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�“My own behaviour bafes me. For I nd myself not doing what I really want to do but doing
what I really loathe.�” Saint Paul

What behaviour can be explained using the hypothesis that the agent faces temptation but is
otherwise a �“standard rational agent�”? In earlier work, Gul and Pesendorfer (2001) use a set betweenness
axiom to restrict the set of preferences considered by Dekel, Lipman and Rustichini (2001) to those
explainable via temptation. We argue that set betweenness rules out plausible and interesting forms of
temptation including some which may be important in applications. We propose a pair of alternative
axioms called DFC, desire for commitment, and AIC, approximate improvements are chosen. DFC
characterizes temptation as situations in which given any set of alternatives, the agent prefers committing
herself to some particular item from the set rather than leaving herself the exibility of choosing later.
AIC is based on the idea that if adding an option to a menu improves the menu, it is because that option is
chosen under some circumstances. From this interpretation, the axiom concludes that if an improvement
is worse (as a commitment) than some commitment from the menu, then the best commitment from
the improved menu is strictly preferred to facing that menu. We show that these axioms characterize a
natural generalization of the Gul�–Pesendorfer representation.

1. INTRODUCTION

What potentially observable behaviour can we explain using the hypothesis that the agent faces
temptation but is otherwise a �“standard rational agent�”? We use the phrase temptation-driven
to refer to behaviour explainable in this fashion.

By �“temptation�”, we mean that the agent has some current view of what actions she
would like to choose, but knows that at the time these choices are to be made she will be
pulled by conicting desires. For clarity, we refer to her current view of desirable actions
as her commitment preference since this describes the actions she would commit herself to
if possible. We interpret and frequently discuss this preference as the agent�’s view of what
is normatively appropriate, though this is not a formal part of the model.1 We refer to the
future desires that may conict with the commitment preference as temptations. We view this
conict as independent of the set of feasible options in the sense that whether one item is more

1. See Noor (2006a) for a critique of such interpretations.
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938 REVIEW OF ECONOMIC STUDIES

tempting than another is independent of what other options are available. Thus we do impose
a certain structure on the way temptation affects the agent. Also, we allow the possibility that
the extent or nature of temptation is random, but do not allow similar randomness regarding
what is normatively preferred. While there is undoubtedly an element of arbitrariness in this
modelling choice, we choose to rule out uncertainty about what is normatively preferred to
separate temptation-driven behaviour from the desire for exibility which such uncertainty
would generate.2 We retain uncertainty about temptation for two reasons. First, as we will see,
some behaviour which is very intuitive as an outcome of temptation is (unexpectedly) difcult
to explain without uncertainty about temptation. Second, we believe that uncertainty about
temptations is likely to be important in applications.3

Our approach builds on earlier work by Gul�–Pesendorfer (2001) (henceforth GP) and
Dekel�–Lipman�–Rustichini (2001) (DLR). DLR consider a rather general model of preferences
over menus, from which choice is made at a later date. (A menu can be interpreted either
literally or as an action which affects subsequent opportunities.) DLR show that preferences
over menus can be used to identify an agent�’s subjective beliefs regarding her future tastes
and behaviour. The set of preferences considered by DLR can be interpreted as allowing for a
desire for exibility, concerns about temptation, or both considerations, as well as preferences
with entirely different interpretations.4

GP were the rst to use preferences over menus to study temptation. To see the intuition
for how this works, recall that temptation refers to desires to deviate from the commitment
preference. The commitment preference is naturally identied as the preference over singleton
menus, since such menus correspond exactly to commitments to particular choices. Thus
temptation can be identied by seeing how preferences over non-singleton menus differ from
what would be implied by the commitment preference if there were no temptation. That is, if
{a} ! {b}, so the agent prefers a commitment of a to a commitment of b, then if there were
no temptation (or other �“non-standard�” motives), we would have {a, b} ∼ {a} since she would
choose a from {a, b}. With temptation, though, {a} may be strictly preferred to {a, b}.

Using this intuition, GP focus on temptation alone by adding a set betweenness axiom to the
DLR model. As we explain in more detail in subsequent sections, this axiom has the implication
that temptation is one dimensional in the sense that for any menu, temptation affects the agent
only through the �“most tempting�” item on the menu. While GP show that this simplication
makes a useful starting point, it rules out many intuitive kinds of temptation-driven behaviour.
For example, it rules out uncertainty about temptation where the agent cannot be sure which
item on a menu will be the most tempting one. We give illustrative examples in Section 3.

We believe that taking account of the multidimensional nature of temptation and uncertainty
about temptation is important for applications. In reality, an agent cannot easily �“ne tune�”
her commitments. That is, it is difcult to nd a way to commit oneself to some exact
course of action without allowing any alternative possibilities. Instead, real commitments
tend to be costly actions which alter one�’s incentives to engage in �“desired�” or �“undesired�”
future behaviours. Much of the real complexity of achieving commitment comes from the
multidimensional character of temptation. To see the point, rst suppose that the only possible
temptation is overspending on current consumption. In this case, the agent can avoid temptation
by committing herself to a minimum level of savings. Now suppose there are other temptations

2. Also, allowing uncertainty about normative preferences poses severe identication problems. See Section 6
for details.

3. It is true that uncertainty about what is normatively appropriate may also be important in applications as
well; see Amador, Werning and Angeletos (2006).

4. For examples of different motivations, see Sarver (2008) or Ergin and Sarver (2008).
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DEKEL ET AL. TEMPTATION-DRIVEN PREFERENCES 939

that may strike as well, such as the temptation to be lazy and avoid dealing with needed home
repairs or other time-consuming expenditures. In this case, the commitment to saving may
worsen the agent�’s ability to deal with other temptations.

Similarly, casual observation suggests that commitments often involve overcommitment
(spending more ex ante to commit to a certain behaviour than turns out ex post to be necessary)
or undercommitment (nding out ex post that the change in one�’s incentives was not sufcient
to achieve the desired effect). Neither phenomenon seems consistent with a model of tempted
but otherwise rational agents unless the model includes uncertainty.

As GP argue, it was natural for them to begin the study of temptation by narrowing to
a particularly simple version of the phenomenon. Our goal is to use the DLR framework to
build on their analysis and carry out the logical next step in the study of temptation, namely
identifying the broadest possible set of behaviour that can be interpreted as that of a tempted but
otherwise rational agent. There is a natural analogy to this objective in terms of preferences for
exibility. Kreps (1979) characterized a preference for exibility using preferences over menus
of deterministic goods. In DLR, we extended his result and characterized the most general class
within our framework that yields a preference for exibility using Kreps�’ monotonicity axiom.
As we explain in more detail in the next section, both the axiom involved and the representation
it generates seem to be natural ways to characterize those preferences that are driven solely
by exibility. Here we would like to do the same for preferences that are driven solely by
temptation. Since GP�’s �“one-dimensional�” approach imposes more restrictions than just that
there is temptation, we broaden their model as much as possible without introducing features
other than temptation.

It is important to keep in mind that factors other than temptation may lead to similar
behaviour. Hence, while we dene temptation-driven behaviour to be that behaviour consistent
with the hypothesis of temptation of an otherwise rational agent, it is not possible to prove
that the agent was tempted. Consequently, one might argue that we have been too broad in
what we consider to be temptation-related behaviour and have not imposed enough axioms or
that we have ruled out some forms of temptation by imposing too many axioms. In Section
4, we argue that our axioms are a reasonable way to identify temptation-driven behaviour. In
Section 5, we give some special cases of the representation and the additional axioms which
correspond to these as a way of narrowing the range of behaviour to that which is more clearly
interpretable as temptation driven. In Section 6, we discuss some possible strengthenings and
weakenings of our axioms.

Our analysis is based on a simplied version of DLR, the development of which is another
contribution of the present paper. To maintain a unied focus, the text focuses almost entirely
on the issue of temptation, and the Appendix contains a complete explanation of how we add
a niteness requirement to DLR.

In the next section, we present the basic model and state our research goals more precisely.
In the process, we sketch the relevant results in DLR and GP. In Section 3, we give examples
to motivate the issues and illustrate the kinds of representations in which we are interested.
In Section 4, we give representation results and a brief proof sketch. Section 5 contains
characterizations of some special cases. In Section 6, we discuss directions for further research.

2. THE MODEL

Let B be a nite set of prizes and let !(B) denote the set of probability distributions on B. A
typical subset of !(B) will be referred to as a menu and denoted by x, while a typical element
of !(B), a lottery, will be denoted by β. The agent has a preference relation ! on the set of
closed non-empty subsets of !(B), which is denoted by X.
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940 REVIEW OF ECONOMIC STUDIES

The basic representation on which we build is called a nite additive EU representation. This
adds a nite state requirement to what DLR called an additive EU representation. Formally,
we say that a utility function over lotteries, U : !(B) → R is an expected-utility function if

U(β) =
∑

b∈B

β(b)U(b)

for all β (where U(b) is the utility of the degenerate lottery with probability 1 on b).

Denition 1. A nite additive EU representation is a pair of nite collections of expected-
utility functions over !(B), w1, . . . , wI and v1, . . . , vJ such that the function

V (x) =
I∑

i=1

max
β∈x

wi(β) −
J∑

j=1

max
β∈x

vj (β)

represents !.

DLR, as modied in the corrigendum (Dekel, Lipman, Rustichini and Sarver, 2007),
characterize this class of representations without the niteness requirement. Theorem 6 in
the Appendix extends these papers by characterizing nite representations.5

DLR interpret the different utility functions over !(B) as different states of the world,
referring to the I states corresponding to the wi�’s as positive states and J states corresponding
to the vj �’s as negative states. To understand this interpretation most simply, suppose there are
no negative states, i.e., J = 0. Then it seems natural to interpret the wi�’s as different utility
functions the agent might have at some later date when she will choose from the menu she
picks today. At that date, she will know which wi is her utility function and, naturally, will
choose the item from the menu which maximizes this utility. Her ex ante evaluation of the
menu is the expected value of the maximum. If the wi�’s are equally likely, we obtain the value
above.6 This interpretation was introduced by Kreps (1979), who rst used preferences over
sets to model preference for exibility. Clearly, the presence of the negative states makes this
interpretation awkward.

One way to reach a clearer understanding of this representation, then, is to rule out the
negative states. DLR show that Kreps�’ monotonicity axiom does this.

Axiom 1 (Monotonicity). If x ⊂ x ′, then x ′ ( x.

It is straightforward to combine results in DLR with Theorem 6 to show the following.7

5. In addition to niteness, the nite additive EU representation differs from DLR�’s additive EU representation
in three respects. First, DLR included a non-emptiness requirement as part of the denition of an additive EU
representation. Consequently, their axioms differ from those of Theorem 6 by including a non-triviality axiom. Second,
DLR required that none of the utility functions be redundant. Third, in the innite case, we cannot dene the integration
without a measure and, for largely technical reasons, we cannot always take the measure to be Lebesgue. That is, in
the innite case, we cannot always have equal weights on all the wi �’s and vj �’s. By contrast, in the nite case, as
is standard with state-dependent utility, we can change the probabilities in essentially arbitrary ways and rescale the
wi �’s and vj �’s to leave the overall utility unchanged. Hence probabilities cannot be identied.

6. As noted in the previous footnote, we cannot identify probabilities, so the interpretation of the wi �’s as equally
likely is only for intuition.

7. If ! has a representation with J = 0, it will also have other representations with J > 0 since we can add a
vj satisfying vj (β) = k for all β to any representation and not change the preference being represented. This is why
DLR imposed a requirement that no �“redundant�” states are included. For the purposes of this paper, it is simpler to
allow redundancy.
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DEKEL ET AL. TEMPTATION-DRIVEN PREFERENCES 941

Observation 1. Assume the preference ! has a nite additive EU representation. Then !
has a representation with J = 0 if and only if it satises monotonicity.

Intuitively, monotonicity says that the agent always values exibility. Such an agent
either is not concerned about temptation or values exibility so highly as to outweigh such
considerations. In this case, the nite additive EU representation is easy to interpret as
describing a forward-looking agent with beliefs about her possible future needs.

GP�’s approach provides an alternative interpretation of the nite additive EU representation
by imposing a different restriction on that class of preferences. They recognized that temptation
and self-control could be studied using this sets of lotteries framework if one does not impose
monotonicity. If the agent anticipates being tempted in the future to consume something she
currently does not want herself to consume, this is revealed by a preference for commitment,
not exibility. GP�’s (2001) representation theorem differs from Observation 1 by replacing
monotonicity with an axiom they call set betweenness.

Axiom 2 (Set betweenness). If x ( y, then x ( x ∪ y ( y.

To understand this axiom, consider a dieting agent�’s choice of a restaurant for lunch where
x, y and x ∪ y are the menus at the three possible restaurants. Suppose x consists only of a
single healthy food item, say broccoli, while y consists only of some fattening food item, say
french fries. Since the agent is dieting, presumably x ! y. Given this, how should the agent
rank the menu x ∪ y relative to the other two? A natural hypothesis is that the third restaurant
would lie between the other two in the agent�’s ranking. It would be better than the menu
with only french fries since the agent might choose broccoli given the option. On the other
hand, x ∪ y would be worse than the menu with only broccoli since the agent might succumb
to temptation or, even if she did not succumb, might suffer from the costs of maintaining
self-control when tempted. Hence x ( x ∪ y ( y.

GP introduced the following representation.

Denition 2. A self-control representation is a pair of expected-utility functions (u, v),
u : !(B) → R, v : !(B) → R, such that the function VGP represents ! where

VGP(x) = max
β∈x

[u(β) + v(β)] − max
β∈x

v(β).

It is easy to see that this is a nite additive EU representation with one positive state and
one negative state where we do a �“change of variables�”, letting w1 = u + v and v1 = v. Thus
it comes as no surprise that the axioms GP use for this representation include those we use in
Theorem 6 to characterize nite additive EU representations.8 Hence we can paraphrase their
result as

Observation 2. (GP, Theorem 1) ! has a self-control representation if and only if it
has a nite additive EU representation and satises set betweenness.

8. Specically, their axioms are the same as those we use in Theorem 6 except that they have set betweenness
instead of our niteness axiom. One can show that set betweenness implies niteness. On the other hand, they only
assume B is compact, not nite.
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942 REVIEW OF ECONOMIC STUDIES

To interpret GP�’s representation, note that u represents the commitment preference�–the
preference over singletons�–as VGP({β}) = u(β) for any β. For any menu x and any β ∈ x, let

c(β, x) =
[
max
β ′∈x

v(β ′)

]
− v(β).

Intuitively, c is the foregone utility according to v from choosing β from x instead of choosing
optimally according to v. It is easy to see that

VGP(x) = max
β∈x

[u(β) − c(β, x)].

In this form, it is natural to interpret c as the cost of the self-control needed to choose β from
x. Given this, v is naturally interpreted as the temptation utility since it is what determines the
self-control cost.

To summarize, consider the set of preferences with a nite additive EU representation.
Intuitively, the subset of these preferences which are monotonic corresponds to those agents
that value exibility but are not affected by temptation. It seems natural to call such preferences
exibility driven, as both the axiom and the representation it generates seem to describe such an
agent. In other words, in dening exibility-driven preferences as those that can be explained
by exibility considerations alone, it seems natural to conclude that monotonicity characterizes
these preferences.

Analogously, we refer to those preferences that have a nite additive EU representation and
can be explained solely by a concern about temptation as temptation driven. It seems natural
to say that the preferences that satisfy set betweenness are temptation-driven preferences.
However, set betweenness does not appear to be as complete a statement of �“temptation-driven
preferences�” as monotonicity is for �“exibility driven�”. In the next section, we give examples
of behaviour that seems temptation driven but violates set betweenness, suggesting that set
betweenness is stronger than a restriction to temptation-driven preferences. Our goal in this
paper is to identify and give a representation theorem for the full class of temptation-driven
preferences.

3. MOTIVATING EXAMPLES AND REPRESENTATIONS

In this section, we give two examples to illustrate our argument that set betweenness is stronger
than a restriction to temptation-driven preferences. We also use these examples to suggest other
representations of interest.

Example 1.

Consider a dieting agent who wishes to commit herself to eating only broccoli. There are
two kinds of snacks available: chocolate cake and high-fat potato chips. Let b denote the
broccoli, c the chocolate cake and p the potato chips. The following ranking seems quite
natural:

{b} ! {b, c}, {b, p} ! {b, c, p}.

That is, if broccoli and a fattening snack are available, the tempting snack will lower her utility,
so {b, c} and {b, p} are both worse than {b}. If broccoli and both fattening snacks are available,
she is still worse off since two snacks are harder to resist than one.

This preference violates set betweenness. Note that {b, c, p} is strictly worse than {b, c}
and {b, p} even though it is the union of these two sets. Hence set betweenness implies that
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DEKEL ET AL. TEMPTATION-DRIVEN PREFERENCES 943

two temptations can never be worse than each of the temptations separately. In GP, temptation
is one dimensional in the sense that any menu has a most tempting option and only this option
is relevant to the self-control costs.

Intuitively, two snacks could be worse than one for at least two reasons. First, it could be
that the agent is unsure what kind of temptation will strike. If the agent craves a salty snack,
then she may be able to control herself easily if the chocolate cake is the only alternative to
broccoli. Similarly, if she is in the mood for a sweet snack, she may be able to control herself
if only the potato chips are available. But if she has both available, she is more likely to be
hit by a temptation she cannot avoid. Second, even if she resists temptation, the psychological
cost of self-control seems likely to be higher in the presence of two snacks than in the presence
of one.9

It is not hard to give generalizations of GP�’s representation that can model either of these
possibilities. To see this, dene utility functions u, v1 and v2 by

u v1 v2

b 3 2 2
c 0 0 6
p 0 6 0

Dene V1 by the following natural generalization of GP:

V1(x) = 1
2

2∑

i=1

[
max
β∈x

[u(β) + vi(β)] − max
β∈x

vi(β)

]
.

In DLR�’s terminology, this representation has two positive states (u + v1 and u + v2) and two
negative states (v1 and v2). Equivalently, let

ci(β, x) =
[
max
β ′∈x

vi(β
′)

]
− vi(β).

Then

V1(x) = 1
2

2∑

i=1

max
β∈x

[u(β) − ci(β, x)].

Intuitively, the agent does not know whether the temptation that will strike is the one described
by v1 and cost function c1 (where she is most tempted by the potato chips) or v2 and cost
function c2 (where she is most tempted by the chocolate cake) and gives probability 1/2
to each possibility. It is easy to verify that V1({b}) = 3, V1({b, c}) = V1({b, p}) = 3/2 and
V1({b, c, p}) = 0, yielding the ordering suggested above.

Alternatively, dene V2 by a different generalization of GP:

V2(x) = max
β∈x

[u(β) + v1(β) + v2(β)] − max
β∈x

v1(β) − max
β∈x

v2(β). (1)

This representation has one positive state, u + v1 + v2, and two negative states (again v1 and
v2). Here we can think of the cost of choosing β from menu x as

c(β, x) =
[
max
β∈x

v1(β) + max
β∈x

v2(β)

]
− v1(β) − v2(β),

9. GP (2001, pp. 1408�–1409) mention this possibility as one reason why set betweenness may be violated.
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944 REVIEW OF ECONOMIC STUDIES

so that V2(x) = maxβ∈x[u(β) − c(β, x)]. This cost function has the property that resisting two
temptations is harder than resisting either separately. It is easy to verify that V2({b}) = 3,
V2({b, c}) = V2({b, p}) = −1 and V ({b, c, p}) = −5, again yielding the ordering suggested
above.

We note that there is one odd feature of V2. If the agent succumbs to one temptation, she
still suffers a cost associated with the other temptation. That is, the self-control cost associated
with choosing either snack from the menu {b, c, p} is 6, not zero. Arguably, it should be
feasible for the agent to succumb to temptation and incur no self-control cost. We return to
this issue in Section 6.

Example 2.

Consider again the dieting agent facing multiple temptations, but now suppose the two
snacks available are high-fat chocolate ice cream (i) and low-fat chocolate frozen yogurt (y).
In this case, it seems natural that the agent might have the following rankings:

{b, y} ! {y} and {b, i, y} ! {b, i}.

In other words, the agent prefers a chance of sticking to her diet to committing herself to
violating it so {b, y} ! {y}. Also, if the agent cannot avoid having ice cream available, it is
better to also have the low-fat frozen yogurt around. If so, then when temptation strikes, the
agent may be able to resolve her hunger for chocolate in a less fattening way.

Again, GP cannot have this. To see why this cannot occur in their model, note that

VGP({b, y}) = max{u(b) + v(b), u(y) + v(y)} − max{v(b), v(y)}

while VGP({y}) = u(y) = u(y) + v(y) − v(y). Obviously, max{v(b), v(y)} ≥ v(y). So
VGP({b, y}) > VGP({y}) requires max{u(b) + v(b), u(y) + v(y)} > u(y) + v(y) or u(b) +
v(b) > u(y) + v(y). Given this,

max{u(b) + v(b), u(i) + v(i), u(y) + v(y)} = max{u(b) + v(b), u(i) + v(i)}.

Since

max{v(b), v(i), v(y)} ≥ max{v(b), v(i)},

we get VGP({b, i, y}) ≤ VGP({b, i}). That is, we must have {b, i} ( {b, i, y}.10

To see this more intuitively, note that {b, y} ! {y} says that adding b improves the menu
{y}. As we explain in Section 4, we interpret this as saying that the agent considers it possible
that she would choose b from the menu {b, y}, an interpretation we share with GP. However,
in GP, the agent has no uncertainty about temptation, so this statement means she knows she
will denitely choose b from {b, y}. Consequently, she will denitely not choose y whenever
b is available.11 Hence the only possible effect of adding y to a menu which contains b is to
increase self-control costs. Hence GP require {b, i, y} , {b, i}.

10. This conclusion does not follow from set betweenness alone but from the combination of set betweenness
and independence. It is not hard to show how this preference is ruled out by set betweenness and independence using
an argument similar to the one in Appendix C.

11. Note that this conclusion relies on the assumption that temptation does not lead the agent to violate
independence of irrelevant alternatives. That is, we are assuming that if the agent would choose b over y from
one set, she would never choose y when b is available. See Section 6 for further discussion.
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This intuition suggests that uncertainty about temptation is critical to rationalizing this
preference. The following simple generalization of GP to incorporate uncertainty allows the
intuitive preference suggested above. Let

u v

b 6 0
i 0 8
y 4 6

and let

V3(x) = 1
2

max
β∈x

u(β) + 1
2

{
max
β∈x

[u(β) + v(β)] − max
β∈x

v(β)

}
. (2)

This representation has two positive states (u and u + v) and one negative state (v). Intuitively,
there is a probability of 1/2 that the agent avoids temptation and chooses according to the
commitment preference u. With probability 1/2, the agent is tempted and has a preference of
the form characterized by GP. We have V3({b, y}) = 5 > 4 = V3({y}) and V3({b, i, y}) = 5 >

3 = V3({b, i}), in line with the intuitive story.
The three representations in these examples share certain features. First, all are nite

additive EU representations. While we do not wish to argue that the axioms needed for such
a representation are innocuous, it is not obvious that temptation should require some violation
of them (though see Section 6). Second, in all cases, the representation is written in terms of
the utility functions for the negative states and u, the commitment utility. Equivalently, we can
write the representation in terms of the commitment utility and various possible cost functions
generated from different possible temptations.

Intuitively, the various negative states from the additive EU representation identify the
temptations. The various positive states correspond to different ways these temptations might
combine to affect the agent. However, all the positive states share a common view of what
is �“normatively best�” as embodied in u. In this sense, there is no uncertainty about �“true
preferences�” and hence no �“true�” value to exibility, only uncertainty about temptation.

A general representation with these properties is as follows:

Denition 3. A temptation representation is a function VT representing ! such that

VT (x) =
I∑

i=1

qi max
β∈x

[u(β) − ci(β, x)]

where qi > 0 for all i,
∑

i qi = 1, and

ci(β, x) =




∑

j∈Ji

max
β ′∈x

vj (β
′)



 −
∑

j∈Ji

vj (β)

where u and each vj is an expected-utility function.

Note that
∑

i qi = 1 implies that VT ({β}) = u(β), so u is the commitment utility.
Intuitively, we can think of each ci as a cost of self-control, describing one way the agent
might be affected by temptation. In this interpretation, qi gives the probability that temptation
takes the form described by ci .
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We can think of this as generalizing GP in two directions. First, more than one temptation
can affect the agent at a time. That is, the cost of self-control may depend on more than one
temptation utility. Second, the agent is uncertain which temptation or temptations will affect
her. It is not hard to show that this representation nests all our examples and GP�’s representation
as special cases.

The following less interpretable representation is useful as an intermediate step.

Denition 4. A weak temptation representation is a function Vw representing ! such that

Vw(x) =
I ′∑

i=1

qi max
β∈x

[u(β) − ci(β, x)] +
I∑

i=I ′+1

max
β∈x

[−ci(β, x)]

where qi > 0 for all i,
∑

i qi = 1 and

ci(β, x) =




∑

j∈Ji

max
β ′∈x

vj (β
′)



 −
∑

j∈Ji

vj (β),

where u and each vj is an expected-utility function.

Obviously, a temptation representation is a special case of a weak temptation representation
where I ′ = I .12

4. CHARACTERIZATION OF TEMPTATION-DRIVEN PREFERENCES

4.1. Results

The following axiom seems to be a natural part of a denition of temptation driven.

Axiom 3 (DFC: Desire for commitment). A preference ! satises DFC if for every x

there is some α ∈ x such that {α} ( x.

This axiom says that there is no value to exibility associated with x, only potential costs
due to temptation leading the agent to choose some point worse for her diet than α.

On the other hand, DFC only says that exibility is not valued. It does not say anything
about when commitment is valued. The second axiom identies a key circumstance in which
commitment is strictly valuable, that is, when there is some α ∈ x such that {α} ! x.

To get some intuition for the second axiom, consider the following example, similar to
Example 2, where the three goods are broccoli (b), low-fat frozen yogurt (y) and high-fat ice

12. One way to interpret the weak temptation representation is that it is a limiting case of temptation
representations. To see this, x a weak temptation representation with I > I ′ and any ε ∈ (0, 1). We can dene
a (strict) temptation representation with I �“states�” by shifting ε of the probability on the rst I ′ states to the remaining
I − I ′ states, adjusting the cost functions at the same time. More specically, dene q̂i = qi − ε/I ′ for i ≤ I ′ and
q̂i = ε/(I − I ′) for i = I ′ + 1, . . . , I . For ε > 0 sufciently small, q̂i > 0 for all i. For i ≤ I ′, let ĉi = ci . For
i = I ′ + 1, . . . , I , dene new cost functions ĉi = (1/q̂i )ci . Consider the payoff to any menu as computed by this
temptation representation minus the payoff as computed by the original weak representation. It is easy to see that
this difference converges to 0 as ε ↓ 0. In this sense, we have constructed a sequence of temptation representations
converging to the weak representation.

 2009 The Review of Economic Studies Limited

 at N
orthw

estern U
niversity Library on Septem

ber 2, 2011
restud.oxfordjournals.org

D
ow

nloaded from
 

http://restud.oxfordjournals.org/


DEKEL ET AL. TEMPTATION-DRIVEN PREFERENCES 947

cream (i). Assume that {b} ! {y} ! {i}, so broccoli is best for the agent�’s diet and ice cream is
worst. As argued above, it seems plausible that adding y to the menu {b, i} improves the menu
since y is a useful compromise when tempted. So assume {b, i, y} ! {b, i}. As we argue below,
if adding an item to a menu improves the menu, this is naturally interpreted as implying that the
added item is sometimes chosen from the menu. That is, we will conclude from {b, i, y} ! {b, i}
that y is sometimes chosen from the menu {b, i, y}. So with this menu, the agent sometimes
breaks her diet, choosing y instead of b. Consequently, we conclude that she strictly prefers
committing herself to the broccoli. That is, we conclude {b} ! {b, i, y}. In addition, if y is
sometimes chosen over b and i, it should also be sometimes chosen from the menu {b, y}.
Thus the dieter sometimes breaks her diet with this menu too, implying {b} ! {b, y}. These
implications are the content of our next axiom when applied to this example: since adding y

improves the menu {b, i}, we require that {b} is strictly preferred to both {b, i, y} and {b, y}.
In short, there are three key steps to the axiom. First, we interpret {b, i, y} ! {b, i} to

mean that y is sometimes chosen from {b, i, y}. Second, since {b} ! {y}, we conclude that this
implies {b} ! {b, i, y}. Third, we appeal to a kind of �“independence of irrelevant alternatives�”
(IIA) property to conclude that y is also sometimes chosen from {b, y} and that therefore
{b} ! {b, y}.13

More generally, suppose adding β to the menu x strictly improves the menu for the agent
in the sense that x ∪ {β} ! x. In such a case, we say β is an improvement for x. How should
we interpret this property? Our goal is to characterize agents who face temptation but are
otherwise �“standard rational agents�”. As such, we consider an agent for whom the items on a
menu have a certain appeal which is menu independent, an appeal which may create internal
conicts which the agent has to resolve. Thus we assume that the normative appeal and the
extent of temptation of any given item is independent of the other items in the menu.

In light of this, it seems natural to assume that adding an element to a menu does not make
it easier to choose other elements or create value separately from choice. That is, adding an
unchosen alternative cannot improve the menu. Hence we interpret x ∪ {β} ! x as saying that
the agent at least considers it possible that she would choose β from the menu x ∪ {β}.14 We
emphasize that this is only an interpretation, not a theorem. We are arguing that our focus
on agents who are tempted but are otherwise �“standard rational agents�” strongly suggests this
interpretation, not that it �“proves�” it.15

Under this interpretation of x ∪ {β} ! x, what else should be true? Suppose α is the best
item for her diet in x (i.e., is optimal according to the commitment preference) and {α} ! {β}.
So α is strictly better for the agent�’s diet than β and yet she considers it possible that her choice
from x ∪ {β} would be β, inconsistent with her commitment preference. Hence she strictly
prefers committing herself to α rather than facing the menu x ∪ {β}. That is, commitment is
strictly valuable in the sense that {α} ! x ∪ {β}.

Similarly, consider some x ′ ⊆ x. If the agent considers it possible that she would choose
β from x ∪ {β}, it seems natural to conclude that she also considers it possible that she would

13. In Section 6, we discuss the independence axiom and its relation to such IIA-like properties, noting that they
may not be appropriate when modelling temptation.

14. Gul and Pesendorfer (2005) also argue for this interpretation of β improving x.
15. There are temptation-related interpretations of x ∪ {β} ! x in which β is not chosen but which violate the

�“otherwise rational�” part of our focus. For example, if β is a very unappealing dessert, its inclusion in the menu may
make it easier for the agent to focus on healthy dishes and hence to stick to her diet. Alternatively, a menu with a
larger number of fattening items may create more conict for the agent in choosing among the unhealthy dishes and
so, again, may make it easier for her to stick to her diet. We discuss another example in Section 6.
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948 REVIEW OF ECONOMIC STUDIES

choose β from x ′ ∪ {β}. Again, if the best α ∈ x ′ for her diet satises {α} ! {β}, then the agent
would strictly prefer the commitment {α} to facing the menu x ′ ∪ {β}.

To summarize, we interpret x ∪ {β} ! x to mean that β is sometimes chosen from x ∪ {β}
and hence from x ′ ∪ {β} for any x ′ ⊆ x. If the best α ∈ x ′ satises {α} ! {β}, this implies
that the agent does not always choose from x ′ ∪ {β} according to her commitment preferences.
Therefore, commitment is strictly valuable for x ′ ∪ {β} in the sense that {α} ! x ′ ∪ {β}. Since
the key to this intuition is that x ∪ {β} ! x implies β is sometimes chosen from x ∪ {β}, we
summarize this by saying improvements are (sometimes) chosen.16

The axiom we need is slightly stronger. In addition to applying to any β which is an
improvement for x, it applies to any β which is an approximate improvement for x. Because
of this, we call the axiom AIC, approximate improvements are chosen.

Denition 5. β is an approximate improvement for x if

β ∈ cl
(
{β ′ | x ∪ {β ′} ! x}

)

where cl denotes closure. Also, let B(x) denote the set of best commitments in x. That is,

B(x) = {α ∈ x | {α} ( {β}, ∀β ∈ x}.

Axiom 4 (AIC: Approximate improvements are chosen). If β is an approximate
improvement for x, x ′ ⊆ x, and α ∈ B(x ′) satises {α} ! {β}, then {α} ! x ′ ∪ {β}.

Theorem 1. ! has a temptation representation if and only if it has a nite additive EU
representation and satises DFC and AIC.

As mentioned earlier, the weak temptation representation, while not as interpretable as
the temptation representation, is a natural intermediate point between the nite additive EU
representation and the temptation representation. More specically, in the course of proving
Theorem 1, we also show

Theorem 2. ! has a weak temptation representation if and only if it has a nite additive
EU representation and satises DFC.

Since GP�’s self-control representation is a special case of a temptation representation, their
axioms must imply ours. That is, for any preference with a nite additive EU representation,
set betweenness implies DFC and AIC. A direct proof for AIC involves the other additive
EU axioms (continuity and independence, dened in the B Appendix), so we postpone this to
Appendix C.

The proof for DFC is simpler. To see it, rst note that if x = {α, β} where {α} ( {β}, then
set betweenness implies {α} ( x ( {β}. Thus DFC must hold for all menus with two elements.

16. One may wonder whether we also require {α} ! x′ ∪ {β} if β worsens x instead of improving it�–that is, if
x ! x ∪ {β}. In fact, it is not hard to show that such an axiom is necessary as well, though without the approximation
issue discussed later. We do not separate out this property since it is not needed for the sufciency proof and hence is
implied by the other axioms. Intuitively, there is a natural asymmetry between β improving a menu and β worsening
a menu. In the former case, it is natural to interpret the preference as saying β is sometimes chosen. In the latter
case, β might be chosen, but might simply be a temptation that the agent manages to avoid but only by incurring
self-control costs.
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With this in mind, suppose we have shown that DFC holds for all menus with n − 1 or fewer
elements. We now show set betweenness17 implies DFC for all menus with n elements. Fix
x with n elements and any α ∈ x. Obviously, if {α} ( x, DFC is satised for this menu. So
suppose x ! {α}. By set betweenness, x ! {α} implies x \ {α} ( x since [x \ {α}] ∪ {α} = x.
Since x \ {α} has n − 1 elements, the fact that DFC applies to all such menus implies that there
is some β ∈ x \ {α} such that {β} ( x \ {α} ( x. Since β ∈ x, we see that DFC is satised for
x. This shows that the conclusion of DFC holds for all nite menus. It is not difcult to show
that DFC for all nite menus plus continuity (one of the axioms required for the nite additive
EU representation) implies DFC for all menus.

4.2. Proof sketch

We prove Theorem 1 by rst showing Theorem 2, that is, that DFC implies existence of a weak
temptation representation. The key idea is to generalize the �“change of variables�” we used to
derive GP�’s self-control representation from a one positive state, one negative state additive
EU. The idea there was that we begin with a representation of the form

max
β∈x

w1(β) − max
β∈x

v1(x).

We dene u to be the utility function for singletons, so u = w1 − v1. We then use this to change
variables, letting v = v1 and substituting u + v for w1, yielding the self-control representation.

We generalize in the following way. Now we start from I positive states and J negative
ones, so the �“base�” representation is

I∑

i=1

max
β∈x

wi(β) −
J∑

j=1

max
β∈x

vj (β).

As before, the main part of the change of variables is writing wi in terms of u and the negative
state utilities. In the GP case, this was simple, but here it is not. Here we write each wi as
a positive linear combination of u and the vj �’s. Further, we will need certain restrictions to
interpret the coefcients in this linear combination.

To be specic, suppose there are numbers ai > 0 and bij ≥ 0, with
∑

i ai = 1 and∑
i bij = 1 for each j such that wi = aiu +

∑
j bij vj for each i. Thus each wi is a positive

linear combination of u and the vj �’s. We could then substitute into the expression for the
representation to obtain

I∑

i=1

ai max
β∈x

[u(β) +
J∑

j=1

bij

ai
vj (β)] −

J∑

j=1

max
β∈x

vj (β).

Since the ai�’s are positive and sum to 1, they look like probabilities. With some tedious but
straightforward algebra, we can rewrite the vj �’s into a cost-function form for each i, yielding
our temptation representation.

For brevity in what follows, we refer to the above inequalities on the a�’s and b�’s as the
cross equation restrictions. We refer to a relaxed version allowing ai = 0 for some i as the
weak cross equation restrictions. As we explain in more detail below, DFC ensures existence

17. In fact, it is not hard to see that a weaker assumption, positive set betweenness, is sufcient for this argument.
See the denition in Section 5.
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of coefcients satisfying the weak cross equation restrictions. Thus DFC allows the possibility
that some of the ai�’s are zero. Since the rearranging above to obtain a temptation representation
involved dividing by ai , we cannot have a temptation representation in this case. Instead, we
obtain the weak temptation representation.18 The only role of AIC is to ensure that ai > 0 for
all i.

The proof that DFC implies existence of the coefcients satisfying the weak cross equation
restrictions (and hence giving a weak representation) is based on a separating hyperplane
argument. To give some intuition for this result, we prove a simpler result here, namely
that each wi can be written as a positive linear combination of u and the vj �’s, ignoring
the other inequalities in the cross equation restrictions (that is, the summing to 1 of the ai�’s
and the bij �’s). This proof is connected to a famous result in the literature known as the
Harsanyi aggregation theorem (Harsanyi, 1955).19 Harsanyi showed that an expected utility
function, say W , can be written as a positive linear combination of a nite collection of other
expected utility preferences, say U1, . . . , UN , if and only if W respects the Pareto ordering
generated by U1, . . . , UN . Applying this to our setting, we need to show that if u(α) ≥ u(β),
and vj (α) ≥ vj (β) for all j , then wi(α) ≥ wi(β) as well. To see that DFC implies this, suppose
that the conclusion does not hold, so wi(β) > wi(α). Then using the additive EU representation,
we know that the value of the menu {α,β} is

V ({α,β}) = wi(β) +
∑

k 0=i

max{wk(α), wk(β)} −
∑

j

vj (α).

Since wi(β) > wi(α) and max{wk(α), wk(β)} ≥ wk(α), we have

V ({α, β}) > wi(α) +
∑

k 0=i

wk(α) −
∑

j

vj (α) = u(α) ≥ u(β).

Hence {α, β} is strictly preferred to {α} and {β}, contradicting DFC. In the Appendix, we show
that DFC yields all the inequalities of the weak cross equation restrictions.

The sole use of AIC is to ensure that ai > 0 for all i. Before showing that AIC has this
implication, we relate the notion of β being an improvement to β being �“chosen�” by some wi .
Suppose we have a nite additive EU representation, a menu y and a lottery β with

wi(β) = max
α∈y∪{β}

wi(α);

so β is an optimal choice for wi from the menu y ∪ {β}. Does this mean β improves the menu
y? That is, does this imply y ∪ {β} ! y? There are two reasons why this strict preference might
not hold. First, it could be that there is some other α ∈ y which wi nds just as good as β. In
this case, wi does just as well under y as under y ∪ {β}, so we could have y ∼ y ∪ {β}. If this
is the only reason why β does not improve the menu y, then we can improve β by an arbitrarily
small amount according to the wi preference and this slightly better version of β will improve
y. In other words, if this is why β does not improve the menu y, then β will approximately
improve y. This consideration is why we need to consider approximate improvements and not
just improvements.

For the rest of this argument, then, assume that

wi(β) > max
α∈y

wi(α).

18. Intuitively, if we have a wi such that ai = 0, it is very �“close�” to a w′
i with ai > 0. This is the reasoning

behind the result mentioned in footnote 12.
19. See Weymark (1991) for an introduction to this literature.
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Thus adding β to y strictly increases the maximum for wi . This is still not sufcient for
concluding that β improves the menu y. It could be that adding β to y also improves the
maximum for some of the negative states. In this case, adding β to y could actually make
the menu worse for the agent. Lemma 8 shows that in this case we can nd a bigger menu
which β does improve. The idea is simple: take any negative state that would improve from
the addition of β and add to y some other lottery which that negative state nds just as good as
β but which wi likes less than β. Call the collection of these additional lotteries y ′. Now what
happens if we add β to y ∪ y ′? By construction, the maximum utility in each of the negative
states is unaffected. The maximum utility in state wi is strictly increased by adding β and the
maximum utility in other positive states must weakly increase. Hence adding β must improve
y ∪ y ′.

In short, if β is optimal over y ∪ {β} for some positive state wi , then it must be true that
β is an approximate improvement for y ∪ y ′ for some y ′.

With this in mind, let us return to the question of why AIC implies ai > 0 for all i. Note
that what we need to do is to ensure that each wi is �“strictly increasing in u�”. Intuitively, we
need to rule out the possibility that there is an α and β such that u(α) > u(β), vj (α) = vj (β)

for all j and wi(α) = wi(β). So suppose there is such an α and β. Hence β is an optimal
choice for wi over the set {α,β}. So from the paragraph above (letting y = {α}), we see that
there must be some y ′ such that β is an approximate improvement for x = {α} ∪ y ′. Since
u(α) > u(β), we have {α} ! {β}. If we apply AIC with y = {α} ⊆ x, we see that it implies
{α} ! {α,β}. But from the nite additive EU representation, we see that

V ({α, β}) = wi(α) +
∑

k 0=i max{wk(α), wk(β)} −
∑

j vj (α)

≥
∑

k wk(α) −
∑

j vj (α)

= V ({α}).

Hence we conclude {α,β} ( {α}, a contradiction. So AIC implies that each ai > 0, completing
the proof.

5. SPECIAL CASES

In this section, we characterize the preferences corresponding to two special cases of temptation
representations. Specically, we characterize the �“no uncertainty�” representation V2 in (1) of
Example 1 and the �“uncertain strength of temptation�” representation V3 in (2) of Example 2.
These special cases are of interest in part because of the way the required conditions relate to
GP�’s set betweenness axiom. Also, they illustrate how we can narrow the �“allowed�” forms of
temptation in easily interpretable ways.

First, consider a representation of the form

VNU(x) = max
β∈x



u(β) +
J∑

j=1

vj (β)



 −
J∑

j=1

max
β∈x

vj (β)

which we call a no-uncertainty representation. Equivalently,

VNU(x) = max
β∈x

[u(β) − c(β, x)]

where

c(β, x) =




J∑

j=1

max
β ′∈x

vj (β
′)



 −
J∑

j=1

vj (β).
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Note that this representation differs from the general temptation representation by assuming that
I = 1�–that is, that the agent knows exactly which temptations will affect her. Hence we call
this a no-uncertainty representation. This representation, then, generalizes GP only by allowing
the agent to be affected by multiple temptations.

If the preference has a nite additive EU representation with one positive state, then we
can rewrite it in the form of a no-uncertainty representation by a generalization of the change
of variables discussed in Section 2. Specically, suppose we have a representation of the form

V (x) = max
β∈x

w1(β) −
J∑

j=1

max
β∈x

vj (β).

The commitment utility u is dened by u(β) = V ({β}) = w1(β) −
∑

j vj (β). Hence we can
change variables to rewrite V in the form of VNU.

The no-uncertainty representation corresponds to half of set betweenness.

Axiom 5 (Positive set betweenness). ! satises positive set betweenness if whenever
x ( y, we have x ( x ∪ y.

For future use, we dene the other half similarly:

Axiom 6 (Negative set betweenness). ! satises negative set betweenness if whenever
x ( y, we have x ∪ y ( y.

The following lemma characterizes the implication of positive set betweenness.20

Lemma 1. Suppose ! has a nite additive EU representation. Then it has such a
representation with one positive state if and only if it satises positive set betweenness.

To see the intuition, consider a preference ! with a nite additive EU representation.
Suppose ! satises positive set betweenness but, contrary to our claim, we have two or more
positive states. For concreteness, suppose the indifference curves for the various wi�’s and vj �’s
are as shown in Figure 1. More precisely, suppose there are four states in total, where w1 and
w2 are two of the positive states. Suppose the lines labelled 1 and 2 are indifference curves for
w1, the lines labelled 3 and 4 are indifference curves for w2 and the lines labelled 5 and 6 are
indifference curves for the other two states (which could be positive or negative). In all cases,
utility is increasing as we move �“out�”�–that is, 2 is a higher indifference curve than 1 for w1,
4 is a higher indifference curve than 3 for w2 and �“better�” indifference curves for 5 and 6 are
further down in the gure. Let x = z1 ∪ z2 and let y = z2 ∪ z3. Thus x ∪ y = z1 ∪ z2 ∪ z3. We
claim that it must be true that x ∪ y ! x. To see this, note that x ∪ y yields the same utility as
x in the states corresponding to indifference curves 5 and 6 and in state w1. However, x ∪ y

yields higher utility than x in state w2. That is, the maxwi and max vj terms are the same
for x and x ∪ y except that the max w2 term is strictly larger for x ∪ y. Hence x ∪ y ! x. A
symmetric argument implies x ∪ y ! y, so positive set betweenness is violated, a contradiction.
In short, positive set betweenness implies that there can only be one positive state but says
nothing about the number of negative states.

20. See also Kopylov (2005), which gives a generalization to I positive states and J negative states.
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Figure 1

Using the change of variables discussed above, this lemma obviously yields the following:

Theorem 3. ! has a no-uncertainty representation if and only if it has a nite additive
EU representation and satises positive set betweenness.

One can modify the proof of Lemma 1 in obvious ways to show the following:

Lemma 2. Suppose ! has a nite additive EU representation. Then it has such a
representation with one negative state if and only if it satises negative set betweenness.

Observation 2 (GP�’s representation) is obviously a corollary to Lemmas 1 and 2.
A second special case takes Lemma 2 as its starting point. This representation has one

negative state but many positive states that differ only in the strength of temptation in that
state. Specically, we dene an uncertain strength of temptation representation to be one that
takes the form

VUS(x) =
∑

i

qi max
β∈x

[u(β) − γ ic(β, x)]

where qi > 0 for all i,
∑

i qi = 1, γ i ≥ 0 for all i, and

c(β, x) = [max
β ′∈x

v(β ′)] − v(β).

In this representation, the temptation is always v, but the strength of the temptation (as measured
by γ i) is random. The probability that the strength of the temptation is γ i is given by qi . In a
sense, this representation allows the minimum possible amount of uncertainty. Note that this
allows I = 2, γ 1 = 1 and γ 2 = 0 as in the representation used in Example 2.

Theorem 4. ! has an uncertain strength of temptation representation if and only if it has
a nite additive EU representation and satises DFC and negative set betweenness.
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6. DISCUSSION

Our goal in this paper is to dene and characterize the set of temptation-driven preferences�–that
is, those that can be explained in terms of an agent who is tempted but is otherwise a �“standard
rational agent�”. In this section, we address the extent to which we have achieved this goal by
considering whether we have assumed too little (characterized too large a set of preferences)
or too much (characterizing too small a set). In addition, we briey discuss possible extensions
of our work.

6.1. Extensions

By treating the commitment preference as the agent�’s view of what is normatively desirable,
we have implicitly assumed away uncertainty about what is normatively desirable. At the
same time, we have allowed uncertainty about what is tempting or the strength of temptation,
suggesting that a more symmetric treatment of normative preference may be of interest. In
a sense, though, this problem is too easily solved. More specically, any nite additive EU
representation can be written as a temptation representation with uncertainty about normative
preferences. To see the point, return to the general nite additive EU representation where

V (x) =
I∑

i=1

max
β∈x

wi(β) −
J∑

j=1

max
β∈x

vj (β).

Partition the set {1, . . . , J } into I sets, J1, . . . , JI in any fashion. Use this partition to dene
I cost functions

ci(β, x) =




∑

j∈Ji

max
β ′∈x

vj (β
′)



 −
∑

j∈Ji

vj (β),

just as in the denition of a temptation representation. Dene ui so that ui +
∑

j∈Ji
vj = wi .

Obviously, then, we can write

V (x) =
I∑

i=1

max
β∈x

[ui(β) − ci(β, x)].

Interpreting the I states as equally likely, this looks like a temptation representation where
the normative preference, ui , varies with i. On the other hand, it is not clear what justies
interpreting the ui�’s as various possible normative preferences. In our temptation representation,
u represents the commitment preference and thus is identied. Note that the inability to identify
the ui�’s above leads to a more general inability to identify which temptations are relevant in
what states since the partition above was arbitrary.

This observation points to another important direction to extend the current model. Our
assumption that the normative preference is the commitment preference and hence is state
independent allows the possibility that at least some aspects of the representation are uniquely
determined (up to some transformation). It is not hard to show that the representation is
identied in a natural sense if u and the various vj �’s are afnely independent in the sense
that these functions (viewed as vectors in RK where K is the number of pure outcomes) and
the vector of 1�’s are linearly independent. With such identication, it is possible to consider
how changes in preferences correspond to changes in the representation (i.e., analogs to the
correspondence between increased willingness to undertake risk and a lower Arrow�–Pratt
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measure of risk aversion). For example, DLR show that one preference has an additive
EU representation with a larger set of negative states than another if and only if it values
commitment more in a certain sense. Since temptation representations have more structure
than additive EU representations, there may be new comparisons of interest.

A different approach to achieving identication is to put more discipline on the model
by enlarging the set of primitives. Here, the only primitive is the preference over menus. In
some of our discussion, particularly in motivating AIC, we interpreted this preference in terms
of what it might say about choices from menus. Arguably, a superior approach would be to
augment the primitives by bringing in such choices explicitly.

It is not possible to draw denitive conclusions about choices the agent would make from a
menu based only on preferences over menus. For example, consider an agent whose preference
over menus has a temptation representation. We interpret the representation as saying that the
agent assigns probability qi to being tempted according to cost function ci . It seems natural,
then, to say that if the agent has menu x, then with probability qi she will choose a β ∈ x

which maximizes u(β) − ci(β, x). However, this conclusion is only an interpretation of the
model, not a theorem which can be proven. As long as the only primitive in the model is a
preference over menus, we have no information about choice from the menu with which to
conrm this interpretation. GP resolve this problem by extending the preference over menus
to menu�–choice pairs, but this approach inherently involves a signicant deviation from the
principle of revealed preference. To see the point, let x = {a, b, c} and let !∗ denote this
extended preference. Suppose (x, a) !∗ (x, b) !∗ (x, c). GP interpret this as saying that the
agent prefers choosing a from x to choosing b from x and prefers choosing b from x to
choosing c from x. Hence they conclude that a is chosen from menu x. While this conclusion
seems natural, the interpretation of (x, b) !∗ (x, c) is very puzzling. There is no choice that
can reveal this preference to us. If x is the set of choices available, neither b nor c would
be chosen by the agent. Asking the agent to compare (x, b) to (x, c) is like asking the agent
which she prefers: being offered x but forced to choose b, or being offered x but forced to
choose c. In what sense is x the available set if the agent must choose something other than a

from the set?

6.2. Assuming too little?

We have argued that DFC and AIC are a reasonable way to dene temptation driven on the
ground that both the axioms and the resulting representation seem to describe temptation-driven
behaviour. On the other hand, the general representation does allow some behaviour that one
might interpret as based on other considerations.

One possible instance of this problem was mentioned in the discussion of Example 1. Our
general representation allows cost functions that depend on more than one temptation in the
sense that we have

ci(β, x) =




∑

j∈Ji

max
α∈x

vj (α)



 −
∑

j∈Ji

vj (β)

where Ji need not be a singleton. Such a representation will often have the property that there
is no choice the agent can make that reduces ci to 0. One might prefer to assume that if the
agent gives in to temptation, the self-control cost is zero. One could argue that when this is not
possible, these representations include considerations other than temptation such as regret.21

21. We thank Todd Sarver for this observation.
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This motivates considering a restriction to what we call a simple representation, a temptation
representation with the property that Ji is a singleton for all i. Recently, Stovall (2007) has
proved a conjecture from an earlier version of this paper that ! has a simple representation if
and only if it has a nite additive EU representation and satises weak set betweenness:

Axiom 7 (Weak set betweenness). If {α} ( {β} for all α ∈ x and β ∈ y, then x (
x ∪ y ( y.

On the other hand, it is worth noting that there are reasons why self-control costs might
not be zero even if the agent succumbs to temptation. For example, it may be that the agent
incurs such costs in a failed attempt to avoid succumbing to temptation, feels guilt or suffers
from conict over which temptation to succumb to.

6.3. Assuming too much?

Finally, our characterization of temptation-driven behaviour is carried out within the set of
preferences with a nite additive EU representation, a set characterized in Theorem 6 in the
Appendix. While some of the axioms required seem unrelated to issues of temptation, two of
the necessary conditions, continuity and independence (see Appendix for denitions), arguably
eliminate some temptation-related behaviour. If so, it may be useful to consider weaker forms
of these axioms, thus enlarging the set of preferences considered.

Regarding continuity, GP show that one common model of temptation requires continuity
to be violated. Suppose the agent evaluates a menu x according to maxβ∈Bv(x) u(β), where
Bv(x) is the set of v maximizers in x. Intuitively, the agent expects her choice from the menu
to be determined by her later self with utility function v, where her later self breaks ties in
favour of the current self. As GP demonstrate, in general, such a representation cannot satisfy
continuity.

Regarding independence, there are several temptation-related issues that may lead to
violations of this axiom. For example, guilt may lead the agent to prefer randomization, a
phenomenon inconsistent with independence. To see the point, consider a dieter in a restaurant
faced with a choice between a healthy dish and a tempting, unhealthy dish. Independence
implies that such a dieter would be indifferent between this menu and one that adds a
randomization between the two. However, with such an option available, the dieter can choose
the lottery and have some chance of consuming the unhealthy dish with less guilt than if
it had been chosen directly. Hence the indifference required by independence is not entirely
compelling.22

Also, there is a sense in which independence implies that the agent�’s choices satisfy
�“independence of irrelevant alternatives�”. To understand this, note that we represent the agent
as if she would face cost function ci with probability qi . Subject to the caveats mentioned
in Section 6.1, suppose we interpret the agent who faces menu x as choosing some β which
maximizes u(β) − ci(β, x) with probability qi . Substituting for ci , this means that the agent
maximizes a certain sum of utilities which is independent of x. Hence if β is chosen over α

from menu x, β is chosen over α from any menu, a kind of IIA property. This conclusion is

22. We thank Phil Reny for suggesting this example. The example has a strong resemblance to the �“Machina�’s
mom�” story in Machina (1989). See also the earlier discussion of the point in Diamond (1967). The resemblance
suggests that the issue is more about having preferences over procedures for decision making, perhaps driven by
temptation, than about temptation given otherwise standard preferences, the case we study here.
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driven by the linearity of the representation�–this causes the maxβ∈x vj (β) terms to be irrelevant
to the maxβ∈x u(β) − ci(β, x) expression. This linearity comes from independence.

As Noor (2006b) suggests by example, this IIA property is not a compelling assumption
for temptation. For a diet-related version of his example, suppose the menu consists only of
broccoli and frozen yogurt. Arguably, the latter is not very tempting, so the agent is able to
stick to her diet and orders broccoli. However, if the menu consists of broccoli, frozen yogurt
and an ice cream sundae, perhaps the agent is much more signicantly tempted to order dessert
and opts for the frozen yogurt as a compromise. See also the related criticism of independence
in Fudenberg and Levine (2005).

Related to the earlier discussion of guilt, issues of guilt and its ip side, feelings of
�“virtuousness�”, may be important aspects of temptation and pose new modelling challenges.
To see the point, we again let b denote broccoli, y frozen yogurt and i ice cream and assume
{b} ! {y} ! {i}. Suppose the agent knows she will choose y from any menu containing it.
Then it seems plausible that {y, i} ! {y} ! {b, y}. Intuitively, the rst preference comes about
because the agent can feel virtuous by choosing frozen yogurt over the more fattening ice
cream, a feeling which the agent cannot get from choosing yogurt when it is the only option.
Similarly, the second preference reects the agent�’s guilt from choosing frozen yogurt when
broccoli was available, a feeling not generated by consuming frozen yogurt when there is
no other option. Note that the rst of these preferences contradicts our main axiom, DFC,
since it implies {y, i} ! {y} ! {i}. This story also runs contrary to the motivation for our AIC
axiom: here, adding i improves the menu {y} but does so because it is not chosen. While the
preference {b} ! {y} ! {b, y} is consistent with our general representation, it is not consistent
with a simple representation. In particular, with guilt, an agent who succumbs to temptation
does not avoid all costs. We suspect that an adequate treatment of these issues requires moving
beyond the class of nite additive EU representations.

APPENDIX A. NOTATIONAL CONVENTIONS

Throughout the Appendix, we use u, vj , etc., to denote utility functions as well as the vector giving the payoffs

to the pure outcomes associated with the utility function. When interpreted as vectors, they are column vectors. Let K

denote the number of pure outcomes, so these are K by 1. We write lotteries as 1 by K row vectors, so β · u = u(β),

etc. Also, 1 denotes the K by 1 vector of 1�’s.

APPENDIX B. EXISTENCE OF FINITE ADDITIVE EU REPRESENTATIONS

It is simpler to work with the following equivalent denition of a nite additive EU representation.

Denition 6. A nite additive EU representation is a pair of nite sets S1 and S2 and a state-dependent utility

function U : !(B) × (S1 ∪ S2) → R such that (i) V (x) dened by

V (x) =
∑

s∈S1

max
β∈x

U(β, s) −
∑

s∈S2

max
β∈x

U(β, s)

represents ! and (ii) each U (·, s) is an expected-utility function in the sense that

U(β, s) =
∑

b∈B

β(b)U(b, s).

The relevant axioms from DLR are:
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Axiom 8 (Weak order). ! is asymmetric and negatively transitive.

Axiom 9 (Continuity). The strict upper and lower contour sets, {x′ ⊆ !(B) | x′ ! x} and {x′ ⊆ !(B) | x !
x′}, are open (in the Hausdorff topology).

Given menus x and y and a number λ ∈ [0, 1], let

λx + (1 − λ)y = {β ∈ !(B) | β = λβ ′ + (1 − λ)β ′′, for some β ′ ∈ x,β ′′ ∈ y}

where, as usual, λβ ′ + (1 − λ)β ′′ is the probability distribution over B giving b probability λβ ′(b) + (1 − λ)β ′′(b).

Axiom 10 (Independence). If x ! x′, then for all λ ∈ (0, 1] and all x,

λx + (1 − λ)x ! λx′ + (1 − λ)x.

We refer the reader to DLR for further discussion of these axioms.
The new axiom which will imply niteness requires a denition. Given any menu x, let conv(x) denote its convex

hull.

Denition 7. x′ ⊆ conv(x) is critical for x if for all y with x′ ⊆ conv(y) ⊆ conv(x), we have y ∼ x.

Intuitively, a critical subset of x contains all the �“relevant�” points in x. It is easy to show that the three axioms
above imply that the boundary of x is critical for x, so every set has at least one critical subset.

Axiom 11 (Finiteness). Every menu x has a nite critical subset.

Theorem 6. ! has a nite additive EU representation if and only if it satises weak order, continuity,

independence and niteness.

Necessity is straightforward. The sufciency argument follows that of DLR by constructing an articial �“state
space�”, SK , then restricting it to a particular subset. To do this, write B = {b1, . . . , bK }. Let SK = {s ∈ RK |

∑
si =

0,
∑

s2
i = 1}. In line with our notational conventions, we write elements of SK as K by 1 column vectors. For any

set x ∈ X, let σ x denote its support function. That is, σ x : SK → R is dened by

σ x(s) = max
β∈x

β · s.

As explained in DLR, our axioms imply that if σ x = σ x′ , then x ∼ x′.
To prove sufciency, x any sphere, say x∗, in the interior of !(B). By niteness, x∗ has a nite critical subset.

Let xc denote such a subset. We claim that we may as well assume xc is contained in the boundary of x∗. To see this,
suppose it is not. For every point in xc , associate any line through this point. Let x̂c denote the collection of intersections
of these lines with the boundary of x∗. Obviously, x̂c is nite. Also, it is easy to see that conv(xc) ⊆ conv(x̂c). In
light of this, consider any convex y ⊆ x∗ and suppose x̂c ⊆ y. Then

xc ⊆ conv(xc) ⊆ conv(x̂c) ⊆ y ⊆ x∗.

So y ∼ x∗. Hence x̂c is a nite critical subset of x∗ which is contained in the boundary of x∗. So without loss of
generality, we assume xc is contained in the boundary of x∗.

Since x∗ is a sphere, there is a one-to-one mapping, say g, from the boundary of x∗ to SK where g(β) is the
s such that β is the unique maximizer of α · s over α ∈ x. That is, g(β) is the s for which we have an indifference
curve tangent to x∗ at β. Let

S∗ = g(xc) = {s ∈ SK | g(β) = s for some β ∈ xc}.
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Let

x =
⋂

β∈xc

{α ∈ !(B) | α · g(β) ≤ β · g(β)}. (B1)

That is, x is the polytope bounded by the hyperplanes tangent to x∗ at the points in xc . The rest of the proof focuses
on this menu.

Lemma 3. xc is critical for x.

Proof. Obviously, xc ⊂ x. Fix any convex y such that xc ⊆ y ⊆ x. We show that y ∼ x.
To show this, x any ε > 0 and let

yε = conv



xc ∪




⋂

β∈xc

{α ∈ y | α · g(β) ≤ β · g(β) − ε}







 .

Note that xc ⊆ yε ⊆ y. Also, yε → y as ε ↓ 0 since xc ⊆ y ⊆ x.
We claim that

Claim 1. For every ε > 0, there exists λ < 1 such that

λconv(xc) + (1 − λ)yε ⊆ x∗.

We establish this geometric property shortly. First, note that with this claim, the proof of the lemma can be
completed as follows. Fix any ε > 0 and λ ∈ (0, 1) such that λconv(xc) + (1 − λ)yε ⊆ x∗. Because xc ⊆ yε , we have

xc ⊆ λconv(xc) + (1 − λ)yε ⊆ x∗.

Since xc is critical for x∗ and λconv(xc) + (1 − λ)yε is convex, this implies λconv(xc) + (1 − λ)yε ∼ x∗. The fact
that xc is critical for x∗ also implies conv(xc) ∼ x∗. Hence independence requires yε ∼ x∗. Since this is true for all
ε > 0, continuity implies y ∼ x∗. But this argument also works for the case of y = x, so we see that x ∼ x∗. Hence
y ∼ x, so xc is critical for x.

Proof of Claim 1. First, note that it is sufcient to prove this for the case of y = x since this makes the set on
the left-hand side the largest possible. Next, note that it is then sufcient to show that for every ε > 0, there exists
λ < 1 such that every extreme point of λconv(xc) + (1 − λ)xε is contained in x∗. Since each such extreme point must
be a convex combination of extreme points in xc and xε , this implies that a sufcient condition is that there is a λ < 1
such that for every α1 ∈ xc and α2 ∈ ext(xε), λα1 + (1 − λ)α2 ∈ x∗ where ext(·) denotes the set of extreme points.
Since xε is a convex polyhedron, it has nitely many extreme points. Also, xc is nite. Since there are nitely many
α1 and α2 to handle, it is sufcient to show that for every α1 ∈ xc and α2 ∈ ext(xε), there is a λ ∈ (0, 1) such that
λα1 + (1 − λ)α2 ∈ x∗.

Equivalently, we show that for every α1 ∈ xc and α2 ∈ xε , there exists λ ∈ (0, 1) such that (λα1 + (1 − λ)α2) · s ≤
σ x∗ (s) for all s ∈ SK . That is,

(1 − λ)(α2 · s − α1 · s) ≤ σ x∗ (s) − α1 · s, ∀s ∈ SK. (B2)

Since α1 ∈ x∗, we have σ x∗ (s) ≥ α1 · s for all s ∈ SK . By construction, there is a unique s, say ŝ = g(α1), such
that this inequality holds with equality. For all s 0= ŝ, σ x∗ (s) > α1 · s. Also, by denition of xε , α2 ∈ xε implies that
α2 · ŝ ≤ α1 · ŝ − ε. Hence for any λ ∈ [0, 1], equation (B2) holds at s = ŝ. For any s 0= ŝ, if α2 · s ≤ α1 · s, again,
equation (B2) holds for all λ ∈ [0, 1]. Hence we can restrict attention to s such that α2 · s > α1 · s and σ x∗ (s) > α1 · s.
Given this restriction, it is clear that if α2 · s ≤ σ x∗ (s), again, equation (B2) holds for all λ ∈ [0, 1].

Let Ŝ = {s ∈ SK | α2 · s > σ x∗ (s) > α1 · s}. From the above, it is sufcient to show the existence of a λ ∈ (0, 1)
satisfying equation (B2) for all s ∈ Ŝ. A sufcient condition for this is that there exists λ ∈ (0, 1) such that

(1 − λ)(σ!(B)(s) − α1 · s) ≤ σ x∗ (s) − α1 · s, ∀s ∈ Ŝ.
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Obviously, σ!(B)(s) − α1 · s is bounded from above. Hence it is sufcient to show that the right-hand side of the
inequality is bounded away from zero for s ∈ Ŝ.

To see that this must hold, suppose there is a sequence {sn} with sn ∈ Ŝ for all n with σ x∗ (sn) − α1 · sn → 0.
Clearly, this implies sn → ŝ. But then

lim
n→∞

α2 · sn = α2 · ŝ ≤ σ x∗ (ŝ) − ε = lim
n→∞

σ x∗ (sn) − ε,

implying that we cannot have sn ∈ Ŝ for all n, a contradiction. Hence such a λ must exist. ‖

Lemma 4. If y is any set with σ y(s) = σ x(s) for all s ∈ S∗, then y ∼ x.

Note: The x referred to here is again the menu dened in equation (B1).

Proof. Fix any such y. Without loss of generality, assume y is convex. (Otherwise, we can replace y with its
convex hull.) Clearly,

y ⊆ {β | β · s ≤ σ x(s) ∀s ∈ S∗}

since otherwise y would contain points, giving it a higher value of the support function for some s ∈ S∗. But the set
on the right-hand side is x, so y ⊆ x. Obviously, then if xc ⊆ y, the fact that xc is critical for x implies y ∼ x.

So suppose xc 0⊆ y. As noted, we must have y ⊆ x. So let yλ = λx + (1 − λ)y. Obviously, yλ converges to x

as λ → 1. For each β ∈ xc , there is a face of the polyhedron x such that β is in the (relative) interior of the face.
Also, y must intersect the face of the polyhedron and so yλ must intersect the face. As λ increases, the intersection
of yλ with the face enlarges as it is pulled out toward the boundaries of the face. Clearly, for λ sufciently large, β
will be contained in the intersection of yλ with the face of x which contains β. Take any λ larger than the biggest
such λ over the nitely many β ∈ xc . Then xc ⊆ yλ ⊆ x. Since xc is critical for x, this implies λx + (1 − λ)y ∼ x.
By independence, then, y ∼ x. ‖

Lemma 5. For any y and ŷ such that σ y(s) = σ ŷ (s) for all s ∈ S∗, we have y ∼ ŷ.

Proof. Fix any such y and ŷ. For any λ ∈ [0, 1), dene uλ : S∗ → R by

uλ(s) =
σ x(s) − λσ y(s)

1 − λ
.

Because σ y(s) = σ ŷ (s) for all s ∈ S∗, it would be equivalent to use σ ŷ instead of σ y . Let

zλ = {β ∈ !(B) | β · s ≤ uλ(s), ∀s ∈ S∗}.

Obviously, λσ y(s) + (1 − λ)uλ(s) = σ x(s) for all s ∈ S∗. This implies that for all λ ∈ (0, 1), λy + (1 − λ)zλ ⊆ x.
To see this, note that for any α ∈ y and β ∈ zλ,

λα · s + (1 − λ)β · s ≤ λσ y(s) + (1 − λ)uλ(s) = σ x(s), ∀s ∈ S∗.

But x = ∩s∈S∗ {γ | γ · s ≤ σ x (s)}, so λα + (1 − λ)β ∈ x.
Note also that uλ(s) → σ x (s) as λ ↓ 0. We claim that this implies that there is a λ ∈ (0, 1) such that for every

s ∈ S∗, there exists β ∈ zλ with β · s = uλ(s). To see this, suppose it is not true. Then for all λ ∈ (0, 1), there exists
ŝλ ∈ S∗ such that for all β ∈ zλ, β · ŝλ < uλ(ŝλ), so

⋂

s∈S∗\{ŝλ}

{β | β · s ≤ uλ(s)} =
⋂

s∈S∗
{β | β · s ≤ uλ(s)}.

Because S∗ is nite, this implies that there exists ŝ ∈ S∗, a sequence {λn} with λn ∈ (0, 1) for all n, λn → 0 such that
for all n,

⋂

s∈S∗\{ŝ}

{β | β · s ≤ uλn (s)} =
⋂

s∈S∗
{β | β · s ≤ uλn (s)}.

 2009 The Review of Economic Studies Limited

 at N
orthw

estern U
niversity Library on Septem

ber 2, 2011
restud.oxfordjournals.org

D
ow

nloaded from
 

http://restud.oxfordjournals.org/


DEKEL ET AL. TEMPTATION-DRIVEN PREFERENCES 961

But uλn → σ x as n → ∞. Hence the limit as n → ∞ of the right-hand side, namely x, cannot equal the limit of the
left-hand side, a contradiction.

Hence, there is a λ ∈ (0, 1) such that for every s ∈ S∗, there is a β ∈ zλ with β · s = uλ(s). Choose such a
λ and let u = uλ and z = zλ. Obviously, for every s ∈ S∗, there is α ∈ y with α · s = σ y (s). Hence, given our
choice of λ, for every s ∈ S∗, there is γ ∈ λy + (1 − λ)z such that γ · s = λσ y(s) + (1 − λ)u(s) = σ x(s). Hence,
σλy+(1−λ)z(s) = σ x(s) for all s ∈ S∗. Hence, Lemma 4 implies λy + (1 − λ)z ∼ x. The symmetric argument with ŷ

replacing y implies λŷ + (1 − λ)z ∼ x. So, λy + (1 − λ)z ∼ λŷ + (1 − λ)z. By independence, then, y ∼ ŷ. ‖
DLR show that weak order, continuity and independence imply the existence of a function V : X → R which

represents the preference and is afne in the sense that V (λx + (1 − λ)y) = λV (x) + (1 − λ)V (y). Fix such a V .
Let U = {(σ x (s))s∈S∗ | x ∈ X} ⊂ RM where M is the cardinality of S∗. Let σ |S∗ denote the restriction of σ to S∗.
Dene a function W : U → R by W(U) = V (x) for any x such that σ x |S∗ = U . From Lemma 5, we see that if
σ x |S∗ = σ x′ |S∗, then x ∼ x′ so V (x) = V (x′). Hence W is well dened. It is easy to see that W is afne and
continuous and that U is closed and convex and contains the 0 vector. It is easy to show that W has a well-dened
extension to a continuous, linear function on the linear span of U. Since U is nite dimensional, W has an extension
to a continuous linear functional on RM . (See Lemma 6.13 in Aliprantis and Border (1999), for example.) Since a
linear function on a nite-dimensional space has a representation by means of a matrix, we can write

W(U) =
∑

s∈S∗
csUs

where the cs �’s are constants and U = (Us)s∈S∗ . Hence,

V (x) = W((σ x(s))s∈S∗) =
∑

s∈S∗
cs max

β∈x
β · s.

Hence, we have a nite additive EU representation. ‖

APPENDIX C. RELATING GP�’S AXIOMS TO AIC

As noted in the text, since GP�’s self-control representation is a temptation representation, our existence theorem
implies that GP�’s axioms imply AIC. Here we show this conclusion directly from the axioms. More specically, we
show that continuity, independence and set betweenness imply AIC.

Suppose β is an approximate improvement for x, y ⊆ x, α ∈ B(y) and {α} ! {β}, but the conclusion of AIC does
not hold. That is, we do not have {α} ! y ∪ {β}. Since we have already shown that GP�’s axioms imply DFC, we know
that {α} ( y ∪ {β} since α ∈ B(y ∪ {β}). Hence if AIC fails, it must be true that {α} ∼ y ∪ {β}. Since {α} ! {β}, this
implies y ∪ {β} ! {β}.

Since β is an approximate improvement for x, we can nd a β∗ arbitrarily close to β such that x ∪ {β∗} ! x.
Since β∗ can be made arbitrarily close to β , continuity and y ∪ {β} ! {β} imply that we can choose β∗ so that
y ∪ {β∗} ! {β∗}.

Independence and x ∪ {β∗} ! x imply

1
2

[y ∪ {β∗}] + 1
2

[x ∪ {β∗}] ! 1
2

[y ∪ {β∗}] + 1
2

x.

Also, y ∪ {β∗} ! {β∗} and independence imply

1
2

[y ∪ {β∗}] +
1
2

[x ∪ {β∗}] !
1
2

{β∗} +
1
2

[x ∪ {β∗}].

It is not hard to see, however, that y ⊆ x implies

1
2

[y ∪ {β∗}] + 1
2

[x ∪ {β∗}] =
{

1
2

[y ∪ {β∗}] + 1
2

x

} ⋃ {
1
2

{β∗} + 1
2

[x ∪ {β∗}]
}

.

Hence this contradicts set betweenness.
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APPENDIX D. PROOF OF THEOREM 2

Lemma 6. Suppose ! has a nite additive EU representation of the form

V (x) =
I∑

i=1

max
β∈x

wi(β) −
J∑

j=1

max
β∈x

vj (β).

Dene u by u(β) = V ({β}), so u =
∑

i wi −
∑

j vj . Suppose ! satises DFC. Then there are positive scalars ai ,

i = 1, . . . , I , and bij , i = 1, . . . , I , j = 1, . . . , J and scalars ci , i = 1, . . . , I such that
∑

i ai =
∑

i bij = 1 for all j

and

wi = aiu +
∑

j

bij vj + ci1, ∀i.

Proof. Suppose not. Let Z denote the set of KI by 1 vectors (z′
1, . . . , z′

I )
′ (so each z′

i is a K by 1 vector) such
that

zi = aiu +
∑

j

bij vj + ci1, ∀i

for scalars ai , bij and ci satisfying the conditions of the lemma. So if the lemma does not hold, the vector
(w′

1, . . . , w
′
I )

′ /∈ Z. Since Z is obviously closed and convex, the separating hyperplane theorem implies that there is
a vector p such that

p ·





w1

.

.

.

wI



 > p ·





z1

.

.

.

zI



 , ∀





z1

.

.

.

zI



 ∈ Z.

Write p = (p1, . . . , pI ) where each pi is a 1 by K vector. So

∑

i

pi · wi >
∑

i

pi · zi , ∀





z1

.

.

.

zI



 ∈ Z.

Equivalently,

∑

i

pi · wi >
∑

i

aipi · u +
∑

j

∑

i

bij pi · vj +
∑

i

cipi · 1

for any ai , bij , and ci such that ai ≥ 0 for all i, bij ≥ 0 for all i and j , and
∑

i ai =
∑

i bij = 1 for all j . Since ci

is arbitrary in both sign and magnitude, we must have pi · 1 = 0 for all i. If not, we could nd a ci which would
violate the inequality above.

Also, for every choice of ai ≥ 0 such that
∑

i ai = 1,

max
i

pi · u ≥
∑

i

aipi · u

with equality for an appropriately chosen (a1, . . . , aI ). Similarly, for any non-negative bij �’s with
∑

i bij = 1,

max
i

pi · vj ≥
∑

i

bij pi · vj

with equality for an appropriately chosen (b1j , . . . , bIj ). Hence the inequality above implies

∑

i

pi · wi > max
i

pi · u +
∑

j

max
i

pi · vj .
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Write pi as (p1i , . . . , pKi). Without loss of generality, we can assume that |pki | ≤ 1/K for all k and i. (Otherwise
we could divide both sides of the inequality above by K maxk,i |pki | and redene pi to have this property.) Let β
denote the probability distribution (1/K, . . . , 1/K). For each i, let αi = pi + β. Note that αki = pki + 1/K and so
αki ≥ 0 for all k, i. Also, αi · 1 = pi · 1 + β · 1 = 1. Hence each αi is a probability distribution. Substituting αi − β

for pi ,

∑

i

αi · wi −
∑

i

β · wi > max
i

αi · u − β · u +
∑

j

max
i

αi · vj −
∑

j

β · vj .

By denition of u,
∑

i wi = u +
∑

j vj . Hence this is

∑

i

αi · wi −
∑

j

max
i

αi · vj > max
i

αi · u.

Let x = {α1, . . . ,αI }. Then

V (x) ≥
∑

i

αi · wi −
∑

j

max
i

αi · vj > max
i

αi · u = max
α∈x

u(α).

But this contradicts DFC. ‖
We now prove Theorem 2. The necessity of ! having a nite additive EU representation is obvious. For necessity

of DFC, suppose ! has a weak temptation representation. For any menu x and any i = 1, . . . , I ′, let αi denote a
maximizer of u(β) +

∑
j∈Ji

vj (β) over β ∈ x. Then

Vw(x) =
∑I ′

i=1 qi [u(αi ) +
∑

j∈Ji
vj (αi )] −

∑I ′
i=1 qi

∑
j∈Ji

maxβ∈x vj (β)

+
∑I

i=I ′+1 maxβ∈x [−ci(β, x)]

≤
∑I ′

i=1 qi [u(αi ) +
∑

j∈Ji
vj (αi )] −

∑
i qi

∑
j∈Ji

vj (αi )

=
∑I ′

i=1 qiu(αi )

≤ maxβ∈x u(β)

where the rst inequality uses ci (β, x) ≥ 0 for all i, β, and x and the last one uses qi > 0 and
∑I ′

i=1 qi = 1. Hence
DFC must hold.

For sufciency, let V denote a nite additive EU representation of !. By Lemma 6,

V (x) =
∑

i

max
β∈x

[aiu(β) +
∑

j

bij vj (β)] −
∑

j

max
β∈x

vj (β) +
∑

i

ci

where u(β) = V ({β}). But

u +
∑

j

vj =
∑

i

wi =
∑

i

aiu +
∑

i

∑

j

bij vj +
∑

i

ci1.

Since
∑

i ai =
∑

i bij = 1 for all j , this says

u +
∑

j

vj = u +
∑

j

vj +
∑

i

ci1,

so
∑

i ci = 0.
Let I+ denote the set of i such that ai > 0. For each i ∈ I+, let qi = ai . Let M denote the number of (i, j) pairs

for which bij > 0. For each such (i, j), let k(i, j) denote a distinct element of {1, . . . , M}. For each i ∈ I+ and each
j such that bij > 0, dene a utility function v̂k(i,j) = [bij /ai ]vj and let k(i, j) ∈ Ji . For each i /∈ I+ and each j with
bij > 0, dene a utility function v̂k(i,j) = bij vj and let k(i, j) ∈ Ji . So for i ∈ I+,

wi = aiu +
∑

j

bij vj = qi [u +
∑

j∈Ji

v̂j ].

For i /∈ I+,

wi =
∑

j

bij vj =
∑

j∈Ji

v̂j .
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Also,

∑
j maxβ∈x vj (β) =

∑
j

∑
i bij maxβ∈x vj (β)

=
∑

i∈I+
∑

j∈Ji
qi maxβ∈x v̂j (β) +

∑
i /∈I+

∑
j∈Ji

maxβ∈x v̂j (β).

Hence

V (x) =
∑

i∈I+

qi max
β∈x

[u(β) − ci (β, x)] +
∑

i /∈I+

max
β∈x

[−ci (β, x)]

where

ci (β, x) =




∑

j∈Ji

max
β′∈x

v̂j (β
′)



 −
∑

j∈Ji

v̂j (β).

Hence V is a weak temptation representation. ‖

APPENDIX E. PROOF OF THEOREM 1

Obviously, if ! has a temptation representation, it has a weak temptation representation, so DFC and existence
of a nite additive EU representation are necessary. Hence the following lemma completes the proof of necessity.
Recall that

B(x) = {α ∈ x | {α} ( {α′}, ∀α′ ∈ x}.

Lemma 7. If ! has a temptation representation, then it satises AIC.

Let VT be a temptation representation of !. Let β be an approximate improvement for x. Fix any x′ ⊆ x and
α ∈ B(x′) such that {α} ! {β}. (If no such x, β, x′ and α exist, AIC holds trivially.) By denition of an approximate
improvement, there exists a sequence βn converging to β such that x ∪ {βn} ! x for all n.

For any menu z,

VT (z) =
∑

i

qi max
γ∈z



u(γ ) +
∑

j∈Ji

vj (γ )



 −
∑

i

qi

∑

j∈Ji

max
γ∈z

vj (γ ).

Clearly, then, the fact that VT (x ∪ {βn}) > VT (x) implies that for each n, there is some i with

u(βn) +
∑

j∈Ji

vj (βn) > max
γ∈x



u(γ ) +
∑

j∈Ji

vj (γ )



 .

Otherwise, all the maximized terms in the rst sum would be the same at z = x as at z = x ∪ {βn}, while the terms
being subtracted off must be at least as large at z = x ∪ {βn} as at z = x. Let i∗n denote any such i. Because there are
nitely many i�’s, we can choose a sub-sequence so that i∗n is independent of n. Hence we can let i∗ = i∗n for all n.
Hence

u(βn) +
∑

j∈Ji∗
vj (βn) > max

γ∈x



u(γ ) +
∑

j∈Ji∗
vj (γ )





for all n, implying

u(β) +
∑

j∈Ji∗
vj (β) ≥ max

γ∈x



u(γ ) +
∑

j∈Ji∗
vj (γ )



 .
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Clearly, then, since x′ ⊆ x,

u(β) +
∑

j∈Ji∗
vj (β) ≥ max

γ∈x′



u(γ ) +
∑

j∈Ji∗
vj (γ )



 .

Subtract
∑

j∈Ji∗
maxγ∈x′∪{β} vj (γ ) from both sides to obtain

u(β) − ci∗ (β, x′ ∪ {β}) ≥ max
γ∈x′

[
u(γ ) − ci∗ (γ , x′ ∪ {β})

]

where ci∗ is the self-control cost for state i∗ from the temptation representation.
Recall that α ∈ B(x′). Hence we have

VT (x′ ∪ {β}) =
∑

i qi maxγ∈x′∪{β}
[
u(γ ) − ci (γ , x′ ∪ {β})

]

= qi∗ [u(β) − ci∗ (β, x′ ∪ {β})] +
∑

i 0=i∗ qi maxγ∈x′∪{β}
[
u(γ ) − ci (γ , x′ ∪ {β})

]

≤ qi∗ [u(β) − ci∗ (β, x′ ∪ {β})] +
∑

i 0=i∗ qi maxγ∈x′∪{β} u(γ )

= qi∗ [u(β) − ci∗ (β, x′ ∪ {β})] + (1 − qi∗ )u(α)

≤ qi∗u(β) + (1 − qi∗ )u(α)

< u(α)

where the two weak inequalities follow from ci(γ , x′ ∪ {β}) ≥ 0 and the strict inequality follows from qi∗ > 0 and
{α} ! {β}. Hence {α} ! x′ ∪ {β}, so AIC is satised. ‖

Turning to sufciency, for the rest of this proof, let ! denote a preference with a nite additive EU
representation V .

Before moving to the main part of the proof of sufciency, we get some special cases out of the way. First, it is
easy to see that if ! has a nite additive EU representation, then it has such a representation which is non-redundant
in the sense that no wi or vj is a constant function and no two of the wi �’s and vj �’s correspond to the same preference
over !(B). On the other hand, this non-redundant representation could have I = 0, J = 0, or both. We rst handle
these cases, then subsequently focus on the case where I ≥ 1, J ≥ 1, no state is a constant preference and no two
states have the same preference over lotteries.

If I = J = 0, the preference is trivial in the sense that x ∼ x′ for all x and x′. In this case, the preference is
obviously represented by the temptation representation

V (x) = max
β∈x

[u(β) + v(β)] − max
β∈x

v(β)

where v and u are constant functions. If I = 0 but J ≥ 1, then we have

V (x) = A −
∑

j

max
β∈x

vj (β)

for an arbitrary constant A. Let w1 denote a constant function equal to A and dene u = w1 −
∑

j vj . Then

V (x) = max
β∈x

[u(β) +
∑

j

vj (β)] −
∑

j

max
β∈x

vj (β),

giving a temptation representation. Finally, suppose J = 0. To satisfy DFC, we must then have I = 1, so V (x) =
maxβ∈x w1(β) + A for an arbitrary constant A. Let v1 be a constant function equal to A and dene u = w1 − v1.
Then obviously

V (x) = max
β∈x

[u(β) + v1(β)] − max
β∈x

v1(β),

giving a temptation representation.
The remainder of the proof shows the result for the case where the nite additive EU representation has I ≥ 1

positive states and J ≥ 1 negative states, none of which is constant and no two of which correspond to the same
preference over menus. Following GP, we refer to this as a regular representation.

Lemma 8. Suppose ! has a regular, nite additive EU representation given by

V (x) =
∑

i

max
β∈x

wi(β) −
∑

j

max
β∈x

vj (β).
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Fix any interior β and any menu x such that for some i,

wi(β) = max
α∈x∪{β}

wi(α).

Then there exists x′ such that β is an approximate improvement for x ∪ x′.

Proof. Fix such a β, x and i. By hypothesis, the additive EU representation is regular, so wi is not constant.
Because wi is not constant and β is interior, for any ε > 0, we can nd a β̂ within an ε neighbourhood of β such
that wi(β̂) > wi(β). Hence wi(β̂) > maxα∈x wi(α).

Let Ĵ denote the set of j such that

max{vj (β), vj (β̂)} > max
α∈x

vj (α).

For each j ∈ Ĵ , we can nd a γ j such that vj (γ j ) > vj (β) and wi(γ j ) < wi(β). To see that this must be possible,
note that the selection of j implies that wi and −vj do not represent the same preference. By hypothesis, the additive
EU representation is regular, so wi and vj do not represent the same preference and neither is constant. Hence the
vj indifference curve through β must have a non-trivial intersection with the wi indifference curve through β . Hence
such a γ j must exist.

Let x′ denote the collection of these γ j �’s. (If Ĵ = ∅, then x′ = ∅.) Let βλ = λβ + (1 − λ)β̂. By construction,
for all λ ∈ (0, 1), wi ranks βλ strictly above any α ∈ x. Also, since wi(β) > wi(γ j ) for all j , there is a λ ∈ (0, 1)
such that wi(βλ) > wi(γ j ) for all j for all λ ∈ (λ, 1). Also, for every j /∈ Ĵ , vj ranks some point in x (and hence
in x′ ∪ x) at least weakly above both β and β̂ and hence above βλ. Finally, for every j ∈ Ĵ , vj (γ j ) > vj (β). Hence

there is a λ
′ ∈ (0, 1) such that vj (γ j ) > vj (βλ) for all j ∈ Ĵ and all λ ∈ (λ

′
, 1). Let λ∗ = max{λ, λ

′}. For λ ∈ (λ∗, 1),
then,

wi(βλ) > max
α∈x′∪x

wi(α)

vj (βλ) ≤ max
α∈x′∪x

vj (α), ∀j.

Hence

V (x′ ∪ x ∪ {βλ}) = wi(βλ) +
∑

k 0=i

max
α∈x′∪x∪{βλ}

wk(α) −
∑

j

max
α∈x′∪x

vj (α).

Since the wi comparison of βλ to any α ∈ x or any γ j is strict, this expression is

>
∑

k

max
α∈x′∪x

wk(α) −
∑

j

max
α∈x′∪x

vj (α) = V (x′ ∪ x).

Hence x′ ∪ x ∪ {βλ} ! x′ ∪ x for all λ ∈ (λ∗, 1). Since βλ → β as λ → 1, this implies β is an approximate
improvement for x′ ∪ x. ‖

Recall that B(x) is the set of α ∈ x such that {α} ( {α′} for all α′ ∈ x. Dene a menu x to be temptation-free if
there is an α ∈ B(x) such that {α} ∼ x.

Lemma 9. Suppose ! satises AIC and has a regular, nite additive EU representation. Fix any interior β and

any x such that x ∪ {β} is temptation free and β /∈ B(x ∪ {β}). Then there is no i with

wi(β) = max
α∈x∪{β}

wi(α).

Proof. Suppose not. Suppose β is interior, x ∪ {β} is temptation free, β /∈ B(x ∪ {β}), and there is an i with

wi(β) = max
α∈x∪{β}

wi(α).

 2009 The Review of Economic Studies Limited

 at N
orthw

estern U
niversity Library on Septem

ber 2, 2011
restud.oxfordjournals.org

D
ow

nloaded from
 

http://restud.oxfordjournals.org/


DEKEL ET AL. TEMPTATION-DRIVEN PREFERENCES 967

From Lemma 8, we know that there is an x′ such that β is an approximate improvement for x ∪ x′. Because
β /∈ B(x ∪ {β}), we know that u(β) < maxα∈x u(α), where u is dened by u(γ ) = V ({γ }) as usual. By AIC, then,
x ∪ {β} cannot be temptation free, a contradiction. ‖

To complete the proof of Theorem 1, we use the following result from Rockafellar (1970, Theorem 22.2, pp.
198�–199):

Lemma 10. Let zi ∈ RN and Zi ∈ R for i = 1, . . . , m and let ( be an integer, 1 ≤ ( ≤ m. Assume that the

system zi · y ≤ Zi , i = ( + 1, . . . , m is consistent. Then one and only one of the following alternatives holds:

(a) There exists a vector y such that

zi · y < Zi, i = 1, . . . , (

zi · y ≤ Zi, i = ( + 1, . . . , m

(b) There exist non-negative real numbers λ1, . . . , λm such that at least one of the numbers λ1, . . . , λ( is not zero, and

m∑

i=1

λizi = 0

m∑

i=1

λiZi ≤ 0.

It is easy to use this result to show that if we have some equality constraints, we simply drop the requirement
that the corresponding λ�’s are non-negative.

Fix ! with a regular nite additive EU representation which satises DFC and AIC. We use Lemma 10 to show
that there exists a1, . . . , aI , b11, . . . , bIJ , and c1, . . . , cI such that

aiu +
∑

j

bij vj + ci1 = wi, ∀i

∑

i

ai = 1

∑

i

bij = 1, ∀j

−bij ≤ 0, ∀i, j

−ai < 0, ∀i.

Because DFC implies that a weak temptation representation exists, the part of the system with only weak inequality
constraints is obviously consistent. To state the alternatives implied by the lemma most simply, let λik denote the real
number corresponding to the equation

aiu(k) +
∑

j

bij vj (k) + ci = wi(k)

where k denotes the kth pure outcome. We use µ for the equation
∑

i ai = 1, µj for the equation
∑

i bij = 1, ϕij for
−bij ≤ 0, and ψ i for −ai < 0. Hence Lemma 10 implies that either the ai �’s, bij �’s, and ci �’s exists or there exists λik ,
µ, µj , ϕij , and ψ i such that

ϕij ≥ 0, ∀i, j
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ψ i ≥ 0, ∀i, strictly for some i

∑

k

λiku(k) + µ − ψ i = 0, i = 1, . . . , I

∑

k

λikvj (k) + µj − ϕij = 0, i = 1, . . . , I ; j = 1, . . . , J

∑

k

λik = 0, i = 1, . . . , I

∑

i

∑

k

λikwi(k) + µ +
∑

j

µj ≤ 0

Assume that no ai �’s, bij �’s and ci �’s exist satisfying the conditions postulated, so a solution exists to this system
of equations. Note that we cannot have a solution to these equations with λik = 0 for all i and k. To see this, note
that the third equation would then imply µ = ψ i for all i and hence µ > 0. Also, from the fourth equation, we would
have µj = ϕij and hence µj ≥ 0 for all j . But then the last equation gives µ +

∑
j µj ≤ 0, a contradiction. Since∑

k λik = 0, this implies maxi,k λik > 0. Without loss of generality, then, we can assume that λik < 1/K for all i and
k. (Recall that there are K pure outcomes.) Otherwise, we can divide through all equations by 2K maxi,k |λik| and
redene all variables appropriately.

Rearranging the equations gives

∑

k

λiku(k) + µ = ψ i ≥ 0, ∀i with strict inequality for some i

∑

k

λikvj (k) + µj = ϕij ≥ 0, ∀i, j

∑

i

∑

k

λikwi(k) + µ +
∑

j

µj ≤ 0.

For each i, dene an interior probability distribution αi by αi (k) = (1/K) − λik . Because λik < 1/K for all i and k,
we have αi (k) > 0 for all i and k. Also,

∑
k αi (k) = 1 −

∑
k λik = 1. Letting β denote the probability distribution

(1/K, . . . , 1/K), we can rewrite the above as

u(β) + µ ≥ u(αi ), ∀i with strict inequality for some i

vj (β) + µj ≥ vj (αi ), ∀i, j

∑

i

wi(β) + µ +
∑

j

µj ≤
∑

i

wi(αi ).

The rst inequality implies

u(β) + µ ≥ max
i

u(αi ) (E1)

with a strict inequality for some i. The second inequality implies

∑

j

vj (β) +
∑

j

µj ≥
∑

j

max
i

vj (αi ). (E2)
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Turning to the third inequality, recall that
∑

i wi = u +
∑

j vj . Hence the third inequality is equivalent to

u(β) +
∑

j

vj (β) + µ +
∑

j

µj ≤
∑

i

wi(αi ).

Summing equations (E1) and (E2) yields

u(β) +
∑

j

vj (β) + µ +
∑

j

µj ≥ max
i

u(αi ) +
∑

j

max
i

vj (αi )

so

∑

i

wi(αi ) −
∑

j

max
i

vj (αi ) ≥ u(β) +
∑

j

vj (β) + µ +
∑

j

µj −
∑

j

max
i

vj (αi ) ≥ max
i

u(αi ). (E3)

Let x = {α1, . . . ,αI }. Then

V (x) ≥
∑

i

wi(αi ) −
∑

j

max
i

vj (αi ) ≥ max
i

u(αi ).

By DFC, maxi u(αi ) ≥ V (x). Hence

V (x) =
∑

i

wi(αi ) −
∑

j

max
i

vj (αi ) = max
i

u(αi ).

Hence x is a temptation-free menu. Note that the rst equality in the last equation implies that αi maximizes wi for
all i. Also, the second equality together with equation (E3) implies that the weak inequalities in equations (E1) and
(E2) must be equalities. In particular, then,

u(β) + µ = max
i

u(αi ).

However, recall that

u(β) + µ ≥ u(αi ), ∀i with strict inequality for some i.

That is, there must be some k for which u(αk) < maxi u(αi ). Hence x 0= B(x). But αi maximizes wi for every i,
contradicting Lemma 9.

Hence there must exist such ai , bij and ci . From here, the proof follows that of Theorem 2. ‖

APPENDIX F. PROOF OF LEMMA 1

Proof. (Necessity.) We show that if ! has a nite additive EU representation V with only one positive state
and x ( y, then x ( x ∪ y. Clearly,

V (x ∪ y) = max
{
max
β∈x

w1(β), max
β∈y

w1(β)

}
−

∑

j

max
{
max
β∈x

vj (β), max
β∈y

vj (β)

}
.

Hence

V (x ∪ y) ≤ max
{

maxβ∈x w1(β), maxβ∈y w1(β)

}

− max
{∑

j maxβ∈x vj (β),
∑

j maxβ∈y vj (β)

}

≤ max
{

maxβ∈x w1(β) −
∑

j maxβ∈x vj (β),

maxβ∈y w1(β) −
∑

j maxβ∈y vj (β)

}

= max {V (x), V (y)} = V (x).
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Hence x ( x ∪ y.
(Sufciency.) Suppose ! has a nite additive EU representation and satises positive set betweenness. Assume,

contrary to our claim, that this representation has more than one positive state. So ! has a representation of the form

V (x) =
I∑

i=1

max
β∈x

wi(β) −
J∑

j=1

max
β∈x

vj (β)

where I ≥ 2. Without loss of generality, we can assume that w1 and w2 represent different preferences over
!(B)�–otherwise, we can rewrite the representation to combine these two states into one. Let x̂ denote a sphere
in the interior of !(B). Let

x =
[

I⋂

i=1

{β ∈ !(B) | wi(β) ≤ max
β′∈x̂

wi(β
′)}

]
⋂




J⋂

j=1

{β ∈ !(B) | vj (β) ≤ max
β′∈x̂

vj (β
′)}



 .

Because x̂ is a sphere and because I and J are nite, there must be a wi indifference curve which makes up part
of the boundary of x for i = 1, 2. Fix a small ε > 0. For i = 1, 2 and k = 1, . . . , I , let εi

k = 0 for k 0= i and εi
i = ε.

Finally, for i = 1, 2, let yi equal

[
I⋂

k=1

{β ∈ !(B) | wk(β) ≤ max
β′∈x̂

wk(β
′) − εi

k}
]

⋂



J⋂

j=1

{β ∈ !(B) | vj (β) ≤ max
β′∈x̂

vj (β
′)}



 .

Because I and J are nite, if ε is sufciently small,

max
β∈yi

wk(β) = max
β∈x

wk(β), ∀k 0= i

and

max
β∈yi

vj (β) = max
β∈x

vj (β), ∀j.

Hence x ∼ y1 ∪ y2. Also,

max
β∈yi

wi(β) < max
β∈x

wi(β).

Hence x ! yi , i = 1, 2. Hence y1 ∪ y2 ! yi , i = 1, 2, contradicting positive set betweenness. ‖

APPENDIX G. PROOF OF THEOREM 4

Proof. Necessity is obvious. For sufciency, assume ! has a nite additive EU representation and satises DFC
and negative set betweenness. We know from Lemma 2 that it has only one negative state. Using this and Lemma 6,
we see that ! can be represented by a function V of the form

V (x) =
I∑

i=1

max
β∈x

[aiu(β) + biv(β)] − max
β∈x

v(β)

where ai ≥ 0 and bi ≥ 0 for all i and
∑

i ai =
∑

i bi = 1.
We can assume without loss of generality that ai > 0 for all i. To see this, suppose a1 = 0. Then we can write

V (x) =
I∑

i=2

max
β∈x

[aiu(β) + biv(β)] − max
β∈x

(1 − b1)v(β).

If b1 = 1, then bi = 0 for all i 0= 1. Because a1 = 0 and
∑

i ai = 1, we then have V (x) = maxβ∈x u(β). This
is a VUS representation with I = 1 and γ 1 = 0. So suppose b1 < 1. Let v̂ = (1 − b1)v and for i = 2, . . . , I , let
b̂i = bi/(1 − b1). Note that

∑I
i=2 b̂i = 1. Hence we can rewrite V as

V (x) =
I∑

i=2

max
β∈x

[aiu(β) + b̂i v̂(β)] − max
β∈x

v̂(β).
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Continuing as needed, we eliminate every i with ai = 0.
Given that ai > 0 for all i, let qi = ai and let γ i = bi/ai . With this change of notation, V can be rewritten in

the form of VUS. ‖
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