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The Strategic Dis/advantage of Voting Early †

By Eddie Dekel and Michele Piccione *

Under sequential voting, voting late enables conditioning on which 
candidates are viable, while voting early can influence the field 
of candidates. But the latter effect can be harmful: shrinking the 
field increases not only the likelihood that future voters vote for 
one’s favorite candidate, but also that they vote for an opponent. 
Specifically, if one’s favorite candidate is significantly better than 
all others, then early voting is disadvantageous and all equilibria 
are equivalent to simultaneous voting. Conversely, when some 
other candidate is almost as good, then any Markov, symmetric, 
anonymous equilibrium involves sequential voting (and differs from 
simultaneous voting). (JEL D72)

We study a simple model of voting in which voters choose the time in which 
they cast their votes. Our main objective is to study how the preferences of 

voters affect the temporal structure of voting. We highlight a particular strategic dis-
advantage of “early voting” in the presence of multiple candidates: narrowing down 
the field of competitors induces subsequent voters to vote either for early voters’ 
preferred candidate or for her opponents, and the latter negative effect can dominate 
the former positive one. More specifically, we identify, in a particular parametrized 
model, when sequential or simultaneous voting will occur.

Several institutions present instances of sequential voting, with either exogenous 
or endogenous timing. In many legislative bodies, voting takes place sequentially. 
US presidential primaries are a particularly interesting example of sequential voting 
since each state decides the date of its own election.

Momentum or bandwagon effects are generally held to be the main manifestation 
of the difference between simultaneous and sequential voting. Such effects under-
score the advantages of early voters over later voters in the determination of the 
election outcome. Momentum effects can arise from two distinct forces that interact 
in sequential voting. The first is strategic. As votes are cast sequentially, some can-
didates may find their chances of winning significantly reduced, and some voters 
may decide to shift their votes in favor of candidates that are more likely to succeed. 
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The second is informational. Early voting can signal the quality of the candidates to 
later voters.

In this paper, we abstract from issues pertinent to the signaling of information 
about the valuation of candidates by assuming that the preferences of the voters are 
independent. We study an election with three candidates in which voting consists of 
two stages. In the first, “timing game,” stage, prior to the preferences being realized, 
voters choose simultaneously the period in which they will cast their votes. In the 
second, “voting game,” stage, the preferences are realized privately and voting takes 
place according to the order chosen in the first stage. In the voting game, voters in 
later periods observe the votes expressed by the voters in earlier periods. The can-
didate that obtains the majority of votes wins the election and ties are broken by a 
fair lottery.

We focus on the trade-off between two incentives that guide the strategic consid-
erations of voters with respect to the temporal dimension of voting. On the one hand, 
a later voter has lower chances of wasting a vote as she acquires better knowledge 
about the likelihood of victory of the candidates. On the other hand, an early voter 
can influence the outcome of the election by affecting the probability of victory 
of some candidates in later periods. In particular, voting early influences the field 
of candidates and can keep one’s candidate viable and make others unviable. We 
demonstrate a novel insight into the nature of sequential voting: if later voters persist 
in voting for their favorite candidate despite low chances of victory, early voting 
has a strategic disadvantage. In particular, if voters use voting strategies that we call 
persistent, that is, they vote for their preferred candidates as long as these candidates 
have a positive chance of winning, all equilibria in the first stage are equivalent to 
simultaneous voting. The reason is that, with such voting behavior, voting for one’s 
favorite candidate, say ​A​, in the first period can only be advantageous by making 
another candidate, say ​B​, unviable and, thus, inducing voters for whom ​B​ was the 
favorite and ​A​ the second best to switch to ​A​. But voters for whom ​B​ was the favorite 
and ​C​ the second best would also be induced to switch to ​C​. While these two forces 
might seem to cancel one another, it turns out that the losses are more significant 
than the gains. Thus, when voters continue to vote for their favorite candidate so 
long as she might win, shrinking the field is detrimental and voters have no incen-
tives to vote early.

More precisely, the paper focuses on simple strategies for which voting (but 
not necessarily timing) is pure and symmetric across voters and candidates (see 
Section III for a formal definition). We show (Theorem 1) that when restricting 
attention to simple persistent strategies, if the number of voters is at least six, then 
all equilibria are equivalent in terms of the outcome to one in which everyone votes 
in the last period. The restriction to persistent voting is consistent with equilibrium 
behavior if the value of every voter’s second-best candidate is low compared to the 
favorite candidate. However, if the second-best candidate’s value is close to the value 
of the favorite candidate, then equilibria in simple strategies cannot be persistent and 
must involve voting in multiple periods. (Theorem 2 and Corollary 1). Thus, we are 
able to link some preference environments to sequential or simultaneous voting.

The paper is organized as follows. In the next section, we briefly discuss the 
related literature. The model and results are contained in Sections II, III, IV, and V. 
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In Section VI, we discuss possible extensions. The Appendix contains some of the 
proofs.

I.  Related Literature

The literature on sequential voting has mostly dealt with the issue of information 
aggregation in binary elections. Dekel and Piccione (2000) study a model in which 
voting is sequential and show that, in symmetric environments with two candidates, 
the symmetric equilibria in simultaneous voting are also equilibria in any sequen-
tial structure. Battaglini (2005) shows that, with abstention and costly voting, the 
above inclusion fails, and the set of equilibria in simultaneous and sequential vot-
ing can be disjoint. Fey (1996) and Wit (1997) study a two-signal, common-value 
environment in which herd-cascade equilibria exist. Morton and Williams (1999) 
find theoretical and laboratory evidence that later voters use the information trans-
mitted by earlier voters. Callander (2007) shows the existence of “bandwagons” 
when the number of voters is infinite and voters have a desire to conform with the 
majority. Battaglini, Morton, and Palfrey (2007) compare the equity, information 
aggregation, and efficiency of simultaneous and sequential voting rules when voting 
is costly and information is incomplete. Ali and Kartik (2012) construct equilibria 
in which voters vote sincerely and that exhibit momentum effects. Hummel (2012) 
studies sequential equilibria with three candidates, where voters’ preferences are 
correlated. First period outcomes are informative about later behavior and lead to 
equilibria where later voters do not vote for candidates who do poorly early, as they 
know their chances are slim.

Knight and Schiff (2010) study polling data from US presidential elections and 
find that early voters have significantly more influence than late voters. Deltas, 
Herrera, and Polborn (2010) provide a framework for analyzing the trade-off 
between learning about the candidates’ quality (valence) and coordination in pri-
mary elections. They simulated various types of sequential elections using estimated 
structural parameters and showed that sequential elections in which candidates 
remain in the race yield the highest expected valence.

The theoretical literature on multi-stage voting also includes Sloth (1993), who 
studies sequential voting with perfect information and shows that the subgame per-
fect equilibria of roll-call voting are closely related to sophisticated equilibria of 
simultaneous voting, and Bag, Sabourian, and Winter (2009) who show that a class 
of voting procedures based on repeated ballots is Condorcet consistent.

II.  The Model

The model has ​N​, ​N  ≥  4​, voters and three candidates, denoted by ​A​, ​B​, ​C​, whom 
voter ​i​ values as ​(​v​ A​ i ​, ​v​ B​ i ​, ​v​ C​ i ​)​. We assume that each ​(​v​ A​ i ​, ​v​ B​ i ​, ​v​ C​ i ​)​ is independently and 
identically distributed across voters with probability ​f ( ⋅ )​ on ​​[0, 1]​​ 3​​.1 The function ​
f ( ⋅ )​ is symmetric across the candidates and assigns zero probability to ties. In one 

1 The symmetry assumption is important for our results. 
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special case that we will consider in this paper, each voter’s preferences are a ran-
dom selection of permutations of ​(1, x, 0)​, for fixed ​x  ∈  (0, 1)​. We will refer to this 
case as the ​x​-model.

Voting consists of two stages: a timing stage and then a voting stage. In the timing 
stage, before the preferences are realized, voters choose simultaneously the period ​
t  ∈  {1, 2}​ in which they will cast their votes.2 This decision is assumed to be irre-
vocable. In the second, voting, stage, preferences are realized privately and voting 
takes place according to the order decided in the timing stage. Voters know the tim-
ing stage decisions of all voters and, at their time of voting in the second stage, know 
the earlier votes. The election is won by the candidate that obtains the majority of 
votes. Ties are decided by a fair lottery.

To define the voting stage strategies of the voters, let ​Ω  =  ​{1, 2}​​ N​​ be the set 
of all possible timing-stage outcomes, i.e., specifications of who votes when. For 
​ω  ∈  Ω​, let ​​t​​ i​(ω)​ be the period in which player ​i​ votes, ​​​​ 2​(ω) = ​​{A, B, C}​​​ ​|​{i : ​t​​ i​​(ω)​=1}​|​​​ 
be the set of possible realizations of votes in period ​1​, and ​​​​ 1​(ω)​ be the empty his-
tory. A voting-stage strategy for player ​i​ is a collection ​​s​​ i​  =  ​{​s​​ i​(ω)}​ ω∈Ω​​​, where 
each ​​s​​ i​(ω)​ maps ​​​​ ​t​​ i​(ω)​(ω) × ​[0, 1]​​ 3​​ to ​Δ​, the set of probability distributions over ​
{A, B, C}​.

III.  Equilibria

Throughout the paper we focus on equilibria that in the voting stage involves 
strategies that are pure and symmetric across candidates and across voters; we call 
these simple voting-stage strategies. Formally define ​​n​ J​ 1​​ to be the total number of 
votes received by candidate ​J​ in period ​1​, ​J  =  A, B, C​. Given a profile of vot-
ing-stage strategies ​s​, let ​s(ω)​ denote the ​N​-tuple ​(​s​​ 1​(ω), … , ​s​​ N​(ω))​. The profile ​s​ 
is symmetric across voters if the strategies depend only on the number of voters in 
each period and are identical for voters in the same period, i.e., if ​s(ϒω)  =  ϒs(ω)​ 
for any permutation ​ϒ​ and any ​ω  ∈  Ω​. Given a profile ​s​ that is symmetric across 
voters, let ​​π​ s​ t ​(​N​​ 1​)​ be the expected payoff of a voter of period ​t​ given that ​​N​​ 1​​ voters 
vote in period ​1​. A voting-stage strategy profile is symmetric across candidates if 
for any ​ω  ∈  Ω​, the strategy of each voter ​i​ maps (after the appropriate reordering) 
every permutation of the triple

	 ​(​n​ A​ ​t​​ i​(ω)−1​, ​v​ A​ i ​), (​n​ B​ ​t​​ i​(ω)−1​, ​v​ B​ i ​), (​n​ C​ ​t​​ i​(ω)−1​, ​v​ C​ i ​)​

to an identical permutation of its image in ​Δ​.3

We now provide two elementary existence results for the timing-game stage, 
when voting-stage strategies are symmetric across voters. Given a profile of vot-
ing-stage strategies ​s​, define a timing-stage Nash equilibrium (induced by ​s​) as a 

2 The number of periods is chosen solely for simplicity. See Section VI. If the choice of timing was made after 
preferences were realized then the game would be quite different. We think that our approach to timing is more 
realistic and interesting; for instance, it seems to match primaries better. 

3 Where ​​​(​n​ J​ ​t​​ 
i​​(ω)​−1​)​​ J∈​{A, B, C}​​​​ is the null triple if ​i​ moves in period 1. 
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Nash equilibrium of the game in which the strategy space in the voting stage is 
restricted to the singleton ​s​.

Proposition 1: Given any profile ​s​ of voting-stage strategies that is symmetric 
across voters, the game has a timing-stage Nash equilibrium in pure strategies. 
Moreover, if ​​π​ s​ 1​(X + 1)  >  ​π​ s​ 2​(X)​, there exists a timing-stage Nash equilibrium in 
which the number of voters in the first period is strictly greater than ​X​.

Proof:
To show existence, first note that, if ​​π​ s​ 1​(N)  ≥  ​π​ s​ 2​(N − 1)​, the claim is trivially 

true. If ​​π​ s​ 1​(1)  <  ​π​ s​ 2​(0)​, it is a timing-stage Nash equilibrium for everyone to vote 
in the second period. Otherwise, define ​​​N ̃ ​​​ 1​​ to be the largest ​​N​​ 1​​, such that ​​π​ s​ 1​(​N​​ 1​)  
≥  ​π​ s​ 2​(​N​​ 1​ − 1)​. It is trivial to see that ​​​N ̃ ​​​ 1​​ voters choosing the first period is indeed 
a timing-stage Nash equilibrium since ​​π​ s​ 1​(​​N ̃ ​​​ 1​)  ≥  ​π​ s​ 2​(​​N ̃ ​​​ 1​ − 1)​ and ​​π​ s​ 1​(​​N ̃ ​​​ 1​ + 1) 
<  ​π​ s​ 2​(​​N ̃ ​​​ 1​)​. The second part of the proposition follows by repeating the argument for ​​
N​​ 1​  ≥  X​.

Remark 1: For a second existence result, note that if we fix any ​s​ that is symmetric 
across voters, then the timing game is symmetric and, hence, has a symmetric tim-
ing-stage equilibrium (possibly in mixed strategies).

IV.  Simultaneous Voting

Our goal is to gain insights into the relationship between the preference of voters 
and the timing of voting. As discussed, late voters may benefit from being informed 
about some of the votes; and early voters may benefit from influencing the behavior 
of late voters. One difficulty in deriving results about the relationship between pref-
erences and timing is the well-known feature of many voting models that voters can 
coordinate their behavior in an unappealing manner. To see this, observe that in the ​
x​-model a sequential equilibrium with simple voting-stage strategies and sequen-
tial voting is easily obtained for any ​x  ∈  (0, 1)​, when voters vote (i) for the pre-
ferred candidate in the first period, and (ii) for the most preferred candidate among 
the (possibly unique) leading candidates in the second period when ​​N​​ 1​  <  N − 1​. 
When ​​N​​ 1​  =  N − 1​, an optimal voting strategy for the (single) second-period voter 
that is symmetric across candidates is easily ascertained. Obviously, given the above 
voting-stage profile, it cannot be an equilibrium that all voters vote in period ​2​, 
as the most preferred candidate of a unique first-period voter wins with certainty. 
Existence of sequential voting in pure strategies then follows by Proposition 1, and 
in symmetric strategies by Remark 1. Note that this observation also provides an 
existence proof in the ​x​-model for equilibria with simple second-stage strategies.

In this section, we sidestep the above problem of undesirable voting coordina-
tion rather bluntly by fixing the voting-stage strategies so that voters vote for their 
favorite candidate so long as it is possible she might win, and focus on equilibrium 
behavior in the timing stage. Formally, given a realization of votes in the first period, 
a candidate ​J​ is said to be second-period viable if ​J​ wins the election with strictly 
positive probability when all voters in the second period vote for ​J​. A voting-stage 
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strategy is said to be persistent if, when voting in the first period, it votes for the can-
didate with the highest valuation and, when voting in the second period, it votes for 
the viable candidate with the highest valuation. The game in which the set of voting 
strategies is restricted to persistent strategies is called a P-voting game. Note that per-
sistent voting strategies are simple: pure and symmetric across voters and candidates.

The assumption that voting is persistent is consistent with equilibrium behav-
ior when preferences are such that the difference in valuations between the most 
preferred and the second most preferred candidate is sufficiently large for all real-
izations. For example, in the ​x​-model persistence is consistent with equilibrium 
behavior when ​x​ is small. Since the number of voters and candidates is finite, the set 
of possible realizations of votes is also finite. Hence, the increase in the probabil-
ity of victory of a viable candidate from receiving one extra vote is bounded from 
below by a strictly positive number. By contrast for large ​x​, persistent strategies 
are not consistent with equilibrium behavior; this follows because, for some real-
ization of first-period votes, a voter whose favorite candidate is viable but behind 
the second-best candidate votes for his second-best candidate if ​x​ is close enough 
to one. The intuition is that, when ​x​ is close to one, a voter wishes to minimize the 
chances of winning of the least preferred candidate and can do so by voting for 
whoever between the other two candidates is leading. This will be shown formally 
in Lemma 1 in the next section.

The following example shows that persistence is not enough to rule out sequential 
voting. It constructs a sequential-voting equilibrium in a P-voting game that is an 
equilibrium and is distinct from a simultaneous-move equilibrium (which also exists 
in this case, and is strictly worse from the perspective of one player).

Example 1: Consider the ​x​-model and suppose that ​N  =  5​, and that four voters 
vote in the first period. The behavior of a voter in the last period differs from the 
behavior in simultaneous voting and affects the outcome only when the candidate 
with the highest valuation obtains zero votes in the first period and the other two 
candidates get two votes each.4 The expected utility of a first-period voter, condi-
tional upon such realizations, is ​1/2 + x/4​.5 This is also the expected utility of all 
voters when they move simultaneously. However, the utility of the second-period 
voter with a persistent voting strategy is higher than in simultaneous voting, as the 
candidate valued ​x​ wins with certainty when the most preferred candidate is not 
viable. To see that this is indeed an equilibrium, note that a first-period voter is 
indifferent between voting in the first or in the second period as, by moving to the 
second period, voting will be equivalent in outcome to simultaneous voting.6

4 If some candidate receives three or more votes in the first period they would receive that whether the fifth voter 
votes in the first or second period, hence this voter’s timing is irrelevant. If both candidates receive two votes and the 
fifth voter’s favorite candidate is one of those, then the fifth voter would vote for that candidate regardless of whether 
he voted after the first four or simultaneously with them. Thus, his timing only matters as indicated in the text. 

5 The two candidates with two votes are equally likely to win; if it is the candidate for whom a first-period voter 
voted, then their utility is 1 (and this candidate wins with probability 1/2) and if it is the other candidate it is equally 
likely to be this voter’s second or least favorite candidate, yielding (with probabilty 1/2) either ​x​ or 0 with equal 
probability. Hence, 1/2 +  ​​(x + 0)​/4​. 

6 The proof of the following theorem will imply that there cannot exist an example in which the voters in the 
first-period strictly prefer voting in the first period. 
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The next theorem shows that this example is very special. If ​N  ≥  6​, sequential 
voting cannot be an equilibrium outcome.

Theorem 1: Suppose that ​N  ≥  6​. Any P-voting game has an equilibrium in 
which all voters choose to vote in the second period. Moreover, all P-voting equilib-
ria are equivalent in outcome to this equilibrium.

Proof:
See Appendix.

The intuition behind this result is simple despite its long proof. The events in 
which a candidate ceases to be voted for are exactly those in which that candi-
date, say candidate ​C​, has no chance of winning the election. Therefore, one cannot 
save one’s favorite candidate by voting early. The question remains whether one 
can facilitate coordination on one’s favorite candidate by voting early and making 
another candidate unviable. Conditional upon the event of ​C​, say, becoming unvi-
able, voting is effectively binary in that only two candidates can win the election. 
However, in a binary election, the utility of a voter is decreasing in the number of 
voters as her influence gets diluted. Having some voters switch from ​C​ to ​A​ or ​B​ 
with equal probabilities is then equivalent to increasing the number of voters in a 
binary election. Hence, a voter is better off by voting in later periods and allowing 
candidates that are not viable to receive votes.

This analysis clearly relies on the symmetry of the candidates. Nevertheless, it 
helps clarify and highlight the general point that decreasing the field of candidates 
can be disadvantageous, as it facilitates focusing not only on one’s preferred candi-
date, but also on that candidate’s opponents. While we do not develop this, it is clear 
that with more candidates this disadvantage would persist.

V.  Sequential Voting

In this section, we will investigate when sequential voting is an equilibrium; nat-
urally this will require that voters in the voting stage switch their vote away from 
their preferred candidate at times when she is still viable. Proposition 1 implies 
that a sufficient condition for the existence of equilibria with sequential voting, 
when voting-stage strategies are symmetric across voters and candidates, is that, if 
​​N​​ 1​  =  ​n​ J​ 1​  =  1​, second-period voters vote for ​J​ with a probability higher than ​1/3​. 
To provide a sharper characterization, we focus on the ​x​-model for the case of large ​
x​. In particular, we show that for ​x​ large all equilibria in simple strategies must 
involve sequential voting (and, hence, do not involve persistent strategies). After 
proving the result, we provide an example of a natural class of equilibria that do not 
exist for small ​x​.

Theorem 2: Consider the ​x​-model. If ​x​ is sufficiently close to one, there does not 
exist a pure-strategy sequential equilibrium with simple voting-stage strategies in 
which all the voters vote in the same period.
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Before turning to the proof of this theorem, we state a corollary.

Corollary 1: Consider the ​x​-model. If ​x​ is sufficiently close to one, there exists 
an ​ε  <  1​, such that in any (mixed strategy) sequential equilibrium with simple 
voting-stage strategies, the probability of all players voting in the same period is 
bounded above by ​ε​.

In particular if ​x​ is large then there is an ​​ε ′ ​  <  1​ that bounds from above the prob-
ability of any player choosing to move in either period in all symmetric equilibria. 
The corollary follows because otherwise there is a sequence of simple mixed-strat-
egy sequential equilibria whose limit involves all players playing in the same period, 
and one can see that this limit is inconsistent with Theorem 2. (The corollary can 
also be proven directly along the lines of the proof of Theorem 2 below, but instead 
of using the special case of Remark 2 used in the proof, using the full strength of 
Lemma 1 and considering all possible timing-stage outcomes.)

To prove Theorem 2, we make use of the following result. Let ​​r​ C​​​(​n​ A​​, ​n​ B​​)​​ be 
the probability of victory of ​C​ conditional upon the information that ​​n​ A​​​ voters 
have voted for ​A​, ​​n​ B​​​ voters for ​B​, ​​N​​ 1​ − ​n​ A​​ − ​n​ B​​​ for ​C​, and the remaining voters 
vote for candidate ​J​ with probability ​​e​ J​​​. The next lemma states that if ​​e​ A​​  ≥  ​e​ B​​​,  
then—conditioning upon candidates having at least two more votes for ​A​ than for ​
B​—changing the vote for ​B​ into a vote for ​A​ weakly decreases the probability of 
victory of ​C​, and if ​C​’s probability of winning was interior, then it strictly decreases 
that probability.

Lemma 1: Suppose that ​​e​ A​​  ≥  ​e​ B​​​. Then,

	 (i)	 If ​​n​ A​​ − 1  >  ​n​ B​​​ then ​​r​ C​​​(​n​ A​​, ​n​ B​​)​  ≤  ​r​ C​​(​n​ A​​ − 1, ​n​ B​​ + 1)​ 

	 (ii)	 If  ​​n​ A​​  −  1  >  ​n​ B​​​  and  ​0  <  ​r​ C​​​(​n​ A​​,  ​n​ B​​)​  <  1​  then  ​​r​ C​​​(​n​ A​​,  ​n​ B​​)​  <  ​r​ C​​(​n​ A​​  −  1,  ​n​ B​​  +  1)​. 

Remark 2: In particular, ​​r​ C​​​(2, 0)​  <  ​r​ C​​​(1, 1)​​, i.e., if there is one vote each for ​A​ 
and ​B​, then switching from ​B​ to ​A​ decreases the likelihood of ​C​ winning.

Proof:
See Appendix.

PROOF OF THEOREM 2:
If all voters vote in the same period, simple voting-stage strategies vote for the 

highest valued candidate. Hence, there does not exist an equilibrium in which all 
voters vote in the first period, since one voter would be better off moving to the 
second period. (To see this consider the event that votes are evenly split between 
one’s worst and middle candidate, with either zero or one vote for one’s favorite. 
Then, by waiting, one increases expected utility, as instead of wasting one’s vote on 
one’s favorite candidate, one increases from 1/2 to 1 the likelihood of one’s second 
favorite rather than one’s worst candidate succeeding.) We need to show that if they 
all vote in the second period, one voter will move to the first period. Consider for 
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simplicity the realization of votes ​(​n​ A​ 1 ​, ​n​ B​ 1 ​, ​n​ C​ 1 ​)  =  (1, 0, 0)​. There are four simple 
strategy profiles that might be an equilibrium in the second-period of the voting 
stage:

•  �Voters may vote for either ​B​ or ​C​ and cease voting for ​A​. For this type of strate-
gies and ​x​ close to one, it is optimal for a voter to switch to the first period and 
vote for the lowest valued candidate as, for ​N  ≥  4​, the probability of victory 
of this candidate drops to zero.

•  �Voters may choose persistent voting strategies. For ​x​ sufficiently close to one, a 
voter maximizes the expected payoff by minimizing the probability of victory 
of the candidate with the lowest valuation. Then, after an ​A​ vote in the first 
period, by Lemma 1, and in particular by Remark 2, it is a strict best reply to 
vote for ​A​ when valued ​x​ (assuming everyone else votes for their favorite can-
didate). Hence, persistent strategies are not an equilibrium.

•  �Third, voters with preferences ​(1, x, 0)​, ​(x, 1, 0)​, ​(1, 0, x)​, and ​(x, 0, 1)​ vote 
for ​A​ and voters with the remaining preferences vote for the highest valued 
candidate. (It is clear that that by Lemma 1 this profile of strategies is an equi-
librium for ​x​ close to one, but this is not needed for our conclusion.) In this 
case, the probability that the second-period voters vote for ​A​ after the real-
ization of votes ​(​n​ A​ 1 ​, ​n​ B​ 1 ​, ​n​ C​ 1 ​)  =  (1, 0, 0)​ is higher than with ​(​n​ A​ 1 ​, ​n​ B​ 1 ​, ​n​ C​ 1 ​)  
=  (0, 0, 0)​. Hence, a voter with preferences ​(1, x, 0)​ prefers to move to the 
first period and vote for ​A​.

•  �All voters in the second period vote for ​A​. Obviously, in this case a voter prefers 
to vote in the first period for the candidate whom he values most.

The intuition behind this theorem is as follows. When only one voter votes in the 
first period, if ​x​ is close to one, there does not exist an equilibrium in which voters 
in the second period use persistent voting strategies. Thus, the result from the pre-
ceding section does not apply. If the voters coordinate in equilibrium by ceasing to 
vote for the candidate receiving the first period vote, then it is optimal for one voter 
to move to the first period and vote for the option with zero value. If voters vote for 
the leading candidate with probability higher than ​1/3​, it is optimal for one voter to 
move to the first period and vote for the option with the highest value. Thus, at least 
one voter moves to the first period.

Arguments similar to those used in the proof of Lemma 1 establish that, when ​x​ is 
close to one, following some first-period outcomes, it is not optimal to vote for the 
most preferred candidate in the second period. Thus, voting behavior is not equiva-
lent to simultaneous voting.

In the ​x​-model with ​x​ large, existence of an equilibrium with simple second-stage 
strategies follows from the example in the first paragraph of Section IV. The exis-
tence of equilibria that do not involve the perverse coordination that appears there 
follows from Proposition 1 and Remark 1 using the following profile of simple 
second-period strategies. These equilibria are an example of what might be called 
satisfying voting strategies: voting for one’s favorite candidate so long as the sec-
ond-best candidate has fewer votes than the favorite, and voting for the second-best 
otherwise. That for ​x​ large these strategies are an equilibrium for the second period 
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of the voting game given any outcome of the timing game and any outcome of 
first-period voting can be shown using Lemma 2. Moreover, it is easy to see that 
these strategies cannot be an equilibrium for small ​x​, as voting for the second-best 
candidate as required in part 2 below is not optimal for small enough ​x​.

Example 2: 

	 (i)	 If, in the first period, candidate ​J​ receives a number of votes strictly less than 
the other two candidates, ​J′​ and ​J′′​, voters in the second period cease voting 
for ​J​ and vote for ​J′​ or ​J​′′ with the higher valuation.

	 (ii)	 If, in the first period candidate, ​J​ is leading and the other two candidates, ​J​′ 
and ​J​′′, have the same number of votes, a voter in the second period votes for ​
J​ if ​J​ is valued one, for ​J​ if ​J​ is valued ​x​ and at least one other voter votes in 
the second period, and for ​J​′ or ​J​′′ with the higher valuation in the remaining 
cases.

	 (iii)	 If, in the first period, all the candidates have the same number of votes, voters 
in the second period vote for the candidate with the highest valuation.

VI.  Conclusions and Extensions

The main conclusion of this paper is that for sequential voting to arise endoge-
nously, later voters must shift votes in favor of the second-best candidates when the 
probability of victory of their favorite candidate is not negligible. If voters desist 
from voting for their favorite candidate only when her probability of victory is very 
small, voting early has a strategic disadvantage as it decreases the probability of 
victory of one’s favorite candidate. Although our results were proved for the case of 
three candidates, the intuitions behind them carry over quite naturally to the case of 
more than three candidates. While we have not verified the formal details, we expect 
the above results to hold in the latter case.

Theorem 1 extends to the case of a finite but arbitrary number of periods. The 
proof follows from minor modifications of the arguments available in this paper 
and is not provided. However, when voting has more than ​two​ periods, the strate-
gic environment is complex and can involve strategies that, at least at first glance, 
appear nonintuitive. For example, strategic voting for the second-best candidate can 
occur in some periods even when one’s favorite is leading. Consider the ​x​-model and 
suppose that voting takes place in ​three​ periods. Assume that ​x  =  1 − ε​ and that in 
period ​1​ the votes for ​A​, ​B​, and ​C​ are ​​n​ A​ 1 ​, ​n​ A​ 1 ​ − 1​, and ​​n​ A​ 1 ​ − 1​. Also suppose that one 
voter votes in period ​2​ and two voters vote in period ​3​, and that the preferences of the 
period ​2​ voter are ​(1, 1 − ε, 0).​ If in period ​2​ the voter votes for ​A​, the distribution 
of votes in period ​3​ is ​​n​ A​ 1 ​ + 1, ​n​ A​ 1 ​ − 1, ​n​ A​ 1 ​ − 1​, whereas voting for ​B​ yields 
​​n​ A​ 1 ​, ​n​ A​ 1 ​, ​n​ A​ 1 ​ − 1​. In the latter case, the subsequent voters will vote for their best 
between ​A​ and ​B​ to minimize their probability of getting ​0​, thereby giving the period ​
2​ voter a payoff close to ​1​. If the distribution of votes in period ​3​ is ​​n​ A​ 1 ​ + 1, ​n​ A​ 1 ​ − 1, ​
n​ A​ 1 ​ − 1​ and both period ​3​ voters have preferences ​(0, 1 − ε, 1)​ (the probability of 



172	 American Economic Journal: microeconomics� November 2014

this event is ​1/36​), the period ​2​ voter obtains a payoff equal to 0 with probability ​
1/2​. Note the anti-herding feature in this example: an increase in the number of 
votes for ​B​ can lead a voter to vote for ​A​ instead.

Strategic voting can even induce voters to vote for their least-preferred candidate. 
Consider again the ​x​-model for ​x​ small and that voting takes three periods. The reali-
zation of votes in the first period is ​1​ vote for ​A​, ​N/2 − 1​ votes for ​C​, and none for ​B​. 
There is only one voter in period ​2​ and he has preferences ​(1, x, 0)​. If he votes for ​A​ 
or ​B​, then ​B​ is still viable and, if ​x​ is small, it is an equilibrium for voters in period ​
3​ to vote for the favorite candidate. Voting for ​C​ makes ​B​ not viable and, hence, 
voters will switch to the preferred candidate between ​A​ and ​C​. This can increase the 
probability of ​A​ winning if ​N​ is large.

Our results raise some interesting questions for the timing of voting of states 
of different sizes. On the one hand, a large state alone could destabilize simulta-
neous voting by early voting, whereas a small state alone may be unable to affect 
the behavior of later voters. On the other hand, a truly large state may have lower 
incentives than small states to vote early in the election. A large state could have a 
significant influence in determining the choices of later states, but, as we have seen 
in Theorem 1, this can be detrimental to the probability of success of a large state’s 
preferred candidate. A specific example demonstrating this possibility is available in 
the working paper version of this paper. We leave studying the case of asymmetric 
voters for future work.

Appendix

PROOF OF THEOREM 1:
Clearly, it is an equilibrium for all voters to vote in the last period. (One voter 

moving earlier cannot make any candidate unviable, hence, there is no benefit to 
moving earlier.) Consider an equilibrium in which voting takes place in two periods 
and that is not equivalent to simultaneous voting. For simplicity in notation, we will 
assume that if two candidates cease to be viable in period ​1​, voters vote for their 
highest valued candidate in period ​2​. As the outcome is thus determined in period 1, 
this assumption is inessential.

Consider a voter ​i​ who votes in period ​1​. Without loss of generality, suppose that ​
A​ is the candidate having the highest valuation for ​i​. We will first show that, for any ​
N​, ​i​’s payoff cannot decrease if he decides to vote for ​A​ in period ​2​. This will imply 
that he is at least as well off if he votes in period ​2​ for the best viable candidate. We 
will then show that, for ​N  ≥  6​, ​i​ ’s payoff must increase if he decides to vote for ​A​ 
in period ​2​.

Given a fixed number of period ​1​ voters, consider the events for which, if voter ​
i​ deviates and votes in period ​2​, the voting of the other voters is affected. To define 
such pivotal events, let ​​​n ̂ ​​ J​ 1​​, ​J  =  A, B, C​ denote the number of votes received by 
candidate ​J​ in period ​1​ excluding the vote of player ​i​. Define the inequalities

(A1)	 ​N − ​​n ̂ ​​ A​ 1 ​ − ​​n ̂ ​​ J​ 1​ − 1  <  ​max​ 
 
​    ​{​​n ̂ ​​ A​ 1 ​ + 1, ​​n ̂ ​​ J​ 1​}​
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(A2)	 ​N − ​​n ̂ ​​ A​ 1 ​ − ​​n ̂ ​​ J​ 1​  ≥  ​max​ 
 
​    ​{​​n ̂ ​​ A​ 1 ​, ​​n ̂ ​​ J​ 1​}​,

where ​J  ∈  ​{B, C}​​. If (A1) and (A2) hold for ​J  =  B​ and both ​A​ and ​B​ are viable, 
then period ​2​ voters, whose most valuable candidate is ​C​, vote for their second-most 
valuable candidate (​A​ or ​B​) when voter ​i​ votes for ​A​ in the first period (as then ​C​ is 
not viable by (A1)), and vote for ​C​ when voter ​i​ votes for ​A​ in the second period (as 
then ​C​ is viable by (A2)). A symmetric explanation holds for ​J  =  C​.

Take ​γ  ≤  δ − 1​ such that, for ​​​n ̂ ​​ A​ 1 ​  =  γ​ and ​​​n ̂ ​​ B​ 1 ​  =  δ​, (A1) and (A2) hold, and 
both ​A​ and ​B​ are viable. Define the events

	 ​​​ 1​​(k)  =  {​​n ̂ ​​ A​ 1 ​  =  γ,  ​​n ̂ ​​ B​ 1 ​  =  δ,  k voters vote for C in period 2}

	 ​​ 2​​(k)  =  {​​n ̂ ​​ A​ 1 ​  =  δ − 1,  ​​n ̂ ​​ B​ 1 ​  =  γ + 1,  k voters vote for C in period 2​}

and define ​(k)  =  ​​ 1​​(k) ∪ ​​ 2​​(k)​. The following elementary fact is stated without 
proof.

FACT: If (A1) and (A2) hold and ​A​ and ​J​ are viable for ​​​n ̂ ​​ A​ 1 ​  =  γ​ and ​​​n ̂ ​​ J​ 1​  =  δ​, 
where ​γ  ≤  δ − 1​, then (A1) and (A2) hold and ​A​ and ​J​ are viable for ​​​n ̂ ​​ A​ 1 ​  =  δ − 1​ 
and ​​​n ̂ ​​ J​ 1​  =  γ + 1​.

We will now show that the probability of ​A​ winning conditional on ​(k)​ does not 
decrease with ​k​. To do so, we will replace one second-period vote for ​C​ with a vote 
for ​A​ or ​B​ with probability ​0.5​ each, and show that the probability of ​A​ winning 
cannot increase. In particular, we will show that, conditional on ​​​ 1​​(k)​, the effect of 
decreasing ​k​ is to weakly increase the probability that ​A​ wins. However, for the cor-
responding event ​​​ 2​​(k)​, decreasing ​k​ weakly decreases the probability that ​A​ wins 
by an offsetting amount. Since ​​​ 2​​(k)​ is at least as likely as ​​​ 1​​(k)​, the overall effect 
conditional on ​(k)​ of decreasing ​k​ is to weakly decrease the probability that ​A​ wins. 
We will then show that for all remaining events with ​​​n ̂ ​​ A​ 1 ​  ≥  ​​n ̂ ​​ B​ 1 ​​, the probability of ​A​ 
winning decreases as ​k​ decreases.

Let ​​​n ̃ ​​ A​​​ denote the total number of votes for candidate ​A​ in period ​2​ when the vote 
of voter ​i​ is not included, and ​​N​​ 1​​ the total number of voters in period ​1​ including 
voter ​i​. First note that conditional on ​(k)​ and ​i​ voting for ​A​ in either the first or the 
second period, ​A​ wins with probability ​1​ if

(A3)	 ​​​n ̃ ​​ A​​  >  ​ N − 1 − k − ​​n ̂ ​​ A​ 1 ​ − (​N​​ 1​ − ​​n ̂ ​​ B​ 1 ​)   _______________  
2
  ​​,

and wins with probability ​1/2​ if

(A4)	 ​​​n ̃ ​​ A​​  =  ​ N − 1 − k − ​​n ̂ ​​ A​ 1 ​ − (​N​​ 1​ − ​​n ̂ ​​ B​ 1 ​)   _______________  
2
  ​​.
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First, suppose that ​N − 1 − k − ​​n ̂ ​​ A​ 1 ​ − (​N​​ 1​ − ​​n ̂ ​​ B​ 1 ​)​ is even. Note that if it is even 
for one component event in ​(k)​, it is even for the other component as well. If ​k​ is 
decreased by one, the only ​N​-tuples whose outcome is affected are those in (A4). 
In this case, the probability of ​A​ winning is unchanged when ​k​ is decreased by one 
since the voter who ceases voting for ​C​ votes for ​A​ with probability ​1/2​ and ​B​ with 
probability ​1/2​.

Now consider the case of odd ​N − 1 − k − ​​n ̂ ​​ A​ 1 ​ − (​N​​ 1​ − ​​n ̂ ​​ B​ 1 ​)​ and suppose that 
one of the voters who votes for ​C​ in period ​2​ switches to ​A​ or ​B​ with probability ​1/2​ 
each. To evaluate the change in the probability of victory of ​A​, in ​​​ 1​​​(k)​​ we need to 
consider ​N​-tuples for which

	 ​​​n ̃ ​​ A​​  =  ​ N − ​N​​ 1​ − k + (δ − γ)   ___________  
2
  ​  (WL1)​

	 ​​​n ̃ ​​ A​​  =  ​ N − ​N​​ 1​ − k + (δ − γ)   ___________  
2
  ​ − 1  (LW1)​

and, in ​​​ 2​​​(k)​​,

	 ​​​n ̃ ​​ A​​  =  ​ N − ​N​​ 1​ − k − (δ − γ)   ___________  
2
  ​ + 1  (WL2)​

	 ​​​n ̃ ​​ A​​  =  ​ N − ​N​​ 1​ − k − (δ − γ)   ___________  
2
  ​  (LW2)​.

For the events satisfying ​WL1​ and ​WL2​, if one of the ​k​ voters for ​C​ switches to 
voting for ​A​ with probability ​1/2​ and ​B​ with probability ​1/2​, the probability of ​A​ 
winning decreases from ​1​ to ​3/4​. For the events satisfying ​LW1​ and ​LW2​, the prob-
ability of ​A​ winning increases from ​0​ to ​1/4​.

Since the distribution of ​​​n ̃ ​​ A​​​ conditional upon ​​​ 1​​(k)​ or ​​​ 2​​(k)​ is binomial and sym-
metric around ​(N − ​N​​ 1​ − k)/2​, we have that 

(A5)	 ​​Pr​ 
 
​ 

 
 ​(WL1 | (k))  =  ​Pr​ 

 
​ 

 
 ​(LW2 | ​​ 2​​(k))

(A6)	 ​Pr​ 
 
​ 
 
 ​(WL2 | (k))  =  ​Pr​ 

 
​ 

 
 ​(LW1 | ​​ 1​​(k)) ​.

By the same token,

(A7)	 ​​Pr​ 
 
​ 
 
 ​(LW1 | ​​ 1​​(k))  ≥  ​Pr​ 

 
​ 
 
 ​(WL1 | ​​ 1​​(k)) .​

Since the symmetry of the binomial distribution also implies that the probability of ​​
​ 1​​(k)​ cannot exceed the probability of ​​​ 2​​(k)​, it can be easily verified that the proba-
bility of ​A​ winning cannot increase if one of the ​k​ second period ​C​-voters switches 
to ​A​ or ​B​ with probability ​1/2​ each.
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To see this note that the change in the probability of ​A​ winning after 1 of the ​k​ 
second-period voters switches to ​A​ or ​B​ with probability ​1/2​ is equal to 

	 ​​ 1 __ 
4
 ​​[​Pr​ 

 
​ 
 
 ​​(LW1 | ​​ 1​​​(k)​)​ − ​Pr​ 

 
​ 
 
 ​​(WL1 | ​​ 1​​​(k)​)​]​ ​Pr​ 

 
​ 
 
 ​​(​​ 1​​​(k)​)​ 

	 +  ​ 1 __ 
4
 ​​[​Pr​ 

 
​ 
 
 ​​(LW2 | ​​ 2​​​(k)​)​ − ​Pr​ 

 
​ 
 
 ​​(WL2 | ​​ 2​​​(k)​)​]​ ​Pr​ 

 
​ 
 
 ​​(​​ 2​​​(k)​)​ ​.

Given equations ​​(A5)​​, ​​(A6)​​, and ​​(A7)​​ we have 

	 ​​Pr​ 
 
​ 
 
 ​​(LW1 | ​​ 1​​​(k)​)​ − ​Pr​ 

 
​ 
 
 ​​(WL1 | ​​ 1​​​(k)​)​  ​

	     ​=  −​[​Pr​ 
 
​ 
 
 ​​(LW2 | ​​ 2​​​(k)​)​ − ​Pr​ 

 
​ 
 
 ​​(WL2 | ​​ 2​​​(k)​)​]​  >  0​,

and, since ​Pr ​(​​ 1​​​(k)​)​  ≤   Pr ​(​​ 2​​​(k)​)​​, the result follows.
In view of the Fact, to conclude that ​i​’s payoff never decreases when he votes for 

his highest-valued candidate in period ​2​, we need to consider first period realiza-
tions for which ​​​n ̂ ​​ A​ 1 ​  ≥  ​​n ̂ ​​ B​ 1 ​​. In particular, we want to show that, conditional upon the 
event ​{​​n ̂ ​​ A​ 1 ​  ≥  ​​n ̂ ​​ B​ 1 ​​, ​k​ voters vote for ​C​ in period ​2}​, the probability of ​A​ winning the 
election decreases with ​k​.

As before, we consider two cases. If ​N − 1 − k − ​​n ̂ ​​ A​ 1 ​ − (​N​​ 1​ − ​​n ̂ ​​ B​ 1 ​)​ is even and ​k​ 
decreases by 1, the ​N​-tuples whose outcome is affected are those in (A4). As before, 
if a voter who ceases voting for ​C​ votes for ​A​ with probability ​1/2​, the probability 
of ​A​ winning is unchanged.

If ​N − 1 − k − ​​n ̂ ​​ A​ 1 ​ − (​N​​ 1​ − ​​n ̂ ​​ B​ 1 ​)​ is odd, decreasing ​k​ by 1 changes the outcome 
of the election only when 

	 ​​​n ̃ ​​ A​​  =  ​ N − k − ​​n ̂ ​​ A​ 1 ​ − (​N​​ 1​ − ​​n ̂ ​​ B​ 1 ​)   _____________  
2
  ​​

or

	 ​​​n ̃ ​​ A​​  =  ​ N − k − ​​n ̂ ​​ A​ 1 ​ − (​N​​ 1​ − ​​n ̂ ​​ B​ 1 ​)   _____________  
2
  ​ − 1.​

Since ​​​n ̂ ​​ A​ 1 ​  ≥  ​​n ̂ ​​ B​ 1 ​​, the event defined by the first equality is more likely. For an 
​N​-tuple satisfying the first equality, decreasing ​k​ decreases the probability of ​A​ win-
ning from ​1​ to ​3/4​. For an ​N​-tuple satisfying the second equality, decreasing ​k​ 
increases the probability of ​A​ winning from ​0​ to ​1/4​. Hence, decreasing ​k​ cannot 
increase the probability of ​A​ winning. Since conditional upon ​i​ voting for ​A​, the 
probabilities of ​B​ or ​C​ winning the election are identical, voter ​i​ is not worse off 
voting for ​A​ in period ​2​.

We conclude the proof of the theorem showing that, if ​N  ≥  6​, voter ​i​ is strictly 
better off voting in period ​2​ for the best viable candidate. First, suppose that ​N​ is 
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even. If ​​N​​ 1​  ≥  N/2 + 2​, consider the event ​{​​n ̂ ​​ B​ 1 ​  =  N/2, ​​n ̂ ​​ C​ 1 ​  =  ​N​​ 1​ − N/2 − 1}​. 
Conditional upon this event, if voter ​i​ votes for ​A​ in period ​1​, ​B​ wins the election 
with probability ​1​, whereas, if the second best is ​C​, voting for ​C​ in period ​2​ gives ​
C​ a positive probability of victory. If ​​N​​ 1​  =  N/2 + 1​, (A1) and (A2) are satis-
fied for ​​​n ̂ ​​ A​ 1 ​  =  0​ and ​​​n ̂ ​​ B​ 1 ​  =  N/2​. This corresponds to the case where ​γ  =  0​ and ​
δ  =  N/2​ in the definition of ​(k)​. For ​k  =  1​,

	 ​​Pr​ 
 
​ 

 
 ​​(WL1 | ​​ 1​​(1))​ − ​Pr​ 

 
​ 
 
 ​​(LW1 | ​​ 1​​(1))​  =  −​ 1 __ 

2
 ​ ​Pr​ 

 
​ 
 
 ​​(​​n ̃ ​​ A​​  =  ​ N __ 

2
 ​ − 2)​​,

since ​Pr (WL1 | ​​ 1​​(1))  =  0​ and ​Pr (LW1 | ​​ 1​​(1))  =​ ​Pr ​(​​n ̃ ​​ A​​  =  N/2 − 2 | ​​ 1​​(1))​ 
=​ ​(1/2) Pr ​(​​n ̃ ​​ A​​  =  N/2 − 2)​ .​ 

​N  ≥  6​ implies that ​Pr ​(​​n ̃ ​​ A​​  =  N/2 − 2)​  >  0​ and, since the probability of ​​​ 1​​(1)​ 
is strictly smaller than the probability of ​​​ 2​​(1)​, voter ​i​ is strictly better off voting in 
period ​2​.

Now suppose that ​N​ is odd. If ​​N​​ 1​  ≥  (N + 5)/2​, consider the event ​
{​​n ̂ ​​ B​ 1 ​  =  (N − 1)/2, ​​n ̂ ​​ C​ 1 ​  =  ​N​​ 1​ − (N − 1)/2 − 1}​. Conditional upon this event, ​A​ 
cannot win the election and, if voter ​i​’s second best is ​B​, voting for ​B​ in period ​2​ 
gives ​B​ the certainty of victory, whereas voting for ​A​ in period ​1​ gives ​C​ a positive 
chance of winning the election. If ​​N​​ 1​  =  (N + 3)/2​, (A1) and (A2) are satisfied 
for ​​​n ̂ ​​ A​ 1 ​  =  1​ and ​​​n ̂ ​​ B​ 1 ​  =  (N − 1)/2​. This corresponds to the case where ​γ  =  1​ and ​
δ  =  (N − 1)/2​ in the definition of ​(k)​. For ​k  =  2​,

	 ​​Pr​ 
 
​ 
 
 ​(WL1 | ​​ 1​​(k)) − ​Pr​ 

 
​ 
 
 ​(LW1 | ​​ 1​​(k))  =   −  ​ 1 __ 

4
 ​  ​Pr​ 
 
​ 
 
 ​​(​​n ̃ ​​ A​​  =  ​ N − 5 ____ 

2
  ​ − 1)​ ,​

since ​Pr (WL1 | ​​ 1​​(2)) =  0​ and ​Pr (LW1 | ​​ 1​​(2)) = Pr ​(​​n ̃ ​​ A​​  =  ​(N − 5)​/2 − 1 | ​​ 1​​(2))​​ 
which, in turn, equals ​Pr ​(​​n ̃ ​​ A​​  =  ​(N − 5)​/2 − 1)​/4​.

When ​k  =  2​, ​Pr ​(​​n ̃ ​​ A​​  =  (N − 5)/2 − 1)​  >  0​. But ​k​ can be equal to ​2​ if there 
are at least two voters (excluding ​i​ ) in period ​2​, that is, ​N  ≥  7​. 

PROOF OF LEMMA 1:
We first state and prove an intermediate lemma.

Lemma 2: For nonnegative integers ​​μ​ 1​​​, ​​μ​ 2​​​ and ​​μ ˉ ​​, if ​​μ​ 2​​  ≥  ​μ​ 1​​​, ​​μ​ 2​​ + ​μ​ 1​​  ≥  ​μ ˉ ​ + 1​, 
and for ​e​ such that ​1/2  ≤  e  ≤  1​,

	 ​​ ∑ 
μ=​μ​ 1​​

​ 
​μ​ 2​​

  ​​​​(1 − e)​​​ μ​​e​​ ​μ ˉ ​−μ​​(​​μ ˉ ​​ μ​)​  <  ​  ∑ 
μ=​μ​ 1​​−1

​ 
​μ​ 2​​−1

  ​​​​(1 − e)​​​ μ​​e​​ ​μ ˉ ​−μ​​(​​μ ˉ ​​ μ​)​ .​

PROOF OF LEMMA 2:
The difference of the left- and right-hand sides simplifies to

	 ​− ​​(1 − e)​​​ ​μ​ 1​​−1​​e​​ ​μ ˉ ​−​μ​ 1​​+1​​(​ 
​μ ˉ ​
​ ​μ​ 1​​ − 1​)​ + ​​(1 − e)​​​ ​μ​ 2​​​​e​​ ​μ ˉ ​−​μ​ 2​​​​(​ ​μ ˉ ​​ ​μ​ 2​​​)​ .​
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Note that

	 ​​ ​​(1 − e)​​​ ​μ​ 1​​−1​​e​​ ​μ ˉ ​−​μ​ 1​​+1​  ___________  
​​(1 − e)​​​ ​μ​ 2​​​​e​​ ​μ ˉ ​−​μ​ 2​​​

  ​  =  ​​(​  e ___ 
1 − e ​)​​​ 

−​μ​ 1​​+1+​μ​ 2​​​  ≥  1 .​

If ​​μ​ 1​​  ≥  ​μ ˉ ​ /2​, the claim is obviously true as ​​μ​ 2​​  ≥  ​μ​ 1​​​ because ​​(​​μ ˉ ​​ 
l
 ​)​​ is decreasing 

in ​l​ for ​l  ≥  ​μ ˉ ​ / 2​. If ​​μ​ 1​​  <  ​μ ˉ ​ / 2​, then ​​μ ˉ ​ − (​μ​ 1​​ − 1)  >  ​μ ˉ ​ / 2​, and, since ​​μ​ 2​​  >  ​μ ˉ ​ − 

​(​μ​ 1​​ − 1)​​ by assumption and ​​(​ 
​μ ˉ ​
​ ​μ ˉ ​ − ​(​μ​ 1​​ − 1)​​)​  =  ​(​ 

​μ ˉ ​
​ ​μ​ 1​​ − 1​)​​, the claim follows 

using the same argument. 

To prove Lemma 1, define ​​q​ C​​(​n​ B​​, ​n​ C​​)​ to be the ​​(probability)​​ that ​C​ wins condi-
tional upon exactly ​​n​ C​​​ voters voting for ​C​, at least ​​n​ B​   ​​ for ​B​, and at least M − ​​n​ B​   ​​ for ​
A​, where ​0  ≤​  ​​n​ B​   ​​  <  M/2 − 1.

Obviously, if ​​q​ C​​(​n​ B​​, ​n​ C​​) = 1​, then ​​q​ C​​(​​​n​ B​   ​​ + 1, ​n​ C​​) = 1 for ​0 ≤​  ​​n​ B​   ​​  < M/2 − 1.
Now we will show that, if ​0  <  ​q​ C​​(​​​n​ B​   ​​  − 1, ​n​ C​​)  <  1, then ​​q​ C​​(​​​n​ B​   ​​, ​n​ C​​)  

> ​ q​ C​​(​​n​ B​   ​​ − 1, ​n​ C​​) for ​1 ≤​  ​​n​ B​   ​​ ≤ M/2. For this purpose, define ​e  =  ​e​ A​​/(​e​ A​​ + ​e​ B​​)​. 
The proof proceeds by showing this for various cases of ​​n​ C​​​ and ​M​, and concludes 
by taking expectations over ​​n​ C​​​.

First suppose that ​​n​ C​​  =  N/3​. Note that if ​0  <  ​q​ C​​(​​​n​ B​   ​​  − 1, ​n​ C​​)  <  1, then ​
N/3  ≥  M − ​n​ B​​​, as the latter is the number of votes for ​A​, so otherwise ​C​ looses to ​​
q​ C​​  =  1​. Now observe that

	 ​​q​ C​​​(​n​ B​​, ​ N __ 
3
 ​)​  =  ​ 1 __ 

3
 ​​e​​ ​ 

N __ 3 ​−M+​n​ B​​​​​(1 − e)​​​ ​ 
N __ 3 ​−​n​ B​​​​

(
​
​ 2N ___ 3 ​ − M

​ 
​ N __ 3 ​ − ​n​ B​​

 ​
)

​ .​

Straightforward algebra shows that this expression is increasing in ​​n​ B​   ​​ for 
​0  ≤ ​ ​​n​ B​   ​​   ≤  M/2.

Now consider the case that ​​n​ C​​  =  N/2​. Then ​​q​ C​​(0, ​n​ C​​)  <  1​ and ​​q​ C​​(1, ​n​ C​​)  =  1​
.

Next, if ​​n​ C​​  =  (N − 1)/ 2​ and ​M  =  2​, then

	 ​​q​ C​​(1, ​n​ C​​)  =  1 − ​ 1 __ 
2
 ​​  e​​ ​ 

N−3 ____ 2  ​​ − ​ 1 __ 
2
 ​​​(1 − e)​​​ ​ 

N−3 ____ 2  ​​

	 ​q​ C​​(0, ​n​ C​​)  =  1 − ​e​​ ​ 
N−3 ____ 2  ​​ − ​ 1 __ 

2
 ​ ⋅ ​ N − 3 ____ 

2
  ​ ​e​​ ​ 

N−5 ____ 2  ​​​(1 − e)​ ​.

As ​N  ≥  5​, it is easy to see that ​​q​ C​​(0, ​n​ C​​)  <  ​q​ C​​(1, ​n​ C​​)​.
One more special case to consider is when ​​n​ C​​  =  (N − 1)/2​ and ​M  >  2​. Then,

	 ​​q​ C​​(1, ​n​ C​​)  =  1 − ​ 1 __ 
2
 ​ ​e​​ ​ 

N+1 ____ 2  ​ −M​

	 ​q​ C​​(0, ​n​ C​​)  =  1 − ​e​​ ​ 
N+1 ____ 2  ​ −M​ − ​ 1 __ 

2
 ​ ⋅ ​(​ N + 1 ____ 

2
  ​ − M)​ ​e​​ ​ 

N−1 ____ 2  ​ −M​​(1 − e)​ ​.
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Again, it is straightforward to verify that, as ​N  ≥  5​, ​​q​ C​​(0, ​n​ C​​)  <  ​q​ C​​(1, ​n​ C​​)​. Since ​​
q​ C​​(2, ​n​ C​​)  =  1,​ the claim again holds.

Finally suppose that ​N/3  <  ​n​ C​​  ≤  (N − 2)/2​. Then,

	 ​​q​ C​​(​n​ B​​, ​n​ C​​)  =  ​  ∑ 
l=N−2​n​ C​​−​n​ B​​

​ 
​n​ C​​−​n​ B​​

  ​​​α​ l​​ ​β​ l​​​(​N − M − ​n​ C​​​ 
l
  ​)​,​

where ​​β​ l​​  =  ​e​​ N−M−​n​ C​​−l​​​(1 − e)​​​ l​​, ​​α​ l​​  =  1/2​ for ​l  =  N − 2​n​ C​​ −​ ​​n​ B​   ​​  or 
l  = ​ n​ C​​ − ​​n​ B​   ​​,  and ​​α​ l​​  =  1​ for ​N − 2​n​ C​​ −​  ​​n​ B​   ​​  <  l  < ​ n​ C​​ −  ​​n​ B​   ​​. (The parameter 
​l​ denotes the number of votes for ​A​.)

Lemma 2 implies that

	 ​​  ∑ 
l=N−2​n​ C​​−​n​ B​​

​ 
​n​ C​​−​n​ B​​−1

  ​​ ​β​ l​​​(​N − M − ​n​ C​​​ 
l
  ​)​  <  ​  ∑ 

l=N−2​n​ C​​−​n​ B​​−1
​ 

​n​ C​​−​n​ B​​−2

  ​​​β​ l​​​(​N − M − ​n​ C​​​ 
l
  ​)​​

and

	 ​​  ∑ 
l=N−2​n​ C​​+1−​n​ B​​

​ 
​n​ C​​−​n​ B​​

  ​​ ​β​ l​​​(​N − M − ​n​ C​​​ 
l
  ​)​  <  ​  ∑ 

l=N−2​n​ C​​−​n​ B​​
​ 

​n​ C​​−​n​ B​​−1

  ​​​β​ l​​​(​N − M − ​n​ C​​​ 
l
  ​)​ .​

(The conditions on the lower and upper bounds of the summations required for 
Lemma 2 follow since ​​n​ B​​  <  M/2 − 1​.) Since

	 ​2​q​ C​​(​n​ B​​, ​n​ C​​)  =  ​  ∑ 
l=N−2​n​ C​​−​n​ B​​

​ 
​n​ C​​−​n​ B​​−1

  ​​ ​β​ l​​​(​N − M − ​n​ C​​​ 
l
  ​)​ + ​  ∑ 

l=N−2​n​ C​​−​n​ B​​+1
​ 

​n​ C​​−​n​ B​​
  ​​​β​ l​​​(​N − M − ​n​ C​​​ 

l
  ​)​​,

it is easy to verify that the above inequalities imply that ​q​ C​​(​​n​ B​   ​​, ​n​ C​​) − 
​q​ C​​(​​n​ B​   ​​  + 1, ​n​ C​​)  <  0. The proof is then completed by taking expectations over ​​n​ C​​​.
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