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Abstract

We explore two interrelated models of “hard information.” In the evidence–

acquisition model, an agent with private information searches for evidence to show

the principal about her type. In the signal–choice model, a privately informed agent

chooses an action generating a random signal whose realization may be correlated

with her type. The signal–choice model is a special case and, as we show, under cer-

tain conditions, a reduced form of the evidence–acquisition model. We develop tools

for characterizing optimal mechanisms for these models by giving conditions under

which some aspects of the principal’s optimal choices can be identified only from the

information structure, without regard to the utility functions or the principal’s priors.

We also give a novel result on conditions under which there is no value to commitment

for the principal.



1 Introduction

We explore two models of “hard information.” In the first, the evidence–acquisition

model, the agent chooses among actions that generate random signals depending on

her type. The agent can then choose which realizations to present to a principal

who chooses an action affecting both of their utilities. The second model is a special

case and, under some conditions, a reduced form of the evidence–acquisition model.

In this signal–choice model, the agent chooses a random signal which the principal

observes.

Most of the literature on evidence analyzes a principal–agent model where the

agent is endowed with evidence and the question is what evidence he will disclose.

However, there are many situations of economic interest where an agent must take

some action to generate evidence. In these situations, the evidence that is generated

is typically random in the sense that the outcome of the agent’s action is uncertain.1

For example, consider a department of an organization or an entrepreneur that wishes

to obtain funding for a new product. The department/entrepreneur can run different

tests on the current prototype or carry out market research to obtain evidence on the

demand for the product to present to the central administration or venture capitalists.

The evidence these tests will generate is random.

We study two important issues in the literature on evidence. First, we identify

conditions under which we can restrict attention to a relatively simple class of mecha-

nisms. Second, we identify conditions in which the outcome of the optimal mechanism

can be obtained without commitment by the principal. The paper is organized as

follows.

In Section 2, we present the “technology” of the two models, relate them to the

literature, and introduce a running example. In Section 3, we briefly discuss game–

theoretic versions of the models and show that in a natural game, the signal–choice

model is a reduced form of the evidence–acquisition model.

In Section 4, we turn to mechanism design. First, we provide an analog of the Rev-

1The usual model where the agent is endowed with evidence can be thought of as the special case
of the signal–choice model where all signals are degenerate.
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elation Principle for the evidence–acquisition model. The general class of mechanisms

for these problems is quite complex, involving numerous steps of communication be-

tween the agent and the principal. We analyze conditions under which we can identify

the optimal recommendation for the principal regarding what evidence he would like

to see. Identifying this recommendation eliminates the need to optimize over it and

also enables us to simplify the mechanism, reducing it to the signal–choice model.

We also give conditions under which we can identify the principal’s recommendation

regarding what signal to choose, leading to a further simplication.

In Section 5, we show that under certain conditions, the optimal mechanism does

not require commitment by the principal. That is, the best mechanism for the princi-

pal yields the same outcome as the best equilibrium of the game where the principal

is not committed. We show this by first giving a general result for Nash equilib-

rium which generalizes results where the agent is already endowed with evidence in

Ben-Porath, Dekel, and Lipman (2019) and earlier results in Glazer and Rubinstein

(2004, 2006), Sher (2011), and Hart, Kremer, and Perry (2017). Then we extend the

result to perfect Bayesian equilibrium for more specific assumptions on preferences.

We show that in the more general class of models we consider, this result requires

stronger assumptions on the preferences of the principal than in our previous work.

However, our assumptions are without loss of generality when there are only two

outcomes. Hence our result applies to problems where the principal’s actions are to

accept or reject, such as when the principal decides whether to hire a candidate or

not, approve funding for a project or not, or provide a good or not.

Proofs not contained in the text are in the Appendix.

2 Models

In this section, we discuss the “primitives” of the model, reserving discussion of the

specifics of the game or mechanism for later sections.

Running Example, Part 1. Throughout the paper, we will use the following

example to illustrate ideas and results. We have an employer, also referred to as the

principal, and an employee, also called the agent. The agent’s private information
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is her productivity for the principal. We consider two variations. First, we consider

what we will call the wage–setting version of this problem. Here, as in Spence (1973),

the principal sets a wage for the agent and his payoff is maximized by setting the wage

equal to the agent’s true productivity. The agent’s payoff is strictly increasing in the

wage. Second, we consider the hiring version of the problem. Here there is a fixed

wage, outside the control of the principal, and he can only decide whether or not to

hire the agent. The principal prefers hiring to not hiring iff the agent’s productivity

is sufficiently high, while the agent strictly prefers being hired, regardless of her true

type. Hence in both versions the agent wants the principal to think she has a high

type and the principal wants to know the true type, but in the second, the decision

is coarser. We consider various forms of evidence acquisition by the agent to try to

persuade the principal she has high productivity.

As in the running example, the players in the model are an agent and a principal.

The agent has a finite set of types T where the realization t ∈ T is the agent’s

private information. The principal’s prior over T is denoted τ and is assumed to

have full support. The principal has a finite set of actions X. An element of X

specifies all aspects of the principal’s action, including allocation of goods, monetary

transfers, provision of resources, or other activities. After possibly several rounds of

information exchange between the agent and the principal, the principal chooses some

x ∈ X. There is a set L of all possible evidence messages which could potentially be

shown by the agent. For simplicity, we assume L is finite, but this is not needed for

the results. Information exchange includes the transmission of an evidence message

and possibly also include cheap talk.

We consider two ways of modeling information transmission, one of which is a

special case and, under certain conditions, a reduced form of the other. First, we

consider the evidence–acquisition model, a model where the agent searches to find

evidence. The agent has a variety of ways to try to obtain evidence. This search

process could be sequential or one–shot. Rather than model this process, we focus

on its outcomes by treating the agent as choosing a probability distribution over the

evidence set she ultimately obtains. Formally, let At denote the set of evidence–

gathering actions available to type t, with typical element a ∈ At, where we identify

the action a with the probability distribution over evidence sets it generates. That is,
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a ∈ ∆(2L \ {∅}).2 We denote a typical set of evidence as M ⊆ L. Let M be the set

of possible message sets M that can be produced. That is, M is the collection of M

such that there exists t and a ∈ At with M ∈ supp(a). The assumption that ∅ /∈ M
means that the agent can always say something, even if it is not informative — e.g.,

“I have no evidence to present.” If M is the realized set of messages, then the agent

can present any one m ∈M to the principal.3 The utility functions of the agent and

principal are u : T ×X → R and v : T ×X → R respectively.4

While we assume that the principal observes only the m sent by the agent and not

the chosen evidence acquisition action a, the model (implicitly) allows observability

of a as well. To see this, suppose every set of messages that could be realized by

the agent’s choice of action a is disjoint from any set that could be realized from a′.

Then observing message m reveals the evidence acquisition action to the principal.

Similarly, we can assume that only some distribution choices are observable or that

only some messages reveal a in this sense, so whether the distribution is observed is

itself random and/or in the control of the agent.

The model incorporates the important specific case where there is a set of tests,

say Q, where each q ∈ Q and t ∈ T define a probability distribution over sets of

evidence messages (test results). In some settings (e.g., college admissions tests), it is

natural to assume that the principal observes the test q selected by the agent. Again,

our model allows but does not require such observability.

Running Example, Part 2. In the example, we assume a very stylized evidence–

acquisition technology. To see the idea, suppose the agent of type t can choose a

variety of ways to potentially demonstrate her ability. Each of these options gives

a probability distribution over an “outcome” she generates, where this outcome is,

2For any set B, ∆(B) is the set of probability distributions over B.
3As in the usual deterministic evidence model, the assumption that the agent can present only

one message is without loss of generality. For example, if the agent could present two messages, we
would simply replace L with the set of pairs of messages.

4For some purposes, it is natural to also let the agent’s and/or principal’s utility to depend on the
realized evidence set and/or the evidence acquisition actions. Dependence on the action, of course,
allows the possibility that evidence acquisition is costly to the agent. Dependence on the realized
set (a) allows the possibility that the agent’s costs depend on the realized set and (b) reflects the
idea that the realization itself may be informative. We avoid adding these to the utility functions as
it would complicate the notation even further, but note that neither addition would affect Theorems
1, 2, or 4.
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on average, equal to her true type. However, she can also withhold part of this

“outcome” and show a lower realization than what she actually generates. More

formally, a ∈ At if and only if the following two statements are true. First, every

M ∈ supp(a) takes the form [0,m] for some m ∈ R+. (Note that this means the

set L in this example is infinite, unlike in the general model. Nothing changes in the

example if we take L to be a finite but “dense” subset of an appropriate interval of

real numbers.) Note that any a ∈ At corresponds to a probability distribution over

R+ where if the realization of this random variable is m, this means the message set is

[0,m]. The second property is that for any a ∈ At, the expectation of this associated

random variable is t. That is, in the case where a has a finite support,∑
[0,m]∈supp(a)

a([0,m])m = t.

In our example, the agent wants to persude the principal that her type is large, so

it is natural to conjecture that the option of showing a lower outcome will never be

used by the agent and hence is irrelevant. In fact, one of our results will be that only

the upper bound of a given evidence set will be shown by the agent in an optimal

mechanism. However, this result is independent of the preferences of the agent —

the same is true even in a different problem where the agent wants to persuade the

principal that her type is small (e.g., if the agent’s type determines the level of effort

the principal wants her to exert).

A special case of the evidence–acquisition model is where the agent has no choice

of what message to send at the last step. Formally, this special case is when for every

t ∈ T and every a ∈ At, every M ∈ supp(a) is a singleton. For convenience, we write

this special case, the signal–choice model, differently. Instead of referring to agent’s

choices as evidence acquisition actions, we write the set of options available to type

t ∈ T as a nonempty set St ⊆ ∆(L) and refer to an s ∈ ∆(L) as a signal distribution.

The interpretation is that if the agent chooses s ∈ ∆(L), then the principal sees

message m ∈ L with probability s(m). Equivalently, we can think of this as the

singleton message in the realized evidence set.

Similarly to our comments above about the observability of a, the model allows

the possibility that the realized m reveals the agent’s choice of s always, reveals it

with some probability, or reveals it for some s choices but not others.
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While we discuss the details of games or mechanisms below, we use the following

timing structure throughout. In both models, we assume the agent knows her type

at the outset. There may be cheap talk between the principal and the agent before

the agent chooses an evidence action or a signal distribution. After this, the agent

sees the realization of her action. In the evidence–acquisition case, this is a set

of evidence messages and (perhaps after further cheap talk) she can then send one

evidence message to the principal. In the signal–choice model, the principal also sees

the realization, perhaps followed by more cheap talk. After this, the principal chooses

x ∈ X.

Running Example, Part 3. For a signal–choice version of our running example,

we “convert” the same technology as in the evidence–acquisition model described in

Part 2 into a signal–choice model. Note that the agent in the evidence–acquisition

model can pick a distribution over evidence sets and decide what message she will use

from each set. That is, she can choose a particular distribution over sets of the form

[0,m] and decide for each upper bound m what message m′ ∈ [0,m] she will send to

the principal. Recall that the agent of type t can only generate a distribution over

sets of the form [0,m] with the property that the expectation of the upper bound m

is t. Hence when we convert to signals, this generates the set of signal distributions

with expected value less than or equal to t. In other words, for the signal–choice

version of our running example, we assume that St, the set of signal distributions

for type t, is the set of all probability distributions on R+ with expected value less

than or equal to t. Thus signal distributions are either unbiased or biased “against”

the agent. One can think of this as a stylized model where the agent can give the

principal one name of a reference for the principal to contact. References cannot

be systematically biased in the agent’s favor, but the agent generally cannot predict

exactly what a given reference will say. It is easy to see that this process generates a

signal distribution, that is, a distribution on R+.

Related literature: The usual model of evidence considers games or mechanism

design problems where the agent’s set of feasible messages depends on her type.

Thus by presenting a message which is only feasible for a certain set of types, the

agent proves her type is in this set. For early contributions in game theory, see

Grossman (1981), Milgrom (1981), and Dye (1985). For an early contribution in

mechanism design theory, see Green and Laffont (1986). For more recent examples
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of papers in game theory or mechanism design, see Shin (2003), Acharya, DeMarzo,

and Kremer (2011), Ben-Porath and Lipman (2012), Kartik and Tercieux (2012),

Guttman, Kremer, and Skrzypacz (2014), and Rappoport (2020). Finally, for closely

related work related to both games and mechanisms, see Glazer and Rubinstein (2004,

2006), Sher (2011), Hart, Kremer, and Perry (2017), and Ben-Porath, Dekel, and

Lipman (2019).

In these papers, the agent is endowed with evidence and only chooses which evi-

dence to disclose. Our two models extend the usual model by considering decisions by

the agent which generate evidence and where there is ex ante uncertainty regarding

the evidence that will materialize. Both models are natural for applications. For an

example of the evidence–acquisition model, consider a division within an organiza-

tion which wants additional funding for a project it is developing, say, a new product.

The division can develop and test a prototype or do other market research to obtain

evidence regarding the profitability of the product. The evidence resulting from the

research is random ex ante. The division may choose which parts of its results to

share with the organization.

As an example of a signal–choice model in applications, consider a lawyer who has

private information about the innocence or guilt of her client trying to persuade a

judge. When the lawyer calls a witness to the stand, she may know more about what

the witness will say than the judge does, but may not be able to perfectly predict

the witness’ testimony. In this sense, the witness is a random signal, the realization

of which depends stochastically on the lawyer’s private information. Similarly, as

discussed above, when an agent gives the name of a recommender to the principal,

she may not know exactly what the recommender will say. In both cases, the agent

effectively chooses a random variable, the realization of which she and the principal

will see together.

A number of earlier papers consider models of evidence acquisition, but, with few

exceptions, all assume the agent does not know her type and do not consider optimal

mechanisms. Matthews and Postlewaite (1985), Che and Kartik (2009), Felgenhauser

and Schulte (2014), DeMarzo, Kremer, and Skrzypacz (2019), and Shishkin (2020)

consider models in which an uninformed agent chooses a test or experiment which

may reveal information about her type. These papers vary in the specifics, but in
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all cases, the agent’s action produces a probability distribution over a set of options

for the agent to reveal, as in our model. Ball and Kattwinkel (2023), by contrast,

do consider a privately informed agent and optimal mechanisms. It will be more

convenient to discuss their model and its relationship to ours at the end of Section 4.

Our signal–choice model is related to several different literatures. There are a

number of papers related to the testing/experimentation papers discussed above but

where the principal directly observes the outcome of any experiments conducted by

the agent — see, for example, Henry and Ottaviani (2019) or McClellan (2020). To

the best of our knowledge, all of these papers consider uninformed agents, unlike our

model.

Similarly, the signal–choice model can be thought of as an “informed agent” ver-

sion of the Bayesian persuasion model of Kamenica–Gentzkow (2011). As in the

Bayesian persuasion model, the agent chooses an “experiment” which reveals infor-

mation to the principal. Our model differs from Kamenica–Gentzkow in four ways.

First, we do not assume that every possible signal is feasible. Second, we assume the

agent knows her type, though she may not know the outcome of the experiment.5

Third, while Kamenica and Gentzkow assume the principal observes the full experi-

ment, we do not assume this. Specifically, while we can allow the principal to observe

the signal choice of the agent as discussed above, he cannot observe the signals that

would have been chosen by other types. Finally, Kamenica and Gentzkow character-

ize the optimal structure for the agent, while our mechanism design results focus on

the best choice for the principal.

Deb, Pai, and Said (2018) give a model which can be thought of as a signal–

choice model. A forecaster has private information about the quality of the signals

she receives about some random variable. She sees a sequence of signals, announcing

a prediction about the random variable after each such observation. After this, the

realization of the random variable is observed. The principal updates his beliefs about

the quality of her information. To embed this in a signal–choice model, the forecaster’s

“message” can be thought of as a tuple giving the sequence of forecasts together with

the realization of the random variable. A choice of a strategy by the forecaster giving

5For work on Bayesian persuasion with privately informed agents, see Perez–Richet (2014), Hed-
lund (2017), Kosenko (2020), and Koessler and Skreta (2021).
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her forecasts as a function of the signals she sees generates a probability distribution

over such sequences and hence is a signal choice. Deb, Pai, and Said’s result that the

optimal mechanism in this setting does not require commitment by the principal is a

special case of our results in Section 5. Their proof restricts attention to deterministic

mechanisms; our results show that no such restriction is needed.

Espinosa r○ Ray (2023), Silva (2020), and Perez-Richet and Skreta (2021) also

develop models that can be thought of a signal–choice models. However, these papers,

while broadly related, focus on issues very different from the ones we explore.

3 Games

There are many timing assumptions one could consider in modeling the interaction

between the agent and principal. We focus on the following sequential game.

First, the agent learns her type. In the evidence–acquisition model, she then

chooses a ∈ At and M ⊆ L is realized. She then chooses m ∈ M . If we consider the

signal–choice model instead, the agent simply chooses s ∈ St and the realization m is

determined. Either way, the principal observes m but not the agent’s type or other

information. The principal then chooses x ∈ X.

It is straightforward to show that the signal–choice model is a reduced form of the

evidence–acquisition model. In the evidence–acquisition model, we can think of the

agent choosing a and simultaneously choosing her messaging strategy — that is, her

strategy for which message m to send as a function of the realization of the message

set M . As we vary the agent’s choice of distribution and messaging strategy, we trace

out a set of probability distributions over messages m that the principal will observe.

Thus each distribution and messaging strategy is equivalent to a signal choice. This

is exactly the conversion described in Part 3 of our running example. In light of this,

we could analyze the game as an evidence–acquisition model or equivalently replace

the set of actions and messaging strategies with the set of induced signal distributions

and analyze the game as a signal–choice model.

Recall that the signal–choice model can also be thought of as an evidence–acquisition
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model where every set of evidence is a singleton. Thus in the context of the game

considered here, these two models are equivalent — from any game in one class, we

can construct an equivalent game in the other.

Running Example, Part 4. We illustrate the game with our running example.

Since the evidence–acquisition model reduces to the signal–choice model, we focus on

the latter. Assume the agent has two equally likely types, h and ` where h > ` > 0.

For the wage–setting version, we assume X = R+, u(t, x) = x, and v(t, x) = −(t−x)2.

That is, the principal chooses a wage, the agent’s utility is equal to the wage and the

principal wishes to set the wage equal to the agent’s true productivity. For the hiring

version, we assume X = {0, 1}, u(t, x) = x, and v(t, x) = x(t− w̄) where h > w̄ > `.

In other words, the agent wants to be hired (x = 1), while the principal wants to hire

the high type but not the low type.

For either version, the following strategies form a perfect Bayesian equilibrium.

Type h chooses the signal distribution which puts probability 1 on h, while ` chooses

a distribution with probability `/h on h and 1−(`/h) on 0. The principal’s belief puts

probability 1 on ` unless the signal he sees is h. By Bayes’ rule, if the principal sees

signal h, his belief puts probability h/(`+ h) on type h, so the expected productivity

is (h2 + `2)/(h + `). He then chooses his action accordingly. So in the wage–setting

version, he chooses x = ` if he sees any message other than h and sets x = (h2 +

`2)/(h+ `) otherwise. In the hiring version, he does not hire if he sees any m 6= h. If

he sees m = h, then he hires if
h2 + `2

h+ `
> w̄,

doesn’t hire if the reverse strict inequality holds, and can choose any probability of

hiring otherwise. It is easy to see that, given the principal’s strategy, both types want

to maximize the probability on signal h and these signal choices do that. So these

strategies form an equilibrium.

To introduce the next section on mechanism design, consider the case where the

principal can commit to his reaction to the m he observes. In this case, he can achieve

his best possible outcome in the wage–setting version. To be specific, suppose the

principal commits to x = m if m is either h or ` and to x = 0 otherwise. Given

any s chosen by the agent, the agent’s expected payoff is less than or equal to the

expectation of m since for any m, the principal chooses x ≤ m. Since every s ∈ St has
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expectation weakly less than t, this implies that the agent’s payoff must be weakly less

than t. Since the agent can obtain a payoff of exactly t by choosing the degenerate s

which produces m = t with probability 1, we see that this is an optimal reply for the

agent. Clearly, this enables the principal to set x = t always, achieving his highest

possible payoff. It is not hard to show that no (perfect Bayesian) equilibrium of the

game yields the principal this payoff, so the ability to commit strictly improves the

principal’s payoff.6

On the other hand, commitment does not help the principal in the hiring version.

This is demonstrated in Section 4.3 and generalized in Section 5.

4 Mechanism Design

While any order for communication is “allowed” when studying games, for mech-

anism design, it is more standard to assume the sequence of communication steps

which allows the principal to obtain the highest possible payoff. Using standard

Revelation Principle type arguments, one can show that we can restrict attention

to a certain class of direct truth–telling mechanisms. However, these mechanisms

are rather complex for the signal–choice model and quite involved for the evidence–

acquisition model. Henceforth we use the term protocol to refer to the sequence of

stages of communication in a mechanism.7

For the signal–choice model, we have, in effect, an adverse selection problem (the

agent’s private knowledge regarding her type), followed by moral hazard (the agent’s

unobserved choice of a signal distribution). Thus a variation on Myerson’s Revelation

6To see this, suppose there is an equilibrium that gives the principal this payoff. Then he must
choose h in response to any signal realization that comes from type h with positive probability
and ` in response to any signal realization that comes from type ` with positive probability. Also,
sequential rationality implies that even off path, the principal never chooses an action smaller than
`. Hence it must be true that every realization of every signal distribution available to type ` leads
the principal to choose `. But this is impossible: type ` can generate any signal realization possible
for type h with strictly positive probability.

7Gerardi and Myerson (2007) have shown that the Revelation Principle may not hold for se-
quential equilibrium in dynamic environments, raising questions about our multi–stage mechanisms.
However, Sugaya and Wolitzky (2020) show that such problems do not arise in our single–agent
setting.
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and Obedience Principle identifies the appropriate protocol.8 First, the agent reports

a type. Then the principal recommends a signal distribution. Finally, the agent

chooses some distribution, the principal observes m, and the principal chooses x ∈ X.

In the evidence–acquisition model, the problem is much more complex. We start

with adverse selection (the agent’s type), then have moral hazard (the agent’s choice

of a distribution over evidence sets), followed by more adverse selection (the realized

set of evidence messages). Hence we start as in the signal choice case where the

agent reports her type, the principal recommends an action, and the agent chooses

an action. But after this, the agent makes a report of the realized evidence set, the

principal recommends a message choice from this set, and the agent sends a message.

Only then does the principal choose x ∈ X. One can show by examples (omitted for

brevity) that, in general, each of these steps may be necessary for the principal to

obtain the highest possible payoff.

In this section, we give conditions under which we can identify the principal’s rec-

ommendations in an optimal mechanism based only on the evidence/signal structure.

Under these conditions, we can eliminate some of the above steps, greatly simplifying

the class of mechanisms we need to consider and thus greatly simplifying the analysis.

We begin with the evidence–acquisition model. We give a verbal description of the

protocol and state our main result for this section, then develop the relevant notation.

The protocol for evidence–acquisition models has seven stages. We refer to this

as the full protocol for evidence–acquisition models. Recall that M is the collection

of M such that there exists t and a ∈ At with M ∈ supp(a).

Stage 1. The agent makes a report of a type r ∈ T .

Stage 2. Given the report, the principal requests a distribution a over evidence sets.

Stage 3. The agent chooses some feasible action a′ and the evidence set M is realized.

Stage 4. The agent makes a report M̂ ∈M of her realized message set.

Stage 5. The principal proposes a message m ∈ M̂ for the agent to send.

8For similar results in the evidence literature, see Bull and Watson (2007) and Deneckere and
Severinov (2008).
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Stage 6. The agent sends a message m̂ from the set of messages she has available.

Stage 7. The principal chooses an action x as a function of the history he has

observed.

This section’s main result gives a condition on the evidence–acquisition technology

which implies that each possible evidence set M has a “best” message in the sense

that, without loss of utility, the principal can always ask for this message fromM if the

agent reports M . This allows us to drop Stages 4 and 5, going from the realization

of the message set to the agent’s choice of an evidence message in Stage 6. This

simplification enables us to reduce the evidence–acquisition model to a signal–choice

model.

The reader may prefer to skip the following notation (which continues to the

end of this subsection) on first reading. To state the mechanism protocol formally,

we use b’s to denote the agent’s pure strategies at various stages and g’s to denote

the principal’s pure strategies. The agent chooses three objects. For stage 1, the

agent chooses a reporting strategy bT : T → T . For stage 3, the agent chooses an

action strategy giving her action as a function of her true type, her report, and the

principal’s recommendation, so bA : T × T × A → A, where we require the agent’s

choice to be feasible for her in the sense that bA(t, ·, ·) ∈ At for all t. For stage 5, the

agent has a second reporting strategy, again a function of all she has seen and done,

so bM : T × T × A × A ×M →M. Finally, for stage 6, the agent has an evidence

presentation strategy, bL : T × T ×A×A×M×M×L → L. Of course, we require

that bL(t, r, a, a′,M, M̂,m) ∈ M — that is, if the agent’s type is t, her report r, the

recommended action a, her chosen action a′, the realized message set M , the reported

message set M̂ , and the requested message m, the evidence message the agent sends

must be in M , the true message set. We let BT , BA, BM, and BL denote the sets of

these functions respectively.

Similarly, for stage 2, the principal chooses a recommendation strategy gA : T →
A, giving his recommended action as a function of the reported type. For stage

5, he chooses a message request strategy gL : T × A ×M → L. We require that

gL(r, a, M̂) ∈ M̂ . That is, if the agent reported r, the principal requested action a,

and the agent reported evidence set M̂ , the message the principal requests must be

feasible for the agent given her reported evidence set. For stage 7, he chooses an
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action strategy gX : T ×A×M×L×L → X. Let GA, GL, and GX denote the sets

of these functions.

Let the principal’s set of pure mechanisms or pure strategies be denoted G =

GA×GL×GX . Let Γ = ∆(G) with typical element γ. We let (γA, γL, γX) denote the

equivalent behavior strategy to γ. Let B = BT × BA × BM × BL denote the agent’s

set of pure strategies. Let β ∈ ∆(B) denote a typical mixed strategy for the agent.

A version of the standard Revelation Principle for this class of models says that

without loss of generality, we can restrict attention to mechanisms where it is optimal

for the agent to report truthfully and to obey the principal’s recommendations at

every stage along the equilibrium path.

To define incentive compatibility more precisely, note that any (β, γ, t) induces a

probability distribution over the principal’s action x. We denote this distribution by

µ(x | β, γ, t). Let U(β, γ, t) denote the agent’s expected utility in the mechanism γ

given strategy β when her type is t or

U(β, γ, t) =
∑
x∈X

u(t, x)µ(x | β, γ, t).

We say that a pure strategy b̂ = (b̂T , b̂A, b̂M, b̂L) is truthful and obedient if for all

t, a, M , and m, we have b̂T (t) = t, b̂A(t, t, a) = a, b̂M(t, t, a, a,M) = M , and

b̂L(t, t, a, a,M,M,m) = m. That is, the agent reports truthfully and obeys the prin-

cipal at all stages. Throughout, we use b̂∗ to denote any such honest and obedient

strategy.9

A mechanism γ for the evidence–acquisition model is incentive compatible if for

all t,

U(b̂∗, γ, t) ≥ U(b, γ, t), ∀b ∈ B

for any truthful and obedient strategy b̂∗. (Clearly, this condition also implies that

b̂∗ is a better strategy for the agent than any mixed strategy β ∈ ∆(B).)

Given any incentive compatible γ, let µ∗(x | γ, t) = µ(x | b̂∗, γ, t). We refer to µ∗

9Note that there are many such strategies since we do not specify how the agent behaves on
histories inconsistent with her strategy. Truth–telling and obedience are without loss of generality
on path, but not necessarily off path.
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as the mechanism outcome.

4.1 Identifying the Recommended Message

Clearly, this is a complex protocol, giving us a complex set of mechanisms and in-

centive compatibility constraints. In the rest of this section, we introduce two ways

to simplify the protocol and conditions under which these simplifications are without

loss of generality.

In both cases, the idea is to identify some choices by the principal in a way

which depends on the evidence structure but uses little or no information about the

preferences of the principal or the agent. The ability to identify such choices allows us

to greatly reduce the complexity of the protocol and the mechanism design problem.

The idea behind the first simplification is to identify the principal’s response at

Stage 5. If for every possible M̂ , there is a specific m ∈ M̂ that the principal will

always ask for, regardless of the preferences or other details of the model, then we

can take as given that the principal requests this message and delete Stage 5. This

enables us to eliminate Stage 4 since the agent’s report of a message set is needed

only to give the principal the opportunity to make such a recommendation. Hence

we can combine Stages 3 and 6, skipping Stages 4 and 5.

One way to understand when we can identify the principal’s response in this way

is by comparison to the literature with exogenously given evidence. In such models,

one may need the principal to randomize over which message to request in response

to the agent’s type report. The idea is to prevent the agent from knowing how the

principal will check various possible lies, thus deterring misreporting. See Glazer and

Rubinstein (2004) for illustrative examples. As shown by Bull and Watson (2007),

though, under a condition they call normality which Lipman and Seppi (1995) had

previously called the full reports condition, this request by the principal is not needed.

Normality or full reports says that the agent has available a message which reveals as

much information as all the messages the agent has available, a message equivalent

to showing the entire set of available messages. Thus asking for this message is the

“best” way to deter lies.
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We generalize this property to evidence–acquisition models as follows. We say

that the evidence technology satisfies normality if for every M ∈ M, there exists

m∗M ∈M such that for every M ′ ∈M, we have

m∗M ∈M ′ ⇐⇒ M ⊆M ′.

We refer to the message m∗M as the maximal evidence for M .

To understand this condition, note that M ⊆M ′ trivially implies m∗M ∈M ′ since

m∗M ∈M . However, we write the condition as an “if and only if,” including this trivial

direction, to emphasize the following idea. Intuitively, the only thing that presenting

a particular message m proves to the principal is that the agent is able to present

this message — that is, that the set of messages the agent has available includes m.

In this sense, the presentation of m is evidence directly about M ′, the agent’s set of

evidence, not about t. It provides evidence only indirectly about t since types differ

in terms of which evidence sets they are able or likely to obtain. The definition says

that learning that m∗M is feasible (i.e., that the true evidence set contains it) reveals

exactly the same information about the agent’s set of messages as learning that every

message in M is feasible (i.e., is contained in the true evidence set). In this sense,

showing m∗M reveals exactly what showing every message in M would reveal.

To put it differently, note that if the true message set, say M , is contained in M ′,

then nothing the agent could show would ever refute the possibility that the agent’s

message set is M ′. However, if M 6⊆ M ′, then there is some message m ∈ M \M ′

which the agent could show and prove conclusively that M ′ is not the feasible set.

Normality says that for every M , there is one message in M which could be used to

simultaneously rule out every such M ′, proving to the principal that the true set of

messages is either M or something which contains M .

Running Example, Part 5. In our example,M contains every interval of the form

[0,m] for m ∈ R+ since each such interval can be generated with positive probability

by some (actually, by any) type. Hence it is easy to see that the most informative

message, m∗M , for the interval [0,m] is the upper bound, m. That is, m∗[0,m] = m or,

equivalently, M = [0,m∗M ]. This is true as for any m′ ∈ R+, we have m∗M ∈ [0,m′]

if and only if [0,m∗M ] ⊆ [0,m′]. Hence our running example satisfies normality. As

Theorem 1 below will indicate, this means that there is an optimal mechanism using
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only the upper bounds of the intervals, regardless of the preferences, as asserted

earlier.

To see more concretely that normality is about the information content of messages

regarding the set of available messages, consider the following example.

Example 1. The agent has two types, t1 and t2. Each type has only one distribution

over evidence sets. Type t1 obtains evidence set {m1} with probability 1/3, {m2}
with probability 1/3, and {m1,m2} with probability 1/3. Type t2 receives evidence

set {m2} with probability 1. This evidence technology violates normality. First,

note that any singleton evidence set trivially has a maximal evidence message since

if M = {m}, then it is obviously true that for any M ′, m ∈ M ′ iff M ⊆ M ′. So if

normality fails, it is because {m1,m2} has no maximal evidence message. It is easy

to see that this is the case. For either message m′ ∈ {m1,m2}, the singleton {m′}
is also an element of M. Clearly, then, m′ cannot be maximal since m′ ∈ {m′} but

{m1,m2} 6⊆ {m′}.

To see why this is surprising, note that if the agent presents m1 to the principal,

she proves that her type is t1 as type t2 never has this message available. Yet m1

is not maximal evidence from {m1,m2}. Intuitively, presentation of m1 proves the

agent’s type but presenting both m1 and m2 would prove more about the agent’s

available messages than m1 proves.

One way to understand this is to observe that in standard deterministic evidence

models, the agent’s type identifies exactly her set of available messages. In a sense,

in the current model, the agent’s full type is the pair (t,M) where M is the set of

messages the agent has. So in this example, unlike in deterministic evidence models,

proving that the “type” is t does not prove the agent’s full type.10

The following theorem shows that normality will enable us to identify the prin-

cipal’s message recommendations, a result we can then use to simplify the protocol.

Recall that a mechanism for the principal is a probability distribution γ over G with

associated behavior strategy representation (γA, γL, γX).

10Another way to see this point is to redefine the type space to be the set of possible (t,M) and
the set of feasible messages for “type” (t,M) to be M . Applying the standard definition of normality
to this model yields our definition.
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Theorem 1. In the evidence–acquisition model, fix any incentive compatible mecha-

nism γ. If the evidence technology is normal, then there exists an incentive compatible

mechanism (γ∗A, γ
∗
L, γ

∗
X) with the following properties. First, γ∗L(t, a,M)(m∗M) = 1.

That is, the principal always recommends the maximal evidence message for any re-

ported M . Second, for all t,

µ∗(x | γ, t) = µ∗(x | γ∗, t), ∀x ∈ X,

so γ and γ∗ have the same mechanism outcome.

This simplification is, in general, not possible when the evidence technology is not

normal. For example, there are preferences for the non–normal evidence technology

in Example 1 for which it is better for the principal to request m1 and preferences

where it is better for him to request m2, even though m1 perfectly reveals the agent’s

type.11

Theorem 1 implies that we can simplify the protocol under normality. Since the

principal can always recommend the maximal evidence message for any reported

message set, we do not need the stage where he makes this recommendation. Hence

we do not need the agent to report the message set since the mechanism does not

depend on it.

Hence a corollary to Theorem 1 is that we can use a simpler protocol. We refer

to the following as the abbreviated protocol for evidence–acquisition models :

Stage 1. The agent reports a t ∈ T .

Stage 2. Given the report, the principal recommends a distribution over evidence

sets for the agent.

Stage 3. The agent chooses a distribution and the evidence set M is realized.

Stage 4. The agent sends a message m from the set of available messages M .

Stage 5. The principal chooses an action as a function of the history he has observed,

namely the agent’s report, the recommended distribution, and the message m.

11Illustrative examples are available on request.
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Again, the reader may wish to skip the following definitions and proceed directly to

Corollary 1 below. We abuse notation by using the same notation to denote strategies

for this protocol. Hence a pure strategy for the agent is now b = (bT , bA, bL) where

bT : T → T and bA : T × T × A→ A as before. Also, bL : T × T × A× A×M→ L
where bL(t, r, a, a′,M) ∈ M gives the message the agent sends as a function of her

true type t, her reported type r, the principal’s recommended distribution a, the

distribution she actually chose a, and the realized set M . A pure strategy for the

principal is g = (gA, gX) where gA : T → A, with gA(t) ∈ At and gX : T ×A×L → X

gives the principal’s choice of x as a function of the agent’s report, the recommended

distribution, and the observed message. Again, we denote the agent’s pure strategies

by B = BT ×BA ×BL and the principal’s pure strategies by G = GA ×GX .

The definition of incentive compatibility for this class of mechanisms is similar to

the preceding. Briefly, incentive compatibility requires that an optimal strategy for

the agent is to report t truthfully (so bT (t) = t), to follow the principal’s recommen-

dation (so bA(t, t, a) = a), and to use maximal evidence (so bL(t, t, a, a,M) = m∗M).

We have the following corollary, proved in Appendix B:

Corollary 1. Assume the evidence technology is normal. Then for any incentive

compatible mechanism in the full protocol for evidence–acquisition models, there is an

incentive compatible mechanism for the abbreviated protocol with the same mechanism

outcome.

4.2 Reduction to Signal Choice

The identification of the principal’s recommended message under normality enables

us to reduce the mechanism design problem for the evidence–acquisition model to

the mechanism design problem for the signal–choice model. To show this, we first

describe the latter. It is easy to see that we can assume the following protocol for

signal–choice. As before, the notation is summarized after we state the main result

of this section.

Stage 1. The agent reports a t ∈ T .

Stage 2. Given the report, the principal requests a signal distribution.
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Stage 3. The agent chooses a signal distribution s as a function of her type, her

report, and the recommendation of the principal, with the resulting message seen by

the principal.

Stage 4. The principal chooses an outcome as a function of what has been said.

Formally, let a reporting strategy for Stage 1 be denoted bT : T → T . A pure

strategy for the principal for Stage 2 is denoted gS : T → S. Let bS : T × T × S → S

with bS(t, r, s) ∈ St denote a typical pure strategy for the agent for Stage 3. Finally,

let gX : T × S × L → X denote a typical pure strategy for the principal for the last

stage. Abusing notation, again let B = BT ×BS denote the set of pure strategies for

the agent and G = GS×GX the set of pure strategies for the principal in this protocol.

By the Revelation Principle, we can focus on mechanisms γ ∈ Γ with the property

that any strategy b̂∗ = (b̂∗T , b̂
∗
S) for the agent satisfying b̂∗T (t) = t and b̂∗S(t, t, s) = s is a

best reply for the agent to γ. Again, we refer to any such b̂∗ as truthful and obedient.

Given an incentive compatible mechanism γ, we can define the mechanism outcome

as the function mapping t to probability distributions over outcomes, here defined as

(s, x) pairs. I.e., we can write µ∗(s, x | γ, t) as the probability distribution over (s, x)

induced by the strategies (b̂∗, γ) given the agent’s type is t.

As in our analysis of games in Section 3, we can think of the agent’s strategy

in the evidence–acquisition model as a choice of a distribution over evidence sets

and a messaging strategy. Again, a distribution and messaging strategy generates

a probability distribution over the message the agent shows the principal. Thus we

can replace the selection of a distribution/messaging strategy with the selection of a

signal distribution. In general, this change reduces the principal’s ability to influence

the agent’s decisions and will lead to a less effective mechanism. However, under

normality, the ability to reduce to the abbreviated protocol implies that this change

does not harm the principal.

Formally, fix an evidence–acquisition model. We construct a signal–choice model

from it as follows. For any a ∈ A and any function σ : supp(a) → L such that

σ(M) ∈M , we can define a signal s ∈ ∆(L) by

s(m) = a ({M | σ(M) = m}) .
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Let Σ(a) denote the set of such σ functions given a and let s(a,σ) denote the distribution

on L induced by (a, σ). Let

St = {s(a,σ) | a ∈ At, σ ∈ Σ(a)}.

This is exactly the translation from evidence acquisition to signal choice discussed

less formally in Section 3.

The following result explains the sense in which the signal–choice model so con-

structed is equivalent to the evidence–acquisition model under normality.

Theorem 2. In the evidence–acquisition model, fix any incentive compatible mecha-

nism γ. If the evidence technology is normal, then there exists an incentive compatible

mechanism γ∗ in the signal–choice model constructed from it that is equivalent to γ

in the following sense. For any truthful and obedient strategy b̂∗ for the agent in the

signal–choice model given γ∗, we have

µ∗(x | γ, t) = µ̂∗(x | γ∗, t), ∀x ∈ X,

so γ and γ∗ have the same mechanism outcomes for every t ∈ T .

In short, given normality, any outcome that can be induced by a mechanism for

the evidence–acquisition model can be induced by a mechanism in the protocol for

the signal–choice model. This is analogous to our result on games in Section 3.

One can consider mechanisms with different timing. For example, perhaps the

agent only comes to the principal after having generated evidence. Recognizing this,

the optimal mechanism takes into account the way the rules of the mechanism affect

these incentives. For example, this seems like a natural way to think about courts.

The lawyers know the rules of the court in advance and work to obtain evidence before

bringing the case to court. It is easy to show the analog of Theorem 1, Corollary 1, and

Theorem 2 for this model. More specifically, it is still true that under normality, one

can restrict attention to mechanisms for which the principal always recommends the

maximal evidence message for any evidence set, enabling us to use (an appropriately

modified version of) the abbreviated protocol and reduce to a version of the signal–

choice model.
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4.3 Identifying the Recommended Signal

In this section, we focus on the signal–choice model, where, as just shown, this can

be interpreted as a reduced form of the evidence–acquisition model under normality.

While normality greatly simplifies the mechanism design problem, the problem

is still complex. We next turn to conditions under which we can identify the signal

choice the principal requests as a function of the type.

Recall that L is finite. In this section, we write a signal distribution s ∈ S as a

(row) vector in R#L
+ . Fix t∗ and s∗, ŝ∗ ∈ St∗ . We say that s∗ is more informative than

ŝ∗ if there exists an #L ×#L Markov matrix Λ such that s∗Λ = ŝ∗ and for every t

and every s ∈ St, sΛ ∈ conv(St).
12

In the case where each St is finite, we can give an equivalent statement which

will aid in clarifying the intuition of this condition. Let S denote the matrix formed

by “stacking” the signal distributions. In other words, this is a matrix with #L
columns and a number of rows equal to

∑
t #St. The first #St1 rows are the signal

distributions available to t1, the next #St2 rows those available to t2, etc. Note that

if s ∈ St ∩ St′ for t 6= t′, then s appears (at least) twice in the matrix. Then s∗ is

more informative than ŝ∗ if there exists a Markov matrix Λ such that SΛ = Ŝ where

the matrix Ŝ has ŝ∗ in the row corresponding to s∗ in S and for any row s of Ŝ
corresponding to one of type t’s signal distributions, we have s ∈ conv(St).

To see the intuition, recall Blackwell–Girshick’s (1954) (BG) comparison of ex-

periments. In their model, there are n states of the world. An experiment gives a

probability distribution over a finite set of observations as a function of the state of

the world. If there are N possible observations, we can write this as an n×N matrix

E where eij is the probability of observation j in state i. Suppose we have two ex-

periments, E and F . BG say experiment E is more informative than experiment F if

there exists a Markov matrix Λ such that EΛ = F . The matrix Λ defines a garbling

of the results of experiment E, so this says that F can be obtained from E by adding

random noise.

Thus we can interpret our informativeness comparison as saying that the “exper-

12A matrix is Markov if all entries are non–negative and every row sum is 1.
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iment” S is more informative than “experiment” Ŝ in the sense that we can obtain

the latter by adding noise to the former. To understand the sense in which S and Ŝ
can be thought of as experiments, note that the rows in an experiment correspond to

states of the world, while a row in S corresponds to a (type, signal distribution) pair.

Intuitively, just as we can think of (t,M) as the (partly endogenous) “full type” in the

evidence–acquisition model, it is natural to think of (t, s) as the (partly endogenous)

“full type” in the signal–choice model.

To see the sense in which the existence of Λ implies s is more informative than

s′, suppose we have a mechanism in which the principal recommends s′ if the agent

reports that her type is t. Suppose the principal changes the mechanism to recommend

s in this situation instead and changes no other recommendations. Suppose that the

principal’s response to messages he subsequently receives from the agent after this

recommendation is to “garble” them according to the Markov matrix Λ and then to

respond the way the original mechanism specified. If the agent uses signal s, then

the resulting distribution over the garbled message will be sΛ. By hypothesis, this

is s′. Thus the distribution over the principal’s choice of x will be the same as in

the original mechanism. Suppose that the agent’s true type is t̂ and that she uses

some signal ŝ ∈ St̂. Then the induced distribution over garbled messages will be

ŝΛ. By hypothesis, this is an element of conv(St̂). In other words, in the original

mechanism, type t̂ could have generated this distribution over messages by a particular

randomization over her available signals. Thus the expected outcome this type would

generate is something she could have generated in the original mechanism. If the

original mechanism was incentive compatible, then this deviation is not profitable.

Thus the new mechanism is incentive compatible and generates the same outcome as

the original one.

To understand this condition better, consider the following examples.

Example 2. Suppose there are three types, so T = {t1, t2, t3}, and three messages,

so L = {m1,m2,m3}. The first two types have only one signal distribution each, so

St1 = {s1} and St2 = {s2}, but t3 has two signal distributions so St3 = {s3, s
′
3}. The
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distributions are given by

s1 s2 s3 s′3

m1 1 0 0 1/2

m2 0 1 0 1/2

m3 0 0 1 0

It seems very intuitive that if the agent claims to be t3, the principal should insist

on signal s3. It is easy to see that there is a Markov matrix Λ establishing that s3 is

more informative than s′3. In particular, if we let

Λ =

Ö
1 0 0

0 1 0

1/2 1/2 0

è
,

we get that s1Λ = s1, s2Λ = s2, and s3Λ = s′3Λ = s′3, so the conditions are met.

Example 3. Suppose T = {t1, t2}, L = {m1,m2}, St1 = {s1}, and St2 = {s2, s
′
2}

where
s1 s2 s′2

m1 1 0 1/2

m2 0 1 1/2

Again, it seems intuitive that if the agent claims to be t2, the principal should ask for

signal s2. However, s2 is not more informative than s′2 according to our definition. To

have s2 more informative than s′2, we require the Markov matrix Λ to satisfy, among

other properties, s1Λ = s1 and s2Λ = s′2. It’s easy to show that the only Markov

matrix satisfying these two properties is

Λ =

(
1 0

1/2 1/2

)
.

But then s′2Λ = (3/4, 1/4) which is not in the convex hull of (0, 1) and (1/2, 1/2).

Intuitively, our construction has the principal changing from a mechanism where t2

sends s′2 to one where she sends s2 by treating a message of m2 as if it were a 50–50

randomization over m1 and m2 and treating m1 as m1. But then by playing s′2, t2

can effectively put more probability on the principal interpreting her message as m1

in this mechanism than in the original, potentially creating profitable deviations.
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Example 4. As in Example 2, suppose T = {t1, t2}, L = {m1,m2}, St1 = {s1}, and

St2 = {s2, s
′
2}, but now we have

s1 s2 s′2

m1 1/2 1/4 2/3

m2 1/2 3/4 1/3

Here is it not obvious what signal the principal should ask type t2 to use since s1 is

“between” s2 and s′2. However, the fact that s′2 is “closer” to s1 than is s2 implies s2

is more informative than s′2. More specifically, letting

Λ =

(
1/6 5/6

5/6 1/6

)
,

we get s1Λ = s1, s2Λ = s′2, and s′2Λ = (7/18, 11/18) ∈ conv{(1/4, 3/4), (2/3, 1/3)}.

Theorem 3. In the signal–choice model, fix any incentive compatible mechanism γ

with marginal γS on GS. If there exists t∗ and s∗, ŝ∗ ∈ St∗ such that s∗ is more

informative than ŝ∗, then there exists an incentive compatible mechanism (γ∗S, γ
∗
X)

satisfying the following two properties. First,

γ∗S(t)(s) =


γS(t)(s), if t 6= t∗ or s /∈ {s∗, ŝ∗};
γS(t∗)(s∗) + γS(t∗)(ŝ∗), if t = t∗ and s = s∗;

0, if t = t∗ and s = ŝ∗.

That is, γ∗ moves any probability on recommending ŝ∗ for t∗ to recommending s∗

instead. Second, for all t,

µ∗(x | γ, t) = µ∗(x | γ∗, t), ∀x ∈ X.

That is, γ and γ∗ generate the same probability distribution over actions by the prin-

cipal for every t ∈ T .

Remark 1. Theorems 1 and 3 are connected in the following sense. Suppose we

begin with an evidence–acquisition model satisfying normality. By Theorem 2, we

can reduce this to a signal–choice model where each signal distribution corresponds

to a particular choice of a distribution over evidence sets and a messaging strategy for

which message to send as a function of the realized set. Fix a particular distribution
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over evidence sets and let s be a signal distribution generated from this choice and any

messaging strategy which does not always select the maximal evidence message. Let

s∗ be the signal distribution generated from the same distribution over evidence sets

and the message strategy which does always select the maximal evidence message.

Then s∗ is more informative than s in the sense defined above. (See Section E in the

Appendix for proof.) Thus the result in Theorem 1 that we can restrict attention

to mechanisms where the principal always induces use of maximal evidence can be

thought of as an implication of the result in Theorem 3 that we can restrict to

mechanisms where the principal always induces more informative signals. We present

these results separately since the reduction of the evidence–acquisition model to the

signal–choice model requires showing Theorem 1, so we cannot present only Theorem

3.

Ball and Kattwinkel (2023) study a model where the agent reports her type and

then the principal selects a probabilistic pass–fail test out of a given set of such tests.

Ball and Kattwinkel’s notion of more discerning tests is related to our notion of more

informative signals but is not the same. In their model, a given test τ together with

a type t and an effort choice by the agent determines a probability distribution over

results where the set of results is {0, 1}. If the agent takes effort, the agent passes the

test (gets an outcome of 1) with probability π(τ | t) and fails otherwise. If the agent

does not take effort, she fails with probability 1.

Ball and Kattwinkel say that a test τ̂ is more t–discerning than a test τ if there

are probabilities k1 and k0 with k1 ≥ k0 such that

k1π(τ̂ | t) + k0[1− π(τ̂ | t)] = π(τ | t)

and

k1π(τ̂ | t′) + k0[1− π(τ̂ | t′)] ≤ π(τ | t′), ∀t′ 6= t.

Intuitively, this says that a certain kind of garbling of τ̂ (namely, one which puts more

weight on the success probability than the failure) gives the same success probabilities

as τ for type t and lower success probabilities for all other types.

To see the connection to our condition, we write the signal distribution correspond-

ing to test τ , type t, and the agent taking effort as τ+(t) = (1 − π(τ | t), π(τ | t)),
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so that this is a distribution over {0, 1}. We write the distribution given no effort

as (1, 0) for any test and type. Given k0 and k1 satisfying Ball and Kattwinkel’s

definition, let

Λ =

(
k0 1− k0

k1 1− k1

)
.

Then their definition says that τ̂+(t)Λ = τ+(t) and that for every t′ 6= t, τ̂+(t′)Λ ∈
conv({(1, 0), τ+(t′)}). It is not hard to show that their requirement that k1 ≥ k0 is

equivalent to (1, 0)Λ ∈ conv({(1, 0), τ+(t)}).

In other words, there are two differences between τ̂ being more t–discerning that

τ in their sense and the signal distribution for t given by τ̂+(t) being more informative

than τ+(t) in our sense when St′ = {τ̂+(t′), τ+(t′), (1, 0)} for all t′. First, their restric-

tion on the garbled signals only applies to the distribution under test τ̂ (with and

without effort), not also to test τ with effort. Second, the convex hulls the garbled

signals must lie in is only the convex hull of τ with and without effort.

In our model, the agent can choose any distribution in her feasible set, while in

Ball and Kattwinkel, the agent can only choose distributions that can be generated

by a choice of an effort level through the test chosen by the principal. Equivalently,

the principal can observe and punish any deviation by the agent to the “wrong” test.

Consequently, Ball and Kattwinkel’s informativeness comparisons can ignore incentive

constraints associated with signals that are not generated by the test specified by the

principal. The principal only needs to compare what happens with test τ̂ to what

would happen with τ , while we require the principal to consider what happens when

both tests are available.

Theorem 3 implies that if type t has some signal distribution s∗ ∈ St which is more

informative than any other s ∈ St, then the principal may as well always recommend

s∗ to t. If every t has such a most informative signal distribution, then Stage 2 of the

mechanism protocol is not needed as we can restrict attention to mechanisms where

every type of the agent is induced to choose her most informative signal distribution.

In such a case, we can focus on the following succinct protocol:

Stage 1. The agent reports a t ∈ T and chooses a signal distribution s. Denote a

reporting strategy by bT : T → T and a signal distribution strategy by bS : T → S
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with b(t) ∈ St.

Stage 2. The principal observes the report, the realized m, and chooses an outcome.

Let gX : T × L → X denote a typical pure strategy for the principal.

Abusing notation yet again, let B = BT ×BS denote the set of pure strategies for

the agent and G the set of pure strategies for the principal in this protocol. When

each type t has a most informative signal distribution s∗t , we can focus on mechanisms

γ ∈ Γ with the property that the strategy b̂T (t) = t and b̂S(t) = s∗t is a best reply for

the agent to γ.

Running Example, Part 6. We showed in Part 5 of the example that the evidence–

acquisition technology is normal. In particular, given any realized message set of the

form [0,m], the upper bound m is the most informative message for the set. Hence

Theorem 2 implies that we can focus on the signal–choice model where for each t, St

is the set of all distributions on R+ with expectation less than or equal to t. Since

R+ is not finite, we need to adjust the example to apply our condition. So let L be

any finite subset of R+ containing at least T , where we also generalize the example,

now letting T be any finite subset of R+, not necessarily {`, h}. Assume St is the set

of all probability distributions on L with expectation less than or equal to t.

We now show that the most informative signal distribution for type t is the de-

generate distribution on t. Fix any type t∗. Let s∗ ∈ St∗ denote the degenerate

distribution putting probability 1 on m = t∗ and fix any other s ∈ St∗ . Let the Λ

matrix be an identity matrix but with the row corresponding to m = t∗ replaced by

s. That is, we let

Λ =



1 0 0 . . . 0 0

0 1 0 . . . 0 0
...

...
... . . .

...
...

s(m1) s(m2) s(m3) . . . s(m#L−1) s(m#L)
...

...
... . . .

...
...

0 0 0 . . . 1 0

0 0 0 . . . 0 1


.

Then s∗Λ = s. Fix any other type t and any ŝ ∈ St. Let s̃ = ŝΛ. For m 6= t∗, we
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have s̃(m) = ŝ(m) + ŝ(t∗)s(m). For m = t∗, we have s̃(t∗) = ŝ(t∗)s(t∗). So∑
m

s̃(m)m =
∑
m 6=t∗

[ŝ(m) + ŝ(t∗)s(m)]m+ ŝ(t∗)s(t∗)t∗

=
∑
m 6=t∗

ŝ(m)m+
∑
m 6=t∗

ŝ(t∗)s(m)m+ ŝ(t∗)s(t∗)t∗

=
∑
m 6=t∗

ŝ(m)m+ ŝ(t∗)
∑
m

s(m)m

≤
∑
m 6=t∗

ŝ(m)m+ ŝ(t∗)t∗

=
∑
m

ŝ(m)m ≤ t.

The next–to–last line follows from s ∈ St∗ and therefore
∑

m s(m)m ≤ t∗. The last

inequality on the last line follows from ŝ ∈ St and therefore
∑

m ŝ(m)m ≤ t. So for

every ŝ ∈ St, ŝΛ is a probability distribution over L with expectation weakly less

than t and hence is an element of St and therefore of conv(St). Hence s∗ is more

informative than s.

Now that we have identified the signal choices for each type in the optimal mech-

anism, it is not difficult to compute the rest of the mechanism. We already showed

that the principal can achieve his best possible outcome for each type when his utility

function is −(t− x)2, so consider the hiring version where the principal’s choice is to

hire the agent (x = 1) or not (x = 0) and his payoff is x(t−w̄) where w̄ ∈ (`, h). Recall

that types are equally likely. The agent’s payoff is x. Let γ∗(t) denote the probability

the principal chooses x = 1 when the agent reports type t and the realized message

m also equals t. Given that the mechanism will induce truthful reporting and will

induce the agent to choose the degenerate distribution with m = t, the principal’s

expected payoff is
1

2
γ∗(h)(h− w) +

1

2
γ∗(`)(`− w).

Clearly, we may as well assume the mechanism has x = 0 if the message observed

differs from the agent’s type report. As we will see, type h never wishes to imitate `,

so we do not need to impose this incentive compatibility constraint. Hence the only
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incentive compatibility constraint we require is

γ∗(`) ≥ γ∗(h)
`

h
,

since the maximum probability ` can put on m = h is when she chooses the dis-

tribution with probability `/h on h and the remaining probability on 0. Since the

principal’s utility is decreasing in γ∗(`) and increasing in γ∗(h), the constraint is

binding. Hence the principal chooses γ∗(h) to maximize

γ∗(h)

ï
1

2
(h− w̄) +

1

2

`

h
(`− w̄)

ò
.

So if
h2 + `2

h+ `
> w̄,

the optimal mechanism has γ∗(h) = 1 and γ∗` = `/h. If we have the opposite strict

inequality, it has γ∗(h) = γ∗(`) = 0. In both cases, type h has no incentive to imitate

type `, as asserted.

Also, in both cases, the outcome is the same as in the equilibrium we computed

for this example in Section 3. In this sense, there is no value to the principal from

commitment: he obtains the same outcome when he is able to commit to his responses

to the agent and in a particular equilibrium of the game where he cannot commit.

We present a generalization of the result of this example in the following section.

5 Commitment

We just saw in Section 4 that there is no value to commitment in the hiring version

of our running example. In this section, we generalize this result.

Our generalization works in two steps. First, we introduce an assumption on

endogenous variables and show that when it holds, there is no value to commitment.

More specifically, when this condition is satisfied, there is a Nash equilibrium in

the game between the principal and the agent without commitment that gives the

principal the same payoff as in the optimal mechanism. As we show, essentially all
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of the results in the literature showing no value to commitment can be thought of

as identifying various conditions on primitives which imply our assumption on the

endogenous variables.

Second, we identify a condition on primitives for the stochastic evidence model

which implies our assumption on endogneous variables and extend the first result to

address the question of sequential rationality. As we explain further below, the main

complication posed by sequential rationality is that the analysis requires much more

detail about the structure of the protocol than our Nash equilibrium result uses.

The first of these results applies to any finite game between the principal and the

agent. In particular, it applies to any protocol for the evidence–acquisition model,

including the special case of the signal–choice model, but also to models that have

nothing to do with evidence or signals at all. To state this result, fix any finite set

of pure strategies for the agent, denoted B, and any finite set of pure strategies for

the principal, denoted G. Let U(β, γ) denote the agent’s expected payoff in the game

given mixed strategy profile (β, γ) ∈ ∆(B)×∆(G), where we take expectations over

the randomization of the strategies as well as any randomness in the game itself, such

as the realization of the agent’s type. Similarly, let V (β, γ) denote the principal’s

expected payoff given (β, γ).

Given any γ ∈ ∆(G), let BR(γ) denote the agent’s set of best replies — i.e.,

BR(γ) = {β ∈ ∆(B) | U(β, γ) ≥ U(β′, γ), ∀β′ ∈ ∆(B)}.

Let

V ∗ = max
γ∈Γ

max
β∈BR(γ)

V (β, γ).

In other words, V ∗ is the principal’s maximal expected payoff when he can commit to

any mixed strategy in the game and can choose the agent’s best reply to his strategy.

If (β∗, γ∗) solves V ∗ = V (β∗, γ∗) and β∗ ∈ BR(γ∗), we say γ∗ is optimal for the

principal and refer to β∗ as the associated β.

The only assumption we make on the game is, as mentioned above, a condition

on endogenous variables. We say that the game is aligned if there exists a γ∗ which
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is optimal for the principal with the property that

V ∗ = V (β, γ∗), ∀β ∈ BR(γ∗).

That is, the game is aligned if changes in the agent’s best response do not affect the

principal’s payoff at some optimal mechanism. We discuss this assumption in detail

below.

The following is our result on value of commitment relative to Nash equilibrium.

Theorem 4. Fix any aligned game. Then there exists γ∗ which is optimal for the

principal and β̂ ∈ ∆(B) such that (β̂, γ∗) is a Nash equilibrium of the game induced

by the protocol and V (β̂, γ∗) = V ∗.

Proof. Suppose not. Fix an optimal γ∗ for the principal with the property that

V (β, γ∗) = V ∗ for all β ∈ BR(γ∗). The assumption of alignment is precisely that

such γ∗ exists.

We construct a contradiction as follows. Consider the restricted game where

the principal’s set of pure strategies is G, but the agent’s set of pure strategies is

B ∩BR(γ∗). By finiteness of B and G, the restricted game has a mixed equilibrium,

say, (β̂, γ̂).

By construction, β̂ can only put positive probability on b’s that are best replies

to γ∗ and hence β̂ is a best reply to γ∗. Hence by alignment, V (β̂, γ∗) = V ∗. By

hypothesis, there is no Nash equilibrium giving the principal a payoff as large as V ∗,

so (β̂, γ∗) must not be a Nash equilibrium. Since β̂ is a best reply to γ∗, this means

that γ∗ must not be a best reply to β̂. Hence V (β̂, γ̂) > V (β̂, γ∗) = V ∗.

Hence for every ε ∈ (0, 1),

εV (β̂, γ̂) + (1− ε)V (β̂, γ∗) > V (β̂, γ∗) = V ∗,

so

V (β̂, εγ̂ + (1− ε)γ∗) > V ∗.

We contradict this by showing that for all sufficiently small ε > 0, β̂ ∈ BR(εγ̂(1 −
ε)γ∗). This is a contradiction because it implies that the principal would be strictly

32



better off committing to εγ̂ + (1− ε)γ∗ and choosing β̂ for the agent’s best reply.

We show that for ε sufficiently small, β̂ is a better reply for the agent than any

other pure strategy. To see this, fix any pure strategy b. Then

U(b, εγ̂ + (1− ε)γ∗) ≤ U(β̂, εγ̂ + (1− ε)γ∗)

if and only if

ε[U(b, γ̂)− U(β̂, γ̂) + U(β̂, γ∗)− U(b, γ∗)] ≤ U(β̂, γ∗)− U(b, γ̂∗). (1)

First, suppose b ∈ BR(γ∗), so U(b, γ∗) = U(β̂, γ∗). In this case, equation (1)

reduces to

ε[U(b, γ̂)− U(β̂, γ̂)] ≤ 0.

By the definition of the reduced game, β̂ is a better response to γ̂ than any b ∈ BR(γ∗),

so equation (1) holds.

So suppose b /∈ BR(γ∗). In this case, U(b, γ∗) < U(β̂, γ∗), so the right–hand side

of equation (1) is strictly positive. Hence if the term in brackets on the left–hand

side is less than or equal to zero, this holds for all ε > 0. So assume b is such that

the term in brackets is strictly positive. Let B̂ denote the set of such b and let

∆ = min
b∈B̂

U(β̂, γ∗)− U(b, γ̂∗)

U(b, γ̂)− U(β̂, γ̂) + U(β̂, γ∗)− U(b, γ∗)
.

Since B and hence B̂ are finite, the minimum is well–defined and strictly positive.

Hence for every ε ∈ (0,∆), equation (1) holds.

Hence for every such ε, β̂ ∈ BR(εγ̂ + (1− ε)γ∗), a contradiction.

As noted, the assumption that the game is aligned is a hypothesis about endoge-

nous variables. As we now explain, the various results in the literature characterizing

situations where commitment does not have value can be thought of as various ways

to generate the property that the relevant game is aligned.

The earliest results showing no value to commitment were due to Glazer and Ru-
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binstein (2004, 2006). They considered the case where the principal chooses between

two outcomes, called accept (x = 1) and reject (x = 0). The agent’s utility is x. The

principal’s utility is x if the agent’s type is in a certain set of types, −x otherwise.

They consider nonstochastic evidence — that is, each type has only a single degen-

erate distribution over evidence sets. As in our model and all the models discussed

below, the agent knows her type from the outset of the game. Hence if we compare

two best replies by the agent to a given mechanism, these strategies must be optimal

for every type of the agent. In particular, in Glazer and Rubinstein, this implies that

every type of the agent must get accepted with the same probability in each best

response. But then the principal’s payoff is the same across agent best responses as

well, so the game is aligned.

Sher (2011) and Hart, Kremer, and Perry (2017) generalize Glazer–Rubinstein to

allow more than two possible actions but where the principal’s utility can be written

as a function of the agent’s utility. More specifically, the agent’s utility function u

depends only on the principal’s choice, x, while the principal’s utility v depends on

both x and the agent’s type t. The sense in which the principal’s utility can be written

as a function of the agent’s utility is that if u(x) = u(x′), then v(x, t) = v(x′, t) for

all t.

These models also have deterministic evidence, so the only random element of

the model is the prior over the agent’s type. Both models have other assumptions

which imply the existence of an optimal deterministic mechanism. In a deterministic

mechanism, we have a similar argument to the one above. If the agent has multiple

best responses to the mechanism, then every type of the agent must get the same

utility from each of these best responses. Because there is no randomness given the

agent’s type, this constant utility across best responses implies that the principal’s

utility given any type of the agent is also constant across the agent’s best responses.

Hence the game is aligned.13

Ben-Porath, Dekel, and Lipman (2019) differs in part by considering the multi–

agent case. Specializing to the single–agent case, we assumed that the principal’s

13Hart, Kremer, and Perry allow infinitely many actions, but this difference from our model is
not relevant. They have finitely many types, so only finitely many actions would ever be chosen in
a deterministic mechanism.
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utility function could be written as v(t, x) = ν(t)u(t, x) + ψ(x) + ϕ(t).14 We also

had deterministic evidence and, like the papers discussed above, proved the existence

of an optimal deterministic mechanism. However, the simple argument above does

not apply here. If the agent changes to a different best reply, this would necessarily

leave u(t, x) unchanged for each t but might change ψ(x) for some t’s and hence

could change the principal’s utility. However, our characterization of the optimal

mechanism in that paper shows that it is “measurable” with respect to the agent’s

payoff in the sense that if two types of the agent receive the same payoff in the

optimal mechanism, then the outcome for them is the same as well. This turns out to

imply that the optimal mechanism has the property that any alternative best reply

for the agent does not change the outcome and hence leaves the principal indifferent.

Consequently, the game is again aligned.

When we move from deterministic evidence models to allowing some stochastic

components, these conditions are, in general, no longer sufficient to ensure that the

game is aligned. The simplest way to see this is to consider the wage–setting version

of our running example. In this example, u(t, x) = x and v(t, x) = −(x − t)2 =

2tx− t2 − x2. We can rewrite this as v(t, x) = 2tu(t, x)− t2 − x2. Letting ν(t) = 2t,

ϕ(t) = −t2, and ψ(x) = −x2, we obtain v(t, x) = ν(t)u(t, x) + ψ(x) + ϕ(t), showing

that the condition in our 2019 paper is satisfied. However, in Section 3, we showed

that commitment enables the principal to obtain a strictly higher payoff than in any

equilibrium in this example. Thus Theorem 4 implies that this game is not aligned

with stochastic evidence.

The reason for this is the unavoidable additional randomness when we move away

from deterministic evidence. If the agent switches between best replies, the expected

utility for any type does not change, but the distribution over her utility may. Unless

the principal’s utility is a linear function of the agent’s utility, this will generally

mean that changes in the agent’s best reply do affect the principal’s utility. In the

wage–setting version of our running example, the principal’s payoff is strictly concave

in the agent’s utility, so this condition is violated.15 In short, to accommodate such

14We did not include the ϕ(t) term as it has no implications for behavior and hence can be included
or omitted without changing any results. We include it here to simplify the discussion below.

15To see this point more concretely, note that in the equilibrium we computed in Part 4 of our
running example, type ` receives wage h with probability `/h and ` otherwise. If the principal could
commit, she could offer to pay the expectation of this wage with probability 1 if the agent reports `
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randomness, we need stronger conditions on the utility functions to ensure that the

game is aligned.

We now give an assumption on preferences in our evidence acquisition model which

ensures that the protocol is aligned and allows us to extend Theorem 4 to perfect

Bayesian equilibrium. The assumption is that there is some function ν : T → R such

that v(t, x) = ν(t)u(t, x) + ψ(t) for all (t, x) ∈ T ×X. When this holds, we say the

preferences are semi–aligned. In other words, we use the same assumption as our

2019 paper but without the additional ψ(x) term allowed. It is easy to see that this

implies that if U(b, g, t) = U(b′, g′, t) for all t ∈ T , then V (b, g) = V (b′, g′). That is, if

all types of the agent are indifferent between any two outcomes, then the principal is

as well. Clearly, this implies that the game is aligned.

While the assumption of semi–aligned preferences is nontrivial, it is without (fur-

ther) loss of generality when the principal has two actions available — i.e., when

#X = 2. Thus it holds in the hiring version of our running example. Other natural

settings where the principal has two feasible actions are cases where the principal has

to decide whether to fund the agent’s project, to lend funds, to provide a resource,

etc.

To see that preferences are semi–aligned when there are only two outcomes, denote

the outcomes x0 and x1. Then we can renormalize the agent’s payoffs so that u(t, x0) =

0 for all t, u(t, x1) = 1 for types t who prefer x1 to x0, and u(t, x) = −1 for types

who prefer x0 to x1.16 We can renormalize the principal’s utility function so that

v(t, x0) = 0 for all t. Without loss of generality, assume v(t, x0) 6= v(t, x1) for all

t.17 Given these renormalizations, we can write v(t, x) = ν(t)u(t, x) where ν(t) =

v(t, x1)/u(t, x1).

To extend Theorem 4 to perfect Bayesian equilibrium, we need to put more struc-

ture on the protocol. Otherwise, it is difficult to characterize what kind of choices the

and to follow the equilibrium otherwise. Clearly, the agent is indifferent, but the principal pays the
expected value for sure rather than facing the gamble. Given the concavity of the principal’s utility
function, this is an improvement.

16Types who are indifferent between x0 and x1 do not affect the arguments, so we can assume
without loss of generality that there are no such types.

17If this is violated for some t, then the principal’s decisions are the same as those he would make
if such t were impossible. Hence such types can be disregarded.
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principal might have at certain information sets and therefore difficult to character-

ize sequential rationality at all information sets. We emphasize that the additional

structure is to allow a relatively straightforward proof; we do not know of any coun-

terexamples from protocols outside the class we consider. We see the particular

protocol used here as a reasonably general but illustrative structure.

To avoid repetition, we state the definitions, result, and proof for the evidence–

acquisition model, but it is not difficult to rewrite it for the signal–choice model

instead. For simplicity, we assume the protocol is a multi–stage game with certain

properties. To be specific, as in all our previous analysis, we assume that the agent

learns her type first.

After this, we have some fixed finite number of stages. Each of these stages has

one of two forms. The first possibility is that we have cheap talk messages, either

one from the agent to the principal or one from the principal to the agent. The set

of cheap–talk messages is fixed throughout, independently of the agent’s type or any

actions. At the end of such a stage, both players observe the message sent. The

second possibility is that the agent chooses some unobserved action which may affect

the set of evidence she’ll end up with and she may privately observe some outcome

of this action. At the end of such a stage, the principal does not observe either the

agent’s action or this outcome. For simplicity, we suppose that the order in which

these various forms of stages occur is fixed exogenously, independently of the agent’s

type or actions.

After these stages, there’s a last stage where the agent presents an evidence mes-

sage to the principal and the principal responds by choosing an action from the set

X. The set of evidence messages available to the agent depends stochastically on the

agent’s type and the sequence of actions and outcomes from the earlier stages.

We require, as above, that the principal and agent have finite sets of pure strate-

gies. Hence we assume there is a finite K such that for all feasible histories of

messages, no more than K stages are played. Similarly, we assume that the set of

all possible cheap talk messages for either player is finite as is the set of actions and

possible evidence messages for the agent.

We say that a protocol satisfying these properties is allowable.
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Theorem 5. Given any allowable protocol, under the assumptions of Theorem 4,

there is a perfect Bayesian equilibrium (β̂, γ̂) with V (β̂, γ̂) = V ∗.

It is not straightforward to extend this result to multiple agents. For example,

suppose we have two agents, i = 1, 2. Suppose the principal’s decision is which agent

to give one unit of a good to. Let X = {0, 1, 2} where x = 0 means the principal

keeps the good and x = i means the principal gives the good to agent i. Suppose

agent i’s utility function, ui(ti, x) is 1 if i receives the good, 0 otherwise. Suppose

the principal’s payoff is vi(ti) if he gives the good to agent i. Then we can write

the principal’s utility as v(t, x) =
∑

i vi(ti)ui(ti, x), a natural generalization of our

assumption of semi–aligned preferences for the multiple agent case. One can give

examples (available on request) showing that the no–value–to–commitment result

does not hold for this model even though the principal has only two actions. This

is in contrast to results in Ben-Porath, Dekel, and Lipman (2019) for deterministic

evidence.

Finally, there is one related result outside the evidence literature. Vohra r○ Es-

pinosa r○ Ray (2021) consider a principal–agent model with no value to commitment.

Because their model does not include evidence, all communication is “cheap talk,”

so there are no issues related to ensuring “appropriate” behavior off the equilibrium

path. Hence it is most natural to compare their result to our result for Nash equi-

librium, Theorem 4. Their primary assumption is that we can write the principal’s

utility as a function only of the agent’s utility and the agent’s type. Because the

agent in their model has a hidden action, this is not itself sufficient to imply that the

game is aligned in our sense. They add an additional assumption which is akin to

the measurability property derived in Ben-Porath, Dekel, and Lipman (2019) for our

model. These two assumptions together do imply that their game is aligned. How-

ever, this is not sufficient to imply their result as they do not allow randomization,

an ingredient we use in our proof. Instead, they have a richness assumption which

serves a similar purpose.
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Appendix

A Proof of Theorem 1

Fix any incentive compatible mechanism (γA, γL, γX). We show how to construct an

incentive compatible mechanism with the same mechanism outcome with the property

that the principal always recommends m∗M when the agent reports message set M .

Fix any profile (t̂, â, M̂ , m̂) consisting of a type report t̂ ∈ T , a recommended

distribution over evidence sets â ∈ supp(γA(t̂)), a reported message set M̂ ∈ M,

and a requested message m̂ ∈ supp(γL(t̂, â, M̂)) such that m̂ 6= m∗
M̂

. If there is

no such tuple, then the principal always recommends maximal evidence, so there is

nothing to prove. We construct an alternative mechanism which replaces the recom-

mendation m̂ with a recommendation of m∗
M̂

in this situation and will show that this

mechanism is incentive compatible and implements the same outcome as the original

mechanism. For brevity, let ĥ = (t̂, â, M̂), the history on which we are changing the

recommendations. We use h to denote a typical element of T × A×M.

Define the new mechanism, (γ∗A, γ
∗
L, γ

∗
X), as follows. First, γ∗A = γA. Let γ∗L

satisfy γ∗L(h)(m) = γL(h)(m) if h 6= ĥ. Similarly, let γ∗L(ĥ)(m) = γL(ĥ)(m) for

m /∈ {m̂,m∗
M̂
}. Finally, let

γ∗L(ĥ)(m) =

{
γL(ĥ)(m∗

M̂
) + γL(ĥ)(m̂), if m = m∗

M̂
;

0, if m = m̂.

In other words, the probability that was on recommendation m̂ is moved to m∗
M̂

.

Let γ∗X(h,m,m′)(x) = γX(h,m,m′)(x) if (h,m) 6= (ĥ,m∗
M̂

). In other words, on

histories other than ĥ and on ĥ if the principal did not request maximal evidence,

we do not change the mechanism’s outcome. Also, for all m ∈ L \ {m∗
M̂
}, we set

γ∗X(ĥ,m∗
M̂
,m)(x) equal to

γL(ĥ)(m̂)γX(ĥ, m̂,m)(x) + γL(ĥ)(m∗
M̂

)γX(ĥ,m∗
M̂
,m)(x)

γL(ĥ)(m̂) + γL(ĥ)(m∗
M̂

)
.
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Finally, we set γ∗X(ĥ,m∗
M̂
,m∗

M̂
)(x) equal to

γL(ĥ)(m̂)γX(ĥ, m̂, m̂)(x) + γL(ĥ)(m∗
M̂

)γX(ĥ,m∗
M̂
,m∗

M̂
)(x)

γL(ĥ)(m̂) + γL(ĥ)(m∗
M̂

)
.

In other words, if m∗
M̂

is requested and anything else is reported, then the response

is the “average response” to this form of disobedience, averaging over the cases where

m̂ or m∗
M̂

was requested in the original mechanism. On the other hand, if m∗
M̂

is

requested and reported, then the response is the average response to obedience in

response to a request for either m̂ or m∗
M̂

in the original mechanism.

We first show that this change in the mechanism does not change the outcome if

the agent is truthful and obedient. The only situation a truthful and obedient agent

is affected by the change is when her type is t̂, the principal recommends (and she

chooses) action â, and the resulting message set is M̂ . Conditional on history ĥ and

obeying the principal’s recommendations, the probability of x in the new mechanism

is ∑
m∈L

γ∗L(ĥ)(m)γ∗X(ĥ,m,m)(x)

=
∑

m∈L\{m̂,m∗
M̂
}

γL(ĥ)(m)γX(ĥ,m,m)(x)

+ 0 + γ∗L(ĥ)(m∗
M̂

)γ∗X(ĥ,m∗
M̂
,m∗

M̂
)(x)

=
∑

m∈L\{m̂,m∗
M̂
}

γL(ĥ)(m)γX(ĥ,m,m)(x)

+ [γL(ĥ)(m̂) + γL(ĥ)(m∗
M̂

)]γ∗X(ĥ,m∗
M̂
,m∗

M̂
)(x)

=
∑
m∈L

γL(ĥ)(m)γX(ĥ,m,m)(x).

Hence, as asserted, the outcome under truth–telling is the same in the new mech-

anism as in the original mechanism. Therefore, the agent’s expected payoff from

truth–telling and obedience is the same in the two mechanisms.

We now show that for any type t and any deviation feasible for t in the new

mechanism, there is a deviation that is feasible for type t in the original mechanism
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which yields the same expected payoff. Since truth–telling is superior to any feasible

deviation in the original mechanism, then, truth–telling is superior to any feasible

deviation in the new mechanism.

To see this, fix any type t (which may equal t̂) and consider any feasible deviation.

Obviously, if the deviation involves reporting a type other than t̂, this deviation is also

available in the original mechanism and yields the same payoff in the new mechanism

as in the original one since the way the mechanism responds to such a report has

not changed. Hence we can restrict attention to deviations which involve reporting

type t̂. So fix any such deviation. Clearly, we may as well condition on the event

that the principal requests the distribution â, the agent chooses a (which may equal

â), the agent obtains message set M , and reports message set M̂ (which may equal

M). Let z : M̂ → M give the message the agent sends as a function of the message

the principal requests from her. Then the agent’s expected payoff conditional on this

event is ∑
(x,m)∈X×L

γ∗L(ĥ)(m)γ∗X(ĥ,m, z(m))(x)u(t, x).

We can write this as ∑
(x,m)∈X×(L\{m̂,m∗

M̂
})

γL(ĥ)(m)γX(ĥ,m, z(m))(x)u(t, x)

+γ∗L(ĥ)(m∗
M̂

)
∑
x∈X

γ∗X(ĥ,m∗
M̂
, z(m∗

M̂
))(x)u(t, x).

We have two cases. First, suppose z(m∗
M̂

) 6= m∗
M̂

. In this case, the last term is

equal to ∑
(x,m)∈X×{m̂,m∗

M̂
}

γM(ĥ)(m)γX(ĥ,m, z(m∗
M̂

))(x)u(t, x).

Thus the conditional payoff to the deviation in the new mechanism is the same as the

conditional payoff in the original mechanism where the agent responds to a request

for either m̂ or m∗
M̂

by sending z(m∗
M̂

). So in this case, the payoff to the deviation in

the new mechanism is the same as the payoff to a certain deviation which was also

feasible in the original mechanism.
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Second, suppose z(m∗
M̂

) = m∗
M̂

. In this case, the last term is equal to∑
(x,m)∈X×{m̂,m∗

M̂
}

γM(ĥ)(m)γX(ĥ,m,m)(x)u(t, x).

In other words, the payoff in the new mechanism is the same as the payoff in the old

mechanism where the agent responds to a request for m̂ with m̂ and a request for

m∗
M̂

with m∗
M̂

. Note that we are assuming that the deviation in the new mechanism

is feasible for the agent, so m∗
M̂
∈ M . By the definition of normality, this implies

m̂ ∈ M . Hence this deviation has the same payoff as a feasible deviation in the

original mechanism.

In either case, then, the best deviation payoff in the new mechanism cannot exceed

the best deviation payoff in the original mechanism, so the new mechanism is incentive

compatible.

Clearly, we can repeat this argument as needed to obtain an incentive compatible

mechanism which has the same mechanism outcome as γ and which has the property

that γL(t, a,M)(m∗M) = 1 for all (t, a,M) ∈ T × A×M.

B Proof of Corollary 1

Fix an incentive compatible mechanism γ = (γA, γL, γX). By Theorem 1, we can

assume without loss of generality that γL(t, a,M)(m∗M) = 1 for all (t, a,M) ∈ T ×
A ×M. We construct a mechanism (γ∗A, γ

∗
X) for the abbreviated protocol which is

incentive compatible and has the same outcome as γ. To do so, first let γ∗A = γA.

To construct γ∗X , note that in the abbreviated protocol, γ∗X : T ×A×L → ∆(X),

while in the full protocol, γX : T × A ×M× L × L → ∆(X) since the choice of x

can depend on the agent’s report of an evidence set and the message the principal

requests, in addition to the type report, distribution recommendation, and received

message as in the abbreviated protocol.

Given any m ∈ L, define M∗(m) as follows. First, if there is any M such that
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m = m∗M , then let M∗(m) equal this message set M .18 Otherwise, let M∗(m) denote

any M ∈M such that m ∈M . Given this, let

γ∗X(t, a,m) = γX(t, a,M∗(m),m∗M∗(m),m).

In other words, if the agent reports t, the principal recommends a, and the agent shows

message m, then the outcome is the same as in the original mechanism when the agent

reports t, the principal recommends a, the agent reports evidence set M∗(m), the

principal requests the maximal evidence message for this set, and the agent provides

message m.

If the agent truthfully reports her type, follows the principal’s recommended dis-

tribution a, and provides the maximal evidence message from any evidence set she

obtains, this construction implies that the resulting distribution over X in the new

mechanism will be the same as in the original mechanism. Hence if this mechanism

is incentive compatible, it yields the same outcome as the original mechanism.

So consider an agent of type t who reports type t̂ (which may or may not equal t),

has a recommended to her by the principal, chooses â, obtains evidence set M , and

sends message m from it. In this situation, the outcome under the new mechanism is

γX(t̂, a,M∗(m),m∗M∗(m),m), exactly the same outcome the agent could have obtained

by reporting t̂, choosing â, reporting M∗(m) as her evidence set, and then sending m.

That is, any outcome the agent can generate in the new mechanism using a strategy

which deviates from truth–telling, obedience, and sending maximal evidence is an

outcome she could have generated in the original mechanism using a certain strategy

which deviated from truth–telling and obedience. Since the original mechanism was

incentive compatible, truth–telling and obedience were superior to this deviation.

Hence the agent prefers truth–telling, obedience, and maximal evidence in the new

mechanism to any deviation, so the mechanism is incentive compatible.

18It is straightforward to show that if m∗
M = m∗

M̂
, then M = M̂ . That is, M∗(m) is unambiguously

defined in this case.
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C Proof of Theorem 2

Fix an incentive compatible mechanism for the evidence–acquisition model under

normality. By Corollary 1, we can take this mechanism to be based on the abbreviated

protocol. Hence it consists of a pair of functions γA : T → ∆(A) and γX : T×A×L →
∆(X). For the signal choice model, a mechanism is a pair of functions γ∗S : T → ∆(S)

and γ∗X : T × S × L → ∆(X).

Given the incentive compatible mechanism for the abbreviated protocol, we con-

struct an equivalent incentive compatible mechanism for the associated signal–choice

model as follows. Let

γ∗S(t)(s(a,σ∗)) = γA(t)(a).

That is, given a report of t, the principal recommends the signal distribution generated

by evidence distribution a followed by showing maximal evidence with the same

probability he recommended a in the original mechanism. Let

γ∗X(t, s(a,σ∗),m) = γX(t, a,m).

That is, if the agent report type t and the signal distribution the principal recommends

is the one corresponding to a and maximal evidence, then the principal replies to

message m in the new mechanism the same way he replied in the original mechanism

given type report t and recommendation a.

It is easy to see that if the agent reports her type truthfully and follows the

principal’s recommended signal distribution, then the outcome is equivalent to that

of the original mechanism as defined in the statement of the theorem. If the agent

deviates, this corresponds directly to a particular deviation strategy in the original

mechanism and hence cannot be profitable for her. In particular, if type t reports

t̂, receives the recommendation sa,σ∗ , and uses signal distribution s(â,σ̂) instead, she

generates exactly the outcome she would have generated in the original mechanism if

she reported t̂, received the recommendation a, chose the distribution â instead, and

selected a message to send using the function σ̂. Hence the mechanism is incentive

compatible.
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D Proof of Theorem 3

Fix an incentive compatible mechanism (γS, γX) where γS(t1)(ŝ1) = α̂ > 0. Let

α = γS(t1)(s1) (where this can be 0). We construct an incentive compatible mecha-

nism (γ∗S, γ
∗
X) with the same outcome where the principal recommends s1 to t1 with

probability α + α̂ and never recommends ŝ1 to t1.

For any t 6= t1, γ∗S(t) = γS(t) and γ∗X(t, s,m) = γX(t, s,m) for all (s,m). For

s 6= s1, ŝ1, we have γ∗S(t1)(s) = γS(t1)(s) and γ∗X(t1, s,m) = γX(t1, s,m). That is, if

the agent reports a type other than t1, the new mechanism is the same as the original

one and if the agent reports t1, the principal recommends signals other than s1 or ŝ1

with the same probability and treats them the same way as in the original mechanism.

Let γ∗S(t1)(ŝ1) = 0 and γ̂∗S(t1)(s1) = α+ α̂. Since the principal never recommends

ŝ1 in response to a report of t1 in this mechanism, we only need to specify γ∗X(t, s,m)

for (t, s) = (t1, s1). For notational convenience, we enumerate the messages as L =

{m1, . . . ,mL} and for the Markov matrix Λ, we write the entry corresponding to

(mi,mj) as λij rather than λmi,mj
.

Let

γ∗X(t1, s1,mi) =
α

α + α̂
γX(t1, s1,mi) +

α̂

α + α̂

∑
j

λijγX(t1, ŝ1,mj).

Because all the λij’s are non–negative and because
∑

j λij = 1 for every i, we see that

γ∗(t1, s1,mi) is a convex combination of probability distributions over X and hence

is a probability distribution over X.

Given this specification, suppose all types report honestly and obey the principal’s

recommendations. Obviously, if the true type t 6= t1, we have the same outcome as

before. So suppose t = t1. Then the expected outcome is

(α + α̂)
∑
i

s1(mi)γ
∗
X(t1, s1,mi) +

∑
s∈St1\{s1,ŝ1}

γ∗S(t1)(s)
∑
M

s(m)γ∗X(t1, s,m). (2)
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Substituting for γ∗X , the first term in equation (2) is

α
∑
i

s1(mi)γX(t1, s1,mi) + α̂
∑
i

s1(mi)
∑
j

λijγX(t1, ŝ1,mj)

= α
∑
i

s1(mi)γX(t1, s1,mi) + α̂
∑
j

γX(t1, ŝ1,mj)
∑
i

s1(mi)λij.

But s1Λ = ŝ1, so that for every j,
∑

i s1(mi)λij = ŝ1(mj). Hence this is

= α
∑
i

s1(mi)γX(t1, s1,mi) + α̂
∑
i

ŝ1(mi)γX(t1, ŝ1,mj).

Substituting this for the first term in equation (2) and substituting for γ∗S and γ∗X in

the second term, we see that the expected outcome under truth–telling and obedience

is the same as under the original mechanism.

To show that the new mechanism is incentive compatible, we show that any de-

viation from truth–telling and obedience by any type generates a distribution over

outcomes that the same type could have generated in the original mechanism. Since

the original mechanism was incentive compatible, this deviation is not profitable, so

the new mechanism is incentive compatible.

To see that this holds, fix any type t and any signal s′ ∈ St. If t makes any type

report other than t1, the mechanism has not changed, so the claim obviously holds. So

suppose type t reports type t1. If the mechanism makes any signal recommendation

other than s1, then, again, the mechanism is the same as before, so the claim holds.

So suppose the mechanism recommends signal s1 and the agent uses s′. The expected

outcome times the probability of this event is

(α+α̂)
∑
i

s′(mi)γ
∗
X(t1, s1,mi) = α

∑
i

s′(mi)γX(t1, s1,mi)+α̂
∑
i

s′(mi)
∑
j

λijγX(t1, ŝ1,mj).

By assumption, s′Λ ∈ conv(St). Hence we can write s′Λ =
∑

k aks
k where ak ≥ 0 for

all k,
∑

k ak = 1, and sk ∈ St for all k. In particular, for every j,∑
i

s′(mi)λij =
∑
k

aks
k(mj).
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Hence we can rewrite the above as

α
∑
i

s′(i)γX(t1, s1,mi) + α̂
∑
k

aks
k(i)γX(t1, ŝ1,mi).

This is exactly what t would generate in the original mechanism if she responded to

a recommendation of s1 with s′ and a recommendation of ŝ1 by randomizing with

probability ak on sk. Thus, as asserted, any expected outcome t can generate in the

new mechanism is identical to some outcome she could have generated in the original

mechanism. Hence the new mechanism is incentive compatible.

E Proof of Remark 1

Let s = s(a,σ) and s∗ = s(a,σ∗) where σ∗(M) = m∗M for all M ∈ supp(a). Abusing

notation, write σ(M) not as the message s sends from M but as the probability

distribution over M when M is realized. So write σ(M)(m) as the probability that

message m is sent from set M . Enumerate the messages as m1, . . . ,mK . If mi = m∗M ,

we write M = Mi. Since no message can be maximal evidence for more than one

evidence set, we have s∗(mi) = a(Mi). Define a Markov matrix Λ as follows. If

s∗(mi) = 0, then λii = 1 and λij = 0 for j 6= i. If s∗(mi) > 0, then λij = σ(Mi)(mj).

In other words, if s∗ sends mi with positive probability, then λij is the probability

that mj is the message s sends given message set Mi.

Note that the jth element of s∗Λ is∑
i

s∗(mi)λji =
∑
M∈M

a(M)σ(M)(mj) = s(mj).

Hence s∗Λ = s, as required. For any other ŝ, the jth element of ŝΛ is∑
i|s∗(mi)>0

ŝ(mi)σ(M)(mj) +
∑

i|s∗(mi)=0

ŝ(mi)λji

or { ∑
i|s∗(mi)>0 ŝ(mi)σ(M)(mj), if s∗(mj) > 0;∑
i|s∗(mi)>0 ŝ(mi)σ(M)(mj) + ŝ(mj), otherwise.
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In other words, ŝΛ is constructed as follows. We choose a message, say mi, according

to distribution ŝ. If s∗(mi) = 0, then this message is sent. If s∗(mi) > 0, then instead

we randomize the message to send according to the distribution σ(Mi).

We now show that this must be feasible for any type for whom ŝ is feasible.

Clearly, if ŝ generates a message mi, it must be able to send that message. So we

need to show that the randomization is feasible — that is, that whenever mi could

be sent, every message in Mi is also feasible. But this follows from the fact that

mi = m∗Mi
. By definition, this means that if the feasible set is M and mi ∈ M , then

Mi ⊆M . So if ŝ ∈ St, then ŝΛ ∈ St, completing the proof.

F Proof of Theorem 5

F.1 Lemma

The following result will be useful. Let W be a finite set of states of the world and A

a finite set of actions. Let u : A×W → R be a utility function. Say that σ ∈ ∆(A)

is a best reply to p ∈ ∆(W ) if∑
w

p(w)
∑
a

σ(a)u(a, w) ≥
∑
w

p(w)
∑
a

σ′(a)u(a, w), ∀σ′ ∈ ∆(A).

Say that σ is a best reply if there exists p ∈ ∆(W ) such that σ is a best reply to p.

Say that σ is strictly dominated if there exists σ′ ∈ ∆(A) such that∑
a

σ′(a)u(a, w) >
∑
a

σ(a)u(a, w), ∀w ∈ W.

Standard results say that σ is a best reply if and only if it is not strictly dominated.

(This is typically stated for pure strategies σ, but it applies to mixed as well.)

Lemma 1. Suppose σ′ is strictly dominated. Then there exists a mixed strategy σ̂

which strictly dominates σ′ and which is not itself strictly dominated.

Proof. Suppose not. That is, suppose σ′ is strictly dominated, but that there is no

48



undominated strategy which strictly dominates it. Let Σ∗ denote the set of undom-

inated strategies in ∆(A). Equivalently, Σ∗ is the set of all σ ∈ ∆(A) that are best

replies. By finiteness of A, this set is nonempty.

Let

U = conv

({
u ∈ RW | ∃σ ∈ Σ∗ ∪ {σ′} with uw =

∑
a

σ(a)u(a, w), ∀w

})
.

UD =

{
u ∈ RW | uw ≥

∑
a

σ′(a)u(a, w), ∀w

}
.

By hypothesis, there is no mixed strategy in Σ∗ which strictly dominates σ′. Hence

U ∩ int(UD) = ∅, so the interiors of U and UD are disjoint. Clearly, both sets are

nonempty and convex. Hence there exists a separating hyperplane. That is, there is

p ∈ RW such that p 6= 0 and p · u ≥ p · û for all u ∈ UD, û ∈ U .

Consider û defined by ûw =
∑

a σ
′(a)u(a, w). Obviously, this is an element of U .

Consider u defined by uw = ûw for w 6= w′ and uw′ = ûw′ + ε for some ε > 0 and

some w′. Clearly, this is an element of UD. Hence the separating hyperplane satisfies

pw′ε ≥ 0. Since w′ is arbitrary, pw ≥ 0 for all w. Since p 6= 0, we can renormalize by

replacing p with p̂ defined by p̂w = pw/
∑

w′ pw′ . Hence p̂ ∈ ∆(W ).

Continuing with the same û as above, we see that we have p̂ ∈ ∆(W ) such that∑
w

p̂(w)
∑
a

σ′(a)u(a, w) ≥
∑
w

p̂(w)uw ∀u ∈ U .

In particular, for any σ ∈ Σ∗, we can let u be the vector defined by uw =
∑

a σ(a)u(a, w)

to conclude that∑
w

p̂(w)
∑
a

σ′(a)u(a, w) ≥
∑
w

p̂(w)
∑
a

σ(a)u(a, w) ∀σ ∈ Σ∗.

By hypothesis, σ′ is strictly dominated by some mixed strategy, say σ̂ /∈ Σ∗. Hence∑
w

p̂(w)
∑
a

σ̂(a)u(a, w) >
∑
w

p̂(w)
∑
a

σ′(a)u(a, w) ≥
∑
w

p̂(w)
∑
a

σ(a)u(a, w) ∀σ ∈ Σ∗.
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Hence no best reply to p̂ is contained in Σ∗, a contradiction.

F.2 Theorem 5

Let HP denote the set of possible public histories — i.e., histories both the principal

and the agent see. More specifically, HP consists of the various possible sequences of

cheap–talk messages as well as the possible complete public histories of all cheap–talk

messages followed by the agent’s evidence message. It will be convenient to write such

a history in the form h · r · h′ where h is a history, r the next cheap talk message

observed, and h′ a continuation.

Let HA denote the set of private histories for the agent and denote a typical

element by hA. Hence hA lists what the agent observes that the principal does not

— her type, her action choice at each evidence action stage, and the outcome of that

action choice. The full history observed by the agent — the public plus the private

— will be written as (h, hA) and the set of these histories is denoted HF .

As before, β is a behavior strategy for the agent and γ a behavior strategy for the

principal. Thus β maps HF to possible choices for the agent, while γ maps public

histories HP to actions for the principal. We let ρ denote a belief for the principal,

where this is a function from HP to beliefs over T .

Because the protocol is allowable, all information sets for the agent are singletons.

Because there is no issue of beliefs for the agent, given any strategy γ for the principal,

we can define the set of strategies for the agent which are sequentially rational best

replies, denoted BRs(γ).

Fix (β∗, γ∗) with V (β∗, γ∗) = V ∗ and β∗ ∈ BR(γ∗), so that (β∗, γ∗) is optimal

for the principal. If we construct the restricted game used in the proof of Theorem

4 by restricting the agent to strategies in BRs(γ∗) instead of BR(γ∗), nothing in the

proof changes. So there exists β̂ ∈ BRs(γ∗) such that (β̂, γ∗) is a Nash equilibrium

with V (β̂, γ∗) = V ∗. Since β̂ ∈ BRs(γ∗), the agent’s strategy is sequentially rational

at all information sets. Hence we can assume we have a Nash equilibrium (β∗, γ∗)

satisfying V (β∗, γ∗) = V ∗ such that the agent’s strategy is sequentially rational at all

information sets.
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Without loss of generality, we can also assume that all possible cheap–talk mes-

sages have positive probability at every cheap–talk stage in equilibrium. In other

words, we can assume without loss of generality that (β∗, γ∗) satisfy the following two

properties. First, for every public history h leading to a stage where the principal

sends cheap talk, for every feasible cheap talk message r at that stage, γ∗(h)(r) > 0.

Second, for every public history h leading to a stage where the agent sends cheap talk,

for every feasible cheap talk message r at that stage, there exists a private history for

the agent hA consistent with being at this stage19 such that β∗(h, hA)(r) > 0.

To show this, first consider the principal. Fix any stage where the principal chooses

a cheap–talk message and a public history h leading up to this stage. Suppose cheap

talk message r̄ has zero probability — i.e., γ∗(h)(r̄) = 0. Fix any r̂ with γ∗(h)(r̂) > 0.

Then we change β∗, γ∗, and ρ∗ to β̂, γ̂, and ρ̂ as follows. Let γ̂(h)(r̄) = γ̂(h)(r̂) =

γ∗(h)(r̂)/2. For every other cheap talk message r that the principal could send at

this stage, we let γ̂(h)(r) = γ∗(h)(r). In other words, we spread the probability the

principal was putting on r̂ across r̂ and r̄.

For any continuation public history h′, let γ̂(h·r̄·h′) = γ̂(h·r̂·h′) = γ∗(h·r̂·h′). Note

that h′ includes the “empty continuation.” We set ρ̂(h·r̄·h′) = ρ̂(h·r̂·h′) = ρ∗(h·r̂·h′).
For any private history for the agent hA such that full history (h, hA) leads to this

stage, we set β̂((h, hA) · r̄ · (h′, h′A)) = β̂((h, hA) · r̂ · (h′, h′A)) = β∗((h, hA) · r̂ · (h′, h′A))

for all continuations (h′, h′A). For any history that does not start with the public

history h, we make no changes.

This construction simply changes the “interpretation” of cheap talk. The “mean-

ing” of r̄ after public history h is not pinned down by equilibrium initially since it has

zero probability, but the meaning of r̂ is identified in terms of its effects on equilibrium

beliefs and continuation strategies. Essentially, this change has both players interpret

r̄ after public history h the same way that they interpret r̂ after public history h.

It is easy to see that these changes do not change the equilibrium outcome. If the

principal was sequentially rational on history h· r̂ ·h′, he still is and is also sequentially

rational on history h · r̄ · h′. The agent was originally sequentially rational on all

histories and still is. We can iterate this construction to handle every stage at which

19To be clear, consistent simply means that the history is the right length.
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the principal sends cheap talk.

Turning to the agent, fix any stage where the agent sends a cheap–talk message.

Fix any public history h up to this stage. Let ĤA be the set of possible private

histories of the agent up to this stage, that is, HA minus histories that are the wrong

length. Let r̄ be a particular cheap–talk message available to the agent at this stage

and suppose that β(h, hA)(r̄) = 0 for all hA ∈ ĤA. Fix any r̂ such that β(h, hA)(r̂) > 0

for some hA ∈ ĤA. Change strategies as follows.

Let β̂(h, hA)(r̄) = β̂(h, hA)(r̂) = β∗(h, hA)(r̂)/2 for all hA ∈ ĤA. In other words,

for private histories where the agent gives r̂ zero probability under β∗, we make no

change. For private histories where the agent gives r̂ strictly positive probability,

we divide this probability across r̄ and r̂. Since r̂ has positive probability for some

private history hA, this ensures the desired property. For other cheap talk messages

r, we have β̂(h, hA)(r) = β∗(h, hA)(r) for all consistent hA.

As before, for any continuation public history h′, let γ̂(h · r̄ · h′) = γ̂(h · r̂ · h′) =

γ∗(h · r̂ · h′). Again, we set ρ̂(h · r̄ · h′) = ρ̂(h · r̂ · h′) = ρ∗(h · r̂ · h′). We do the same

for the agent’s strategy, setting β̂((h, hA) · r̄ · (h′, h′A)) = β̂((h, hA) · r̂ · (h′, h′A)) =

β∗((h, hA) · r̂ · (h′, h′A)). For any history that doesn’t start with the public history h,

we make no changes.

As before, this does not change the equilibrium outcome and it leaves the agent se-

quentially rational at all information sets. In addition, it makes the principal sequen-

tially rational at weakly more information sets than before. With abuse of notation,

continue to let (β∗, γ∗) denote the Nash equilibrium strategies and ρ∗ the principal’s

beliefs.

Summarizing to this point, we know that β∗ satisfies sequential rationality for

the agent at all information sets. By Nash, the principal is sequentially rational at

all positive probability information sets. By the construction above, we’ve ensured

that this covers all information sets where the principal has only observed cheap talk.

Hence if there is any information set where some player is not sequentially rational, it

must be that the principal’s strategy γ∗ is not sequentially rational at an information

set where he has observed an evidence message and has to choose x.
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So fix any such public history h. Let T ∗ be the set of types for whom h is feasible

(that is, the types that can send the evidence message observed by the principal at

h). Let V (β∗, γ∗ | t, h) denote the principal’s expected utility at h when the strategies

followed from h forward are (β∗, γ∗) and the agent’s true type is t. (Note that t and

h together determine the node of his information set that the principal is at.) Beliefs

ρ ∈ ∆(T ∗) make γ∗ sequentially rational at this information set iff∑
t∈T ∗

ρ(t)
∑
g∈G

γ∗(g)V (β∗, g | t, h) ≥
∑
t∈T ∗

ρ(t)
∑
g∈G

γ(g)V (β∗, g | t, h)

for all γ ∈ ∆(G). If such a ρ exists, we can set the principal’s beliefs at this information

set to this ρ and we have sequential rationality at this information set.

So suppose no such ρ exists. By Lemma 1, γ∗ is dominated with respect to T ∗ in

the sense that there is some γ̂ ∈ ∆(G) such that∑
g

γ̂(g)V (β∗, g | t, h) >
∑
g

γ∗(g)V (β∗, g | t, h), ∀t ∈ T ∗ (3)

and such that γ̂ is not itself dominated in this sense. Since γ̂ is not dominated in this

sense, there exists ρ̂ ∈ ∆(T ∗) such that γ̂ maximizes the principal’s expected utility.

Set the principal’s belief at this information set to equal ρ̂ and change his strategy

at this information set to γ̂(h). Call (β∗, γ̂∗, µ̂∗) the resulting assessment. Because

we have only changed the principal’s strategy at a last information set, one with zero

probability, we know that γ̂∗ is sequentially rational at every information set where

γ∗ was sequentially rational as well as at the information set h.

We now show that for any full history (h′, hA) with positive probability under

(β∗, γ∗) (or, equivalently, under (β∗, γ̂∗)), the agent is sequentially rational under

(β∗, γ̂∗, ρ̂∗). In other words, this change in the principal’s strategy at history h does

not lead the agent to wish to deviate from any on–path history. To see this, suppose

not.

Let T̂ denote the (nonempty) set of t such that there is a full history of the form

(h′, t · h′A) (i.e., the agent’s type is t) such that β∗ is not sequentially rational at

(h′, t · h′A). It is easy to see that we must have T̂ ⊆ T ∗ since no other type could

play in such a way as to lead to information set h and hence no other type could be
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affected by the change in the principal’s strategy. Also, for all t ∈ T̂ ,∑
g

γ̂(g)U(β∗, g | t, h) >
∑
g

γ∗(g)U(β∗, g | t, h),

where U(β∗, g | t, h) is the agent’s expected utility from strategies (β∗, g) conditional

on the agent’s type being t and the history h. Equivalently, this is conditional on the

node identified by (t, h).

By equation (3) and the assumption that preferences are semi–aligned, we know

that for all t ∈ T ∗,∑
g

γ̂(g)ν(t)U(β∗, g | t, h) >
∑
g

γ∗(g)ν(t)U(β∗, g | t, h),

so for any t ∈ T̂ , we must have ν(t) > 0. Let β̂′ denote the best reply of the agent

which differs from β̂ only in letting types t ∈ T̂ deviate. By hypothesis, T̂ 6= ∅, so

β̂′ 6= β̂.

Note that

V (β̂′, γ̂) = Et[ν(t)U(β̂′, γ̂, t)]

= Pr[ν(t) < 0]Et[ν(t)U(β̂, γ∗, t) | ν(t) < 0] + Pr[ν(t) > 0]Et[ν(t)U(β̂′, γ̂, t) | ν(t) > 0]

> Pr[ν(t) < 0]Et[ν(t)U(β̂, γ∗, t) | ν(t) < 0] + Pr[ν(t) > 0]Et[ν(t)U(β̂, γ∗, t) | ν(t) > 0]

= V (β̂, γ∗) = V ∗.

The second equality uses the fact that only types in T̂ deviate and these all have

ν(t) > 0. The strict inequality comes from the fact that the types who deviate in

response to γ̂ are made strictly better off than they were at (β̂, γ∗).

But β̂′ is a best reply to γ̂, so this is not possible, by definition of V ∗.

Summarizing, (β∗, γ̂∗, ρ̂∗) has the property that β∗ is sequentially rational for the

agent at every full history with positive probability given (β∗, γ̂∗). We now show that

this also holds at full histories with zero probability.

So suppose β∗ is not sequentially rational at some full history (h′, hA) which has
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zero probability under (β∗, γ̂∗). By construction, the public history h′ must have

positive probability, so it must be that h′ is inconsistent with hA. That is, it must

be that some of the cheap talk messages in h′ are not supposed to be sent given the

private history hA. Since this node in the tree (recall that the agent always knows

everything) has zero probability, every node which is a successor to this one has zero

probability as well. With this in mind, change the agent’s strategy at this history to

anything which is sequentially rational and call β̂∗ the resulting behavior strategy for

the agent. Because we are changing the agent’s strategy only at a history which her

own strategy prevents her from reaching, this does not affect the sequential rationality

of the principal’s strategy or the consistency of his beliefs. Hence proceeding this way,

we can change the agent’s strategy at such full histories as needed to ensure sequential

rationality for the agent at all full histories without affecting sequential rationality

for the principal or changing the equilibrium outcome.

Summarizing, we have shown that if there is any public history h where γ∗ is

not sequentially rational, we can adjust the strategies at this history and possibly

others to ensure sequential rationality at h, at all histories for the agent, and at

all positive probability histories for the principal without changing the equilibrium

outcome. Hence we can construct a perfect Bayesian equilibrium with the same

outcome as the Nash equilibrium (β∗, γ∗).
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