𝑘𝑘𝑅𝑅 + 𝑅𝑅𝑘𝑘))𝐼𝐼𝑘𝑘𝑚𝑚�  

where 𝛽𝛽0𝑚𝑚 equals 𝑑𝑑 ⋅ 𝛽𝛽0 
and where  𝐼𝐼𝑘𝑘𝑚𝑚� = (1 − 𝑐𝑐)𝐼𝐼𝑘𝑘𝑚𝑚 + 𝑐𝑐

𝐾𝐾−1
𝛴𝛴𝑗𝑗≠𝑘𝑘𝐼𝐼𝑗𝑗𝑚𝑚 is the effective infection pool for region 𝑘𝑘. 

(For simplicity we assume that the variant cannot infect people currently infected by the wild 
type.) 

M3.      Recoveries (𝐼𝐼𝑘𝑘𝑚𝑚 decreased by 1): 𝑟𝑟 ⋅ 𝐼𝐼𝑘𝑘𝑚𝑚 

Outcome of the simulation (one iteration) 

● We say that the variant has taken over when 𝛴𝛴𝑘𝑘𝐼𝐼𝑘𝑘𝑚𝑚 grows to beyond 30.14 
● We say that the pandemic is over and the variant has died out when 𝛴𝛴𝑘𝑘𝐼𝐼𝑘𝑘 < 1/𝑁𝑁 and 𝛴𝛴𝑘𝑘𝐼𝐼𝑘𝑘𝑚𝑚 = 0. 

                                                           
13 The separation between the two types of vaccinated individuals is needed only for the case in which the resistant 
variant cannot infect people who have already recovered from the wild type (see Case 1 below). In this case it can 
infect only those in VS. If the variant is resistant to wild-type antibodies, i.e. it also infects the recovered (Case 2), then 
we can merge VS and VR into one group V. 
14 Since mutations are rare, infections can reach 30 only if the reproduction number is much larger than 1. Moreover, 
since the lockdown is further eased as vaccinations proceed, the mutation’s effective reproduction number can only 
grow. Thus, the path from 30 to taking over is almost guaranteed. Indeed, simulations show that setting a higher 
threshold does not result in a lower probability of reaching it. 



25 

The complementary measures (see Section 4) are modeled using the following modifications: 

a. Travel restrictions: Let 𝑐𝑐− < 𝑐𝑐 denote the reduced interaction rate between regions with different 
vaccination statuses and denote the region being currently vaccinated by 𝑘𝑘∗. We change the definition 
of 𝐼𝐼𝑘𝑘 as follows: 

𝐼𝐼𝑘𝑘 = (1 − (𝑘𝑘∗−2)𝑐𝑐+(𝐾𝐾−𝑘𝑘∗+1)𝑐𝑐−

𝐾𝐾−1
)𝐼𝐼𝑘𝑘 + 𝑐𝑐

𝐾𝐾−1
𝛴𝛴𝑗𝑗<𝑘𝑘∗,𝑗𝑗≠𝑘𝑘𝐼𝐼𝑗𝑗 + 𝑐𝑐−

𝐾𝐾−1
𝛴𝛴𝑗𝑗≥𝑘𝑘∗𝐼𝐼𝑗𝑗  if 𝑘𝑘 < 𝑘𝑘∗ 

𝐼𝐼𝑘𝑘 = (1 − 𝑐𝑐−)𝐼𝐼𝑘𝑘 + 𝑐𝑐−

𝐾𝐾−1
𝛴𝛴𝑗𝑗≠𝑘𝑘𝐼𝐼𝑗𝑗                                                      if 𝑘𝑘 = 𝑘𝑘∗ 

𝐼𝐼𝑘𝑘 = (1 − 𝑘𝑘∗𝑐𝑐−+(𝐾𝐾−𝑘𝑘∗−1)𝑐𝑐
𝐾𝐾−1

)𝐼𝐼𝑘𝑘 + 𝑐𝑐−

𝐾𝐾−1
𝛴𝛴𝑗𝑗≤𝑘𝑘∗𝐼𝐼𝑗𝑗 + 𝑐𝑐

𝐾𝐾−1
𝛴𝛴𝑗𝑗>𝑘𝑘∗,𝑗𝑗≠𝑘𝑘𝐼𝐼𝑗𝑗       if 𝑘𝑘 > 𝑘𝑘∗ 

and correspondingly the  definition of 𝐼𝐼𝑘𝑘𝑚𝑚�  . 

b. Contact tracing for the resistant strain: In regions that have already been vaccinated and in which the 
total number of wild-type infections has been significantly reduced, i.e. İ𝑘𝑘 < 0.1ℎ, we further multiply 
the resistant strain’s infection rates (cases 1 and 2 in M2 above) by 𝑙𝑙𝐶𝐶𝐶𝐶 = 0.5. 

c. A moving temporary lockdown: For the region 𝑘𝑘∗ being vaccinated, we replace the definition of 𝑙𝑙𝑘𝑘 (W1 

above) with 𝑙𝑙𝑘𝑘∗ = 𝑚𝑚𝑖𝑖𝑚𝑚 �0.8,0.8 1
𝛽𝛽0𝑆𝑆𝑘𝑘

� which implies that the reproduction number is pushed down to 

0.8 rather than to 1. 
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Appendix B: Proof that the metric for escape risk differences (Section 2) is well-defined 

Given a configuration 𝑐𝑐 (vaccination regime and model parameters except for 𝜇𝜇), denote the stream of new 
infections at time 𝑡𝑡 by 𝑥𝑥𝑘𝑘(𝑡𝑡, 𝑐𝑐) and the probability of takeover by a mutant that occurs at time 𝑡𝑡 (and assuming 
that no other mutant occurs any time) by 𝑝𝑝𝑘𝑘(𝑡𝑡, 𝑐𝑐). The probability of escape (i.e. at least one mutant occurring 
and taking over) is: 

𝑃𝑃(𝑐𝑐, 𝜇𝜇) = 1 −�(1 − 𝑝𝑝𝑘𝑘(𝑡𝑡, 𝑐𝑐))𝜇𝜇𝜇𝜇𝑘𝑘(𝑡𝑡,𝑐𝑐)𝑑𝑑𝑡𝑡
𝐶𝐶

𝑡𝑡=0

 

(where ∏ here denotes the geometric integral - the continuous version of the usual product sign.) 

Claim: 

If 𝑃𝑃(𝑐𝑐1,𝜇𝜇1) = 𝑃𝑃(𝑐𝑐2, 𝜇𝜇2), then 𝑃𝑃(𝑐𝑐1,𝛼𝛼𝜇𝜇1) = 𝑃𝑃(𝑐𝑐2,𝛼𝛼𝜇𝜇2) 

Note: This claim implies that the difference in the 𝜇𝜇′𝑠𝑠 that lead to the same escape risk 𝑃𝑃 under two different 
vaccination regimes is independent of 𝑃𝑃. Thus, one number can be used to compare one regime to another .  
This implies that in Figures 4 and 6 the lines are horizontal shifts of one other. In Figure 7, in each pair of panels 
and for each value of the vertical parameter d or e, all the equi-probability lines (the borders between colors) 
shift by the same amount and therefore it is sufficient to look at the shift of the 𝑃𝑃 = 50% line. 

Proof: 

Taking the natural logarithm of 1 − 𝑃𝑃(𝑐𝑐, 𝜇𝜇) computed above we obtain: 

𝑙𝑙𝑚𝑚(1 − 𝑃𝑃(𝑐𝑐, 𝜇𝜇)) = 𝜇𝜇 ∫ 𝑥𝑥𝑘𝑘(𝑡𝑡, 𝑐𝑐)𝑙𝑙𝑚𝑚(1 − 𝑝𝑝𝑘𝑘(𝑡𝑡, 𝑐𝑐))𝑑𝑑𝑡𝑡𝐶𝐶
𝑡𝑡=0 . 

Thus, 𝑃𝑃(𝑐𝑐1,𝜇𝜇1) = 𝑃𝑃(𝑐𝑐2,𝜇𝜇2) is equivalent to: 

𝜇𝜇1 � 𝑥𝑥𝑘𝑘(𝑡𝑡, 𝑐𝑐1)𝑙𝑙𝑚𝑚(1 − 𝑝𝑝𝑘𝑘(𝑡𝑡, 𝑐𝑐1))𝑑𝑑𝑡𝑡
𝐶𝐶

𝑡𝑡=0
= 𝜇𝜇2 � 𝑥𝑥𝑘𝑘(𝑡𝑡, 𝑐𝑐2)𝑙𝑙𝑚𝑚(1 − 𝑝𝑝𝑘𝑘(𝑡𝑡, 𝑐𝑐2))𝑑𝑑𝑡𝑡

𝐶𝐶

𝑡𝑡=0
 

while 𝑃𝑃(𝑐𝑐1,𝛼𝛼𝜇𝜇1) = 𝑃𝑃(𝑐𝑐2,𝛼𝛼𝜇𝜇2) is equivalent to: 

𝛼𝛼𝜇𝜇1 ∫ 𝑥𝑥𝑘𝑘(𝑡𝑡, 𝑐𝑐1)𝑙𝑙𝑚𝑚(1 − 𝑝𝑝𝑘𝑘(𝑡𝑡, 𝑐𝑐1))𝑑𝑑𝑡𝑡𝐶𝐶
𝑡𝑡=0 = 𝛼𝛼𝜇𝜇2 ∫ 𝑥𝑥𝑘𝑘(𝑡𝑡, 𝑐𝑐2)𝑙𝑙𝑚𝑚(1 − 𝑝𝑝𝑘𝑘(𝑡𝑡, 𝑐𝑐2))𝑑𝑑𝑡𝑡𝐶𝐶

𝑡𝑡=0 . 

Clearly, the first equation implies the second. QED. 

  



27 

Appendix C: Guidelines for spatial partitioning 

As Fig. 5 indicates, the inter-regional coupling strength 𝐶𝐶 is key, requiring that 𝐶𝐶 ∼ 1 − 5% in order to ensure 
the effectiveness of the spatial vaccination strategy. To estimate the value of this parameter, we rely on recent 
observations which show that – almost universally – mobility fluxes decay with distance according to 𝑑𝑑−2, an 
inverse square law [39]. We can use this to evaluate the desired radius 𝜌𝜌  of the vaccination regions. 
Specifically, we seek the percentage 𝐶𝐶 of individuals that, within the typical duration 𝜏𝜏 of an infection cycle, 
travel a distance that exceeds 𝜌𝜌 , and hence can potentially cross-infect between two or more regions. 
Denoting the average individual trip within the 𝜏𝜏-timeframe by �̅�𝜌, we can use the inverse square law to 

approximate 𝐶𝐶(𝜌𝜌) ∼ � 𝜌𝜌�
𝜌𝜌
�
2

, thus capturing the fraction of the population that travel beyond a radius 𝜌𝜌 within 

the transmission window 𝜏𝜏 . Extracting 𝜌𝜌  from this relationship we arrive at 𝜌𝜌 = (1/√𝐶𝐶) �̅�𝜌 . Therefore, to 
achieve, for example, 𝐶𝐶 = 0.05, (a 5% inter-regional coupling), we must set 𝜌𝜌 ≈  5�̅�𝜌, five times the typical 
individual distance travelled. For 𝐶𝐶 = 0.01, we get 𝜌𝜌 ≈  10�̅�𝜌, a ten-fold factor. Taking  �̅�𝜌 ∼ 30 km [40], we 
obtain 𝜌𝜌 ∼ 102 km in order to ensure 𝐶𝐶 within the range 1 − 5%. For a typically-sized country, this is well 
within the desired boundaries of 𝐾𝐾 ∼ 10 regions, which captures the safe operating zone shown in Fig. 5. 

Note that while the above analysis considers the coupling parameter 𝐶𝐶 under unrestricted mobility patterns, 
in practice, we can employ active interventions to drive 𝐶𝐶  towards a desired value (see the discussion in 
Section 4a).  

 

 


