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In order to model the subjective uncertainty of a player over the behavior strategies
of an opponent, one must consider the player’s beliefs about the opponent’s play at
information sets that the player thinks have probability zero. This corregendum uses
‘‘trembles’’ to provide a definition of the convex hull of a set of behavior strategies.
This corrects a definition we gave in [E. Dekel, D. Fudenberg, and D. K. Levine,
1999, J. Econ. Theory 89, 165–185], which led to two of the solution concepts we
defined there not having the properties we intended. Journal of Economic Literature
ClassificationNumbers: C72, D82, C610. © 2002 Elsevier Science (USA)
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1. INTRODUCTION

Rationalizability and related concepts are defined and characterized in
terms of sets of strategies for a player that other players think he might use.
In the strategic form each player’s beliefs about the play of an opponent
are given by a probability measure over this set, and each such measure
maps to a point in the convex hull of the set of possible strategies, as in
Bernheim [3] and Pearce [9]. Consequently, we can take this convex hull
as a model of what players might think about other players. In extensive-
form models that use behavior strategies, the correct way to model beliefs
and map them to strategies is less transparent. G. Asheim has pointed out
to us that in Dekel et al. [5] we give an incorrect definition of convex
combinations of behavior strategies. As a result two of the concepts that
we defined (sequential rationalizability and sequentially rationalizable self-
confirming equilibrium) do not have the properties that the paper implies
and intended. This corregendum uses ‘‘trembles’’ to provide a definition of
mixtures that, when embedded in our definitions of sequential rationaliza-
bility and sequentially rationalizable self-confirming equilibrium, makes
them function in the way we intended.2 In particular, with the corrected

2 As we explain below, the error does not matter for the solution concept of the rationaliz-
able self-confirming equilibrium, which was the primary focus of that paper.

definition it will be the case that when a player thinks that only a single
behavior strategy is consistent with rational play by his opponent, his
beliefs about that opponent correspond to that unique behavior strategy.
Consequently, sequential rationalizability implies backward induction in
finite games of perfect information with generic payoffs.
Instead of using trembles, Asheim and Perea [1] use lexicographic
probability systems (extending Blume et al. [4]) to model players’ beliefs in
extensive-form games; among other things they use these systems to
provide a correct definition of sequential rationalizability for two-player
games. Battigalli [3] models beliefs in extensive-form games using
Myerson’s [8] conditional probability systems, to which lexicographic
probability systems are closely related. We prefer to use trembles instead
because we already used them in another part of our 1999 paper, and
because for our purposes it is not necessary to track the relative likelihoods
of various zero-probability events.3

3 Contemporaneously with this paper, Asheim and Perea developed a trembles-based
alternative to their use of lexicographic probability systems.

2. PRELIMINARIES

To save space we will assume that the reader is familiar with most of the
notation and terminology of Dekel et al. [5], and so we will only restate a
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few of the most relevant definitions. An assessment ai for player i is a
probability distribution over nodes at each of his information sets. A belief
for player i is a pair bi — (ai, p

i
−i), consisting of i ’s assessment over nodes

ai and i ’s expectations of opponents’ strategies p
i
−i=(p

i
j)j ] i.

4 In that paper

4 The assumption that player i ’s expectations about an opponent’s play correspond to a
strategy profile incorporates the implicit restriction that opponents randomize independently.
Note that what we call an ‘‘assessment’’ is what Kreps and Wilson [8] call a ‘‘system of
beliefs for player i ’’ and that our ‘‘belief ’’ is similar to what they call an ‘‘assessment.’’

we defined belief closed as follows.

Definition 2.2. A belief model V is belief closed if for every
(pi, (ai, p

i
−i)) ¥ Vi, p

i
j arises from a mixture over strategies in the set

{p −j | (p
−

j, bj) ¥ Vj for some belief bj}.

This definition is silent on what it means to say that a behavior strategy
‘‘arises from a mixture’’ over other behavior strategies; the paper elaborates
in Footnote 11, which says:

A behavior strategy pj is generated by a mixture (a, 1−a)
over p −j and p

'

j if for every p−j, the distribution over terminal
nodes induced by (pj, p−j) equals the (a, 1−a) mixture
over the distributions induced by (p −j, p−j) and (p

'

j , p−j)
respectively.

This ‘‘clarification’’ is incorrect. The problems arise in defining the behav-
ior of p ij at information sets for j that are not reachable under any of the
strategies in Vj.5 Such information sets are irrelevant for concepts that place

5 That is, an information set is unreachable under pj if there is no profile p−j for j ’s
opponents such that the information set is reached with positive probability.

no restrictions on play at information sets that the strategy precludes, but
the mistake is important for concepts such as our sequential
rationalizability that impose restrictions on play at all information sets.
For example consider the game in Fig. 1. The backwards induction
profile is p1=(in, up) and p2=(across); the profile ((out, down), (down))
is an imperfect Nash equilibrium. Only up is sequentially rational at
player 1’s second information set, so the set of sequentially rational
behavior strategies for player 1 must contain only strategies that play up at
this information set. Consider the sets V1=((out, up), down), V2=
(down, (out, down)). Since the strategy (out, down) is equivalent in the
strategic form to (out, up), it ‘‘arises as a mixture over’’ the set of player 1’s
strategies in V1. Consequently, this pair is sequentially rational and belief
closed when ‘‘arises from’’ is defined as in Footnote 11 of [5]. In particular,
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FIGURE 1

sequential rationality and belief-closed with the original definition do not
imply backward induction.

3. THE EXTENSIVE-FORM CONVEX HULL

We therefore propose the following definition of the ‘‘convex hull’’ of
behavior strategies, which corrects and builds from our previous definition
by using ‘‘trembles’’ to make sure that every information set of player i is
reachable.6 When working with strictly positive behavior strategies, there

6Here and subsequently, we give the space of behavior strategies the norm topology, so that
a sequence of behavior strategies converges iff it converges pointwise.

are no unreached information sets. In this case the definition of ‘‘generated
by a mixture’’ from our previous paper is adequate.

Definition. Strategy pi is in the extensive-form convex hull of a set Pi of
behavior strategies for player i if there is an integer k, strategies {p ji}j=1, ..., k
in Pi, sequences of strictly positive behavior strategies p

j, n
i Q p ji , and a

sequence anQ a of probability distributions on [1, ..., k], such that
the behavior strategies pni generated by the convex combination of p

1, n
1 ,

p2, ni , ..., p
k, n
i with weights a

1, n, a2, n, ..., ak, n converge to pi.

We let a vary along the sequence so that the extensive-form convex hull
will be closed. To see why the set would not be closed if the definition used
only a fixed a, consider the following one-player game. Player 1 has two
moves in a row: The first choice is In or Out; Out ends the game, In gives
him a second choice of L or R. Strategy 1 is (Out, L), 2 is (In, R). Now
suppose that the definition of the convex hull used only fixed weights, and
let a1, a2 be the weights on strategies 1 and 2. Since only strategy 2 plays In
and enables the move in the second period, the convex combination of
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the two strategies with strictly positive weights is ((a1 Out, (a2) In), R),
which approaches (Out, R) as aQ 1. However, this is not a convex combi-
nation of strategies 1 and 2, even for a=(1, 0). Consequently, the set of
‘‘convex combinations’’ by this definition is not closed. Our definition of
the extensive-form convex hull includes both (Out, L) and (Out, R).

Definition 2.2 (Revised). A belief model V is belief closed if, for every
(pi, (ai, p

i
−i)) ¥ Vi, p

i
j is in the extensive-form convex hull of the set

{p −j | (p
−

j, bj) ¥ Vj for some belief bj}.

All of the other definitions in our 1999 paper stay unchanged, modulo
the change in the definition of belief closed. Note that the difference
between the corrected definition of belief closed and the previous one arises
when for some players i and j, p ij induces the same distribution over out-
comes as a mixture over the set {p −j | (p

−

j, bj) ¥ Vj for some belief bj}, but
differs from these strategies at an information set that the strategies them-
selves preclude. For this reason, the changed definition of belief closed has
only a minor effect on the concept of ‘‘rationalizability at reachable nodes’’
(Definition 2.3), as this concept does not require that strategies be optimal
at information sets that the strategies themselves rule out. In particular,
while a given belief model V (such as the pair of singleton beliefs V1, V2 in
the example of the last section) can be rationalizable under reachable nodes
under the old definition but not under the new one (because it is not belief-
closed), for any such V we can construct a V̂ that is belief-closed by adding
to each Vj and to every pj ¥ Vj every strategy p̂j that agrees with pj at nodes
that are reachable under pj. Every added strategy is a best response at
reachable nodes to the same beliefs that rationalized the original pj, and
since the set V was belief closed under the old definition, V̂ is belief closed
under the new one.7 In particular, the change in definitions has no effect on

7Note that when a model V is rationalizable at reachable nodes under the old definition,
the model formed by enlarging the set of strategies in each Vj to its extensive-from convex hull
need not be rationalizable at reachable nodes under the corrected definition. Although the
new model will be belief closed, the strategies introduced need not be rational at reachable
nodes, and indeed they may be strictly dominated.

whether a strategy profile p̂ is a rationalizable self-confirming equilibrium,
as this requires that there exists a belief model V that is rationalizable at
reachable nodes, such that for all players i every (pi, bi) ¥ Vi has the distri-
bution of outcomes induced by p̂. Thus Theorems 2.1 and 4.1 and all of the
examples in Section 3 ([5]) are unaffected by the change.
As we noted earlier, the change in definition does matter for the concept
of sequential rationalizability, which requires that strategies in the belief
model be rationalized at every information set, and it has a similar impact

UNCERTAINTY OVER BEHAVIOR STRATEGIES 477



on the concept of a sequentially rationalizable self-confirming equilibrium.
In particular, because the extensive-form convex hull of a singleton set
consists solely of the single strategy in that set, the unique sequentially
rationalizable profile in finite games of perfect information with generic
payoffs is the one given by backward induction.8 Despite this change,

8 Bernheim [3] defines subgame rationalizability, and argues that it yields backwards
induction in generic game of perfect information.

Theorem 4.2, which is the only result in [5] that refers to concepts using
sequential rationality, is correct as stated, since the elaborations used
in the proof have a type that is indifferent between all actions at every
information set.
Note finally that even if a strategy profile p is sequentially rationalizable
as a singleton set (i.e., there are beliefs bi for each player i such that the sets
V1={(p1, b1)}, V2={(p2, b2)}, etc., are sequentially rationalizable), it need
not be a sequential equilibrium. While we have assumed that each player’s
assessment over nodes in his information sets is consistent in the
Kreps–Wilson sense of being derivable from the limit of Bayesian beliefs
from full-support strategies, we have not required that all players’ assess-
ments be consistent with a single sequence of totally mixed strategy
profiles, and it is known (see for instance Example 8.5 in Fudenberg and
Tirole [6]) that the freedom to use different sequences to derive each
player’s assessment can allow additional equilibrium outcomes.
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