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Abstract This paper considers a class of two-player symmetric games of incomplete
information with strategic substitutes. First, we provide sufficient conditions under
which there is either a unique equilibrium which is stable (in the sense of best-reply
dynamics) and symmetric or a unique (up to permutations) asymmetric equilibrium
that is stable (together with an unstable symmetric equilibrium). Thus, (i) there is
always a unique stable equilibrium, (ii) it is either symmetric or asymmetric, and
hence, (iii) a very simple local condition—stability of the symmetric equilibrium
(i.e., the slope of the best-response function at the symmetric equilibrium)—identifies
which case applies. Using this, we provide a very simple sufficient condition on prim-
itives for when the unique stable equilibrium is asymmetric (and similarly for when
it is symmetric). Finally, we show that the conditions guaranteeing the uniqueness
described above also yield novel comparative statics results for this class of games.
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1 Introduction

This paper considers a class of two-player two-action symmetric games of incomplete
information with strategic substitutes (Bulow et al. 1985). There are three results.
First, we provide sufficient conditions under which there is either a unique equilib-
rium which is stable (in the sense of best-reply dynamics) and symmetric or a unique
(up to permutations)1 asymmetric equilibrium that is stable (together with an unstable
symmetric equilibrium). Thus, there is always a unique stable equilibrium, and it is
either symmetric or asymmetric. Moreover, a very simple local condition—stability of
the symmetric equilibrium (i.e., the slope of the best-response function at the symmet-
ric equilibrium)—identifies which case applies. This in turn enables us to provide a
very simple sufficient condition for when the unique stable equilibrium is asymmetric
(and similarly for when it is symmetric). Finally, these conditions also provide novel
comparative statics results for the class of games we study.

Our interest in providing conditions that guarantee this form of uniqueness is three-
fold. First, the result says that under the identified assumptions, there is a unique
relevant equilibrium, implying that predictions are meaningful. Second, as in the lit-
erature on symmetry breaking discussed further below, it is of interest to provide
conditions under which the only equilibrium is asymmetric. Finally, while there are
many general comparative statics results for games with strategic complements, there
are very few for games with strategic substitutes.

As mentioned, we consider two-player two-action (say High and Low) symmetric
games.2 The critical payoff parameters are the payoff difference of choosing High
versus Low against an opponent playing High, denoted by UH, and similarly this
difference against an opponent choosing Low, denoted byUL. The game has strategic
substitutes when UL > UH. There is a continuum of types, with density f , where
the type is an additively separable cost, x , to choosing High over Low.3 This class of
games admits several economic applications; we focus on the following three that are
explained in more detail in Sect. 2.2: (1) a decision to invest (or enter a market) with
private costs followed by subsequent competition (see, e.g., de Frutos and Fabra 2007;
Amir 2000); (2) investment in a public good, again with private costs or values; and
(3) career choice followed by random matching into couples (see also Becker 1993;
Hadfield 1999).

Our main assumption is that the density f is log-concave4 and single peaked with
modal type having sufficiently low costs (so that the modal type would choose High).

1 By unique up to permutations we mean that, as the game is symmetric, if (x, y) is an equilibrium so is
(y, x). Henceforth, we refer to this as unique and drop the clause “up to permutations.”
2 It would be interesting, but beyond the scope of this paper, to extend the results tomore players and actions,
and also to extend those results that would apply, such as the comparative-statics results, to asymmetric
environments.
3 Obviously, the cost could be a benefit, and one could have both; we focus wlog on the case of costs as it
is more natural in some of the examples we consider and simplifies the writing.
4 Most commonly studied distributions have log-concave densities, see Bagnoli and Bergstrom (2005).
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Uniqueness, stability and comparative statics for... 749

This assumption on the modal type is natural in some examples. For instance in the
career choice model, it follows if the modal type is more qualified at the task she
likes, and in the market entry example, it implies the modal type would choose to
enter even when the opponent enters. These conditions yield our result that there is a
unique stable outcome. Moreover, the unique stable outcome is a pair of mirror-image
asymmetric equilibria if UL − UH > 1/ f

(
UL

)
, i.e., if the strategic substitutes are

strong enough, and it is a symmetric equilibrium if UL −UH < 1/ f
(
UH

)
.5

There are two comparative statics results corresponding to the case of a stable
symmetric or asymmetric outcome. The former is intuitive: starting from a symmetric
equilibrium xe a decrease inUH moves the equilibrium down, i.e., xe decreases. This
is intuitive because asUH decreases, the benefit of playing High decreases. The more
interesting case is the latter: starting from an asymmetric equilibrium, say xe1 > xe2,
as UH increases we have that xe1 increases while xe2 decreases. Here, the indirect
effect of the strategic substitutes dominates for the player choosing a lower threshold,
and the direct effect of increasing the benefit of playing High dominates for the player
choosing the higher cutoff. Sincewe show that the asymmetric equilibrium ariseswhen
the strategic substitutes are strong, this is intuitively consistent with the indirect effect
dominating for one player (it can never dominate for both); that the indirect effect
dominates for the player choosing the lower threshold follows from the structural
assumptions and will be proven in the subsequent analysis.

The questions of stability and uniqueness have been studied in various submodu-
lar contexts [the first such being Cournot (1897)]. Matsuyama (2008) and Amir et al.
(2010) provide an excellent discussion of the importance of obtaining symmetry break-
ing, that is obtaining conditions under which the only (or only relevant) equilibrium is
asymmetric. Amir et al. obtain only (pure strategy) asymmetric equilibria in symmet-
ric games with a nonconcavity along the diagonal, and hence a resulting discontinuity
in the best-reply correspondence. They show how this generalizes and unifies other
papers with a similar structure. By contrast in the environments, we study the exis-
tence of a pure-strategy symmetric equilibrium is not ruled out a priori. In this sense,
our approach is closer to the important work of Matsuyama who also explores when
the only stable equilibria in symmetric environments are asymmetric. However, he
elegantly introduces a strategic complementarity into his models, while our attention
is on games of strategic substitutes.6 Hefti (2016a, b, 2017) is also interested in the
connection between stability and uniqueness of equilibrium. His work focusses on
how various stability properties lead to uniqueness and conversely. This then gives

5 Strategic substitutes (UH < UL) together with the assumptions on f imply that f
(
UH

)
> f

(
UL

)
,

which is why these conditions are sufficient but not necessary.
6 For games with strategic complementarities (supermodular games), there is a significant body of work on
the structure of equilibria and their stability and comparative statics (e.g., Milgrom and Roberts 1990; Vives
1990). However, as noted, those results do not apply in our strategic substitutes (submodular) context. It is
true that a two-player game of strategic substitutes can be transformed into one with strategic complements
by permuting the actions of one player (specifically by reversing the order). However, the symmetry of the
game is not preserved in this permutation, so the results on symmetric submodular games do not apply in
our case.
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conditions that select the symmetric equilibrium in symmetric games.7 Our results
complement his as we provide conditions such that either there is a symmetric stable
equilibrium or there is only one (up to permutations) asymmetric equilibrium. Also,
the conditions obtained differ; ours focus on assumptions on the distribution of types.
Moreover, we are interested in comparative statics, which brings us to the final class
of related work. There are limited results on comparative statics in games with strate-
gic substitutes. Roy and Sabarwal (2010) and Acemoglu and Jensen (2013) provide
such results for the case where direct effects dominate indirect effects, as occurs, for
example, in the symmetric equilibria. We find the asymmetric equilibria of particular
interest, where the indirect effects need not be dominated, and our approach to obtain
the comparative statics results is therefore different.8

2 Model and applications

2.1 The general model

There are two players, 1 and 2, and two actions, H and L . The game is symmetric.
Each player draws, independently, a type x ∈ R, which is her relative dislike or cost
of playing H and is her private information. The payoff from playing L is normalized
to 0. The payoff from playing H is the sum of − x plus eitherUH > 0 if the opponent
plays H or UL > UH if the opponent plays H :

Agent/opponent H L

H UH − x UL − x
L 0 0

The distribution of each x has a log-concave density f with support on an interval[
x, x̄

]
(we allow for x = −∞ or x̄ = ∞), where f has a single peak that is below

UH. Thus, for the modal type, H is the dominant action. To focus on the interesting
cases, we also assume that x̄ > UL, so that for some types, L is the dominant action
(as noted, the assumptions on the modal type of f imply that for some types, H is
dominant).

Remark 1 While the model is described as a two-player Bayesian game, it obviously
applies also when each “player” is a population of individuals (perhaps a continuum)
and after each chooses her action they are randomly paired (see Sect. 2.2.3).

We now describe three natural applications of the model. In each, we explain how
the application’s parameters map into the model, and interpret the model’s critical
assumptions in the context of the application.

7 Zimper (2007) and Roy and Sabarwal (2012) provide conditions on the best-reply function that guarantee
dominance solvability in lattice games with strategic substitutes. Roy and Saberwal in particular relate this
to global stability.
8 It remains an open question to what extent the results herein can be extended to general lattice games,
and not only those with a differentiable structure as we assume.
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2.2 Applications

2.2.1 Public good

Two agents invest (H ) or not (L) in a public good. The gross return from investment
has decreasing returns: 0 if none invests, UL if one player invests, and UL + UH,
where UH < UL, if both invest. Each agent’s cost of investment is x ∈ R and is
the agent’s private information. Each x is independently drawn from a distribution
with a single-peaked log-concave density f where, for the modal type, investing is a
dominant action. The agent’s payoff matrix is thus

Agent/opponent H L

H UL +UH − x UL − x
L UL 0

which is best-reply equivalent to that of the abstract model above (i.e., the best-reply
functions are the same).

2.2.2 R&D or capacity investment

Two firms decide, in a first stage, whether to invest in developing a product or in a
technology that reduces per-unit cost of production. In a second stage, the firms com-
pete in the product market. Each firm’s profit in the second-stage product competition
is 0 if the firm did not invest, the monopoly profitUL if it is the only firm that invested,
and a duopoly profit UH if both firms entered. A firm’s cost of investment is x and is
its private information. Each x is drawn from a distribution with a single-peaked log-
concave density f where the modal type would invest even if the other firm invested
for sure (x < UH). The firm’s payoff matrix is thus exactly that of the abstract model
above.

2.2.3 Gender differences in career choices

There are two equally sized intervals ofmen (m) andwomen (w), and two occupations,
A and B. Each person draws independently a type (k, x)where k is his/her high-income
occupation (HIO or H ) and x is his/her dislike of working at the HIO relative to the
other occupation (L). An individual has income wh from working in his/her HIO, and
wl < wh in the other profession.

Individuals first choose a profession and then are randomly paired into households.
The utility of agents is the sum of job-satisfaction utility, − x or 0, and utility from
household income u. Thus the utility of an individual whose spouse earns w is:

choosing HIO u (wh + w) − x

non-HIO u (wl + w)

As discussed, we denote by UH the increase in utility from the additional income
due to choosing the HIO (ignoring job dissatisfaction, x ) when the spouse has high
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income (chooses H ). Similarly,UL is this difference when the spouse has low income
(chooses L). That is,

UH ≡ u (wh + wh) − u (wl + wh)

UL ≡ u (wh + wl) − u (wl + wl)

Assuming positive and decreasing marginal utility of money implies UL > UH >

0. Normalizing u (wl + wl) = 0 and assuming that an individual’s HIO, k, is either A
or B, we obtain the same payoff matrix as in the public good application. Finally, we
assume that the agents’ relative dislike, x ∈ R, is (independently) drawn according to
a log-concave density f with single peak below 0, i.e., that the modal type prefers to
work at his/her HIO.

3 Analysis

3.1 Characterization of the equilibria

In this section, we show our main result, that either there is a unique equilibrium that
is stable and symmetric or there is a unique pair of (mirror-image) stable asymmetric
equilibria and an unstable symmetric equilibrium. Obviously, an equilibrium has the
form of threshold strategies: a pair

(
x1, x2

)
such that player j of type x j chooses H

iff x j < x j . Thus, the probability that j’s opponent (− j) plays H is F
(
x− j

)
, and j’s

relative payoff from playing H against the distribution of play by − j is:

UHF
(
x− j

)
+UL

(
1 − F

(
x− j

))
− x j

Player j’s best-reply threshold, x j , given the other player’s threshold, x− j , is then

x j = B
(
x− j

)
≡ UHF

(
x− j

)
+UL

(
1 − F

(
x− j

))

Since UL > UH, we see immediately that the slope of the best-reply function is
negative: if one player chooses H more often, then the other player wants to choose
it less often (if x j increases and UL > UH, then UHF

(
x j

) + UL
(
1 − F

(
x j

))

decreases).
A pair of thresholds

(
x1, x2

)
is then an equilibrium if x1 = B

(
x2

)
and x2 = B

(
x1

)

[note that B
(
x j

)
is the best-reply function of player − j , not j]. In general, there can

be two types of equilibria: (1) symmetric, in which case x1 = x2, wherewewill denote
the common equilibrium threshold by xs and (2) mirror-image asymmetric equilibria,
in which case we focus throughout, wlog, on the equilibrium with x1 > x2.

We are interested in (dynamically) locally stable equilibria. An equilibrium is stable
in this sense if, starting from near enough to an equilibrium, the behavior would
converge back to the equilibrium, where the dynamics are given by the best-response
functions. An equilibrium is unstable if it locally diverges. It is straightforward that an
equilibrium (x, y) is stable if B ′ (x)×B ′ (y) < 1 and it is unstable if B ′ (x)×B ′ (y) >
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1. In general, if B ′ (x)×B ′ (y) = 1, an equilibriummay be neither stable nor unstable,
but we will see that in our model such equilibria are stable.

Proposition 1 Depending on the model’s parameters, either there is a unique equilib-
rium xs which is stable and symmetric with

∣∣B ′ (xs)
∣∣ ≤ 1, or there are three equilibria:

an unstable symmetric equilibrium xs with
∣∣B ′ (xs)

∣∣ > 1 and two stable asymmetric
equilibria (x, y) and (y, x) with B ′ (x) × B ′ (y) < 1.

Proof Denote the best-reply function by B (x) = UHF (x) + UL (1 − F (x)) ∈[
UH,UL

]
. Since B is continuous, it has a fixed point in the closed interval

[
UH,UL

]
,

which is a symmetric equilibrium. Consider now the function R (x) = B (B (x)).
Then in any equilibrium, symmetric or not, x = R (x), i.e., equilibria are intersections
of R with the 45-degree line. In a symmetric equilibrium, x = B (x) = R (x). An
asymmetric equilibrium is a pair of thresholds (x, y) with x = B (y) = R (x) and
y = B (x) = R (y).

We consider R′ at intersections R (x) = x , since then R′ (x) > 1 implies instability
of equilibrium (symmetric or not) and R increasing with R′ (x) < 1 implies stability
(to see the stability argument, observe that if R is increasing and R′ (x) < 1 then
for x̃ close to x (specifically closer than any other fixed point) but below x , we have
x > R (x̃) > x̃ so the best reply to the best reply of x̃ is closer to x but does not
overshoot. (Iterating on R this process must converge and cannot converge to a point
below x as then it would converge to a fixed point between x̃ and x while we assumed
that x̃ is closer to x than any other fixed point.) A similar argument applies for x̃ close
to and greater than x .)

Note first that B is decreasing: since UH < UL, B ′ (x) = (
UH −UL

)
f (x) < 0.

Therefore, if there is an asymmetric equilibrium (x, y) with y > x , we must have
y > xs > x . It cannot be that y > x > xs since if y > xs then x = B (y) < B (xs) =
xs , a contradiction. Similarly, it cannot be that xs > y > x since if x < xs then
y = B (x) > B (xs) = xs . Now, since R (·) = B (B (·)), it is increasing.

Before continuing with the details, we outline the main parts of the proof. We show
that if R′ (xs) > 1 then R looks like in Fig. 1 where it is convex to the left of xs and
lies below the 45 degree line near xs . As it has range in

[
UH,UL

]
, it must intersect

the 45 degree line between UH and xs so there is an asymmetric equilibrium (x, y).
Moreover, at this intersection R′ < 1 so this equilibrium is stable.

We also show that if R′ (xs) ≤ 1, then R looks as in Fig. 2 where R is strictly
concave and increasing to the right of xs , and since R′ (xs) ≤ 1 it is below the 45
degree line to the right of xs , and hence R cannot intersect the 45 degree line to the
right of xs , so there is no asymmetric equilibrium (x, y).

For R′ (xs) < 1, we already noted that xs is stable so, finally, we show that xs is
also stable if R′ (xs) = 1. In this case, R is as in Fig. 3 where it is convex below and
concave above xs , and as it is increasing and crosses the 45 degree line from above at
xs , we have that xs is stable.

We continue nowwith the formal arguments. As noted, B ′ (x) = (
UH −UL

)
f (x)

< 0. Since f is single peaked with peak below UH, then over the interval
[
UH, x̄

]

we have f ′ (x) < 0 hence B ′′ = (
UH −UL

)
f ′ (x) > 0. That f is log-concave

is equivalent to f ′(x)
f (x) being weakly decreasing, which implies that B′′(x)

B′(x) is weakly
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754 E. Dekel, A. Pauzner

Fig. 1 When R′(xs ) > 1, then R is convex below xs and there exists another fixed point x̂ < xs with
R′(x̂) < 1

Fig. 2 When R′(xs ) ≤ 1, then R is concave above xs and there does not exist another fixed point x̂ > xs
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Fig. 3 When R′(xs ) = 1, then R is convex below xs and concave above it. This implies that xs is stable

decreasing. This implies 0 > B ′′ (x) B ′ (y) ≥ B ′′ (y) B ′ (x) for all y > x (and
B ′′ (x) B ′ (y) ≤ B ′′ (y) B ′ (x) < 0 for all y < x).

Consider now a symmetric equilibrium xs = B (xs). For any x and y = B (x), we
have

R′ = (B (B (x)))′ = B ′ (B (x)) B ′ (x) = B ′ (y) B ′ (x) (1)

R′′ = B ′′ (B (x))
(
B ′ (x)

)2 + B ′ (B (x)) B ′′ (x) = B ′′ (y)
(
B ′ (x)

)2 + B ′ (y) B ′′ (x) .

(2)

Note also that for an asymmetric equilibrium, R′ (x) = R′ (y). Furthermore, since
B ′ < 0 then R′ > 0.

Consider the case where R′ (xs) ≥ 1 and recall that

B ′′ (y) B ′ (x) ≤ B ′ (y) B ′′ (x) ⇐⇒ (3)
∣
∣B ′′ (y) B ′ (x)

∣
∣ ≥ ∣

∣B ′ (y) B ′′ (x)
∣
∣ (4)

for y > x . For x < xs (since B ′′ > 0 and
∣∣B ′ (xs)

∣∣ = √
R′ (xs) ≥ 1) we have∣∣B ′ (x)

∣∣ > 1. Hence multiplying the LHS of (3) by B ′ (x) it becomes positive and by
(4) is greater in absolute value than the RHS. Hence, substituting into (2), R′′ (x) > 0.
Thus,

R′ (xs
) ≥ 1 ⇒ R′′ (x) > 0 ∀x < xs, (5)
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and similarly one can show

R′ (xs
) ≤ 1 ⇒ R′′ (x) < 0 ∀x > xs . (6)

First note that if R′ (xs) = 1, then xs is stable. This is because when R′ (xs) = 1,
we have from the preceding pair of equations that R′ (x) < 1 for all x �= xs which
implies stability.

Thus, xs is stable iff R′ (xs) ≤ 1 and then, by (6), R does not cross the 45 degree
line for any x > xs so there is no asymmetric equilibrium (recall that if there were an
asymmetric equilibrium (x, y) then R (x) = x and R (y) = y and one of them would
be greater than xs and the other would be less).

Also, xs is unstable iff R′ (xs) > 1 and then R must cross the 45-degree line at
some x̂ < xs (if not, then for all x < xs we have R (x) < x . But for x < UH, this
contradicts that for all x̃ we have B (x̃) ∈ [

UH,UL
]
hence R (x) ≥ UH ≥ x). Thus,(

x̂, B
(
x̂
))

is an asymmetric equilibrium. Moreover, since R′′ (x) > 0 for all x < xs

this is the only x for which R (x) = x and R′ (x̂
)

< 1 so it is the only asymmetric
equilibrium with x < xs and since R′ (x̂

)
< 1 it is stable (obviously, there exists one

other asymmetric equilibrium, its mirror image,
(
B

(
x̂
)
, x̂

)
). 
�

Whether the stable equilibrium is asymmetric or symmetric depends on whether
the strategic substitutes are strong enough (i.e., whether

∣∣B ′ (xs)
∣∣ is greater than, or

weakly less than, 1). The following corollary states sufficient conditions on themodel’s
primitives for that:

Corollary 1 1. If UL − UH > 1/ f
(
UL

)
, then the only stable outcome is a pair of

(mirror-image) asymmetric equilibria.
2. If UL−UH ≤ 1/ f

(
UH

)
, then the only stable outcome is a symmetric equilibrium.

Proof The symmetric equilibrium is stable and hence by the result above unique iff∣
∣B ′ (xs)

∣
∣ = ∣

∣(UH −UL
)
f (xs)

∣
∣ ≤ 1 and since xs ∈ [

UH,UL
]
and f is decreasing

on
[
UH,UL

]
this follows if

∣
∣UH −UL

∣
∣ = UL − UH ≤ 1/ f

(
UH

) ≤ 1/ f (xs).
Similarly, it is unstable, and hence the unique stable equilibrium is asymmetric, iff∣∣B ′ (xs)

∣∣ = ∣∣(UH −UL
)
f (xs)

∣∣ > 1 and again this follows if
∣∣UH −UL

∣∣ = UL −
UH > 1/ f

(
UL

) ≥ 1/ f (xs). 
�

3.2 The implication of the characterization in the applications

In the public good case, the differenceUL−UH measures the decrease in the marginal
returns to investment in the good—the difference between the return if one agent
invests and the additional return if a second agent invests. If this decrease in returns is
sufficiently weak, then both agents have the same threshold of private investment cost
belowwhich they invest. If the decrease is sufficiently strong, then a stable equilibrium
must be asymmetric: One of the agents invests as long as his cost is below a low
threshold, and the second invests below a high threshold (that is, invests more often).
Which of the two agents is the one with the low/high threshold is undetermined (i.e.,
there are two mirror-image stable equilibria).
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In the R&D/capacity investment interpretation of the model, UL − UH is the
difference between monopoly and duopoly profits. If competition decreases profits
sufficiently, then the equilibrium outcome is asymmetric—one firm is “aggressive”
and enters the market for a wide range of investment costs, while the other invests only
as long as its cost is below a low threshold. If instead the gain from being a monopo-
list versus a duopolist is not too large, then both firms will pick the same investment
threshold.

Finally, in the career choice interpretation, what matters is the additional household
utility when an individual brings home additional income by working in his/her high-
income versus low-income occupation. By the assumption of decreasing marginal
utility, this additional household utility is lower if the spouse works in his/her high-
income occupation and hence already brings home a high income. If marginal utility
is sufficiently decreasing, then there will be an asymmetric equilibrium: Individuals
of one gender choose their HIO even if they dislike it quite strongly, while those of the
other gender choose their HIO only as long as their dislike is not so strong. While the
model does not predict whether men or women will be those choosing their HIO more
often, the observed gender wage gap in which men have higher wages corresponds to
the first case.

4 Comparative statics

4.1 Theoretical results

In the section, we analyze general properties of the comparative statics of the model.
The comparative statics obviously depend on two effects. First, there are the standard
direct effects: How each player’s choices respond to a parameter change when the
other player’s behavior does not change. Second, there are the indirect effects: Each
player’s behavior does change, which further impacts the other player’s choices. The
results in this section show how the overall equilibrium effect can be determined from
the direct effects alone.

To state these results formally, let t be an exogenous parameter affecting both
players, with t = 0 denoting the initial situation. We thus add the argument t to all
functions. So xs (t) denotes the symmetric equilibrium as a function of t , that is,
xs (t) = B (xs (t) , t). Similarly, an asymmetric equilibrium is a pair

(
x1 (t) , x2 (t)

)

that solves x j (t) = B
(
x− j (t) , t

)
for j = 1, 2. Denote partial derivatives using

subscripts, for example Bt (xs (t) , t) = ∂B (y, t) /∂t at the point y = xs (t).

Remark 2 Note that t may be an explicit change in UH, UL or f (e.g., replacing UH

by UH + t or shifting the distribution function F to F(x + t)), but t may also be a
change in a parameter in an application that affects one or more parameters in the
model, e.g., a change in wl in the career choice application, which affects both UL

and UH.

Theorems 1 and 2 formalize the relationships between the direct and indirect effects.
Their proofs follow, with elementary algebraic manipulations from Lemmas 1 and 2
that follow Theorem 2.
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Theorem 1 states that in the case of a (stable) symmetric equilibrium, the combined
equilibrium effect turns out to be of the same sign as the direct effect:

Theorem 1 Consider a stable symmetric equilibrium xs (t). Then at t = 0, xst (t) has
the same sign as Bt (xs (t) , t).

Theorem 2 below considers (stable) asymmetric equilibria
(
x1, x2

)
where, recall,

wlog x1 > x2. In this case, the relationship depends on the signs of the direct effects
and their relative magnitudes. If the direct effects on the two players go in opposite
directions (part 1 of the theorem), then the combined equilibrium effect has the same
direction as the direct effect for each, and, moreover, the effect on x1 is larger. If the
direct effects are in the same direction, there are two cases: If the direct effect on player
2 is larger than that on player 1 (part 2a) the combined effect on player 2 is the same
as the direct effect, while the combined effect on player 1 is the opposite. Otherwise
(part 2b) at least one of the combined effects must be the same as the direct effect.
However, in this case, which of the three possibilities—whether x1 (t) or x2 (t) or
both change in the same direction as the direct effect—cannot be determined without
further data.

Theorem 2 Consider a stable asymmetric equilibrium
(
x1 (t) , x2 (t)

)
, with the con-

vention that x1 > x2. Then at t = 0:

1. If Bt
(
x j (t) , t

)
< 0 < Bt

(
x− j (t) , t

)
for j = 1 or 2 (where one inequality may

be weak), then

x j
t (t) > 0 > x− j

t (t)

Moreover
∣∣x1t (t)

∣∣ >
∣∣x2t (t)

∣∣.
2. Otherwise,

(a) If
∣∣Bt

(
x1 (t) , t

)∣∣ ≥ ∣∣Bt
(
x2 (t) , t

)∣∣ > 0, then

sign
(
x2t (t)

)
= sign

(
Bt

(
x1 (t) , t

))
and sign

(
x1t (t)

)
= −sign

(
Bt

(
x2 (t) , t

))
.

(b) If 0 <
∣∣Bt

(
x1 (t) , t

)∣∣ <
∣∣Bt

(
x2 (t) , t

)∣∣ then

sign
(
x2t (t)

) = sign
(
Bt

(
x1 (t) , t

))
or sign

(
x1t (t)

) = sign
(
Bt

(
x2 (t) , t

))
.

These theorems follow, with elementary algebraic manipulations, from the next
two lemmas.

Lemma 1 In a stable asymmetric equilibrium
(
x1 (t) , x2 (t)

)
, with the convention

that x1 > x2, at t = 0,

∣∣∣Bx

(
x1 (t) , t

)∣∣∣ < 1 <

∣∣∣Bx

(
x2 (t) , t

)∣∣∣ .
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Proof At t = 0, Bx
(
x j (t) , t

) = (
UH −UL

)
f
(
x j

)
. Recall that x1 > xs > x2,

and that f is decreasing in this region. Thus
∣∣Bx

(
x1 (t) , t

)∣∣ < |Bx (xs (t) , t)| <∣∣Bx
(
x2 (t) , t

)∣∣ where xs denotes the unstable symmetric equilibrium. Since
|Bx (xs (t) , t)| > 1 (by instability) and

∣∣Bx
(
x1 (t) , t

)∣∣ ∣∣Bx
(
x2 (t) , t

)∣∣ < 1 (by sta-
bility) we have

∣∣∣Bx

(
x1 (t) , t

)∣∣∣ < 1 <

∣∣∣Bx

(
x2 (t) , t

)∣∣∣ .


�
Lemma 2 In a stable equilibrium

(
x1 (t) , x2 (t)

)
, at t = 0,

sign
(
x1t (t)

)
= sign

(
Bt

(
x2 (t) , t

)
+ Bx

(
x2 (t) , t

)
Bt

(
x1 (t) , t

))

and likewise

sign
(
x2t (t)

)
= sign

(
Bt

(
x1 (t) , t

)
+ Bx

(
x1 (t) , t

)
Bt

(
x2 (t) , t

))

Proof Taking derivatives of x j = B
(
x− j (t) , t

)
wrt t we obtain:

x1t (t) = Bt

(
x2 (t) , t

)
+ Bx

(
x2 (t) , t

)
x2t (t)

x2t (t) = Bt

(
x1 (t) , t

)
+ Bx

(
x1 (t) , t

)
x1t (t)

and thus

x1t
(
1 − Bx

(
x2 (t) , t

)
Bx

(
x1 (t) , t

))
= Bt

(
x2 (t) , t

)

+ Bx

(
x2 (t) , t

)
Bt

(
x1 (t) , t

)
.

By stability, at t = 0, 1 − Bx
(
x2 (t) , t

)
Bx

(
x1 (t) , t

)
> 0. Thus we obtain the

statement of the Lemma. 
�

4.2 Applicability of the comparative statics results

The general comparative statics results above yield interesting predictions in some
cases—in particular when the stable equilibrium is asymmetric. Consider thus an
equilibrium

(
x1, x2

)
, with the convention that x1 > x2, and consider an increase

in UH. This has an unambiguous (and perhaps surprising) effect on the equilibrium
strategies. Player 1’s threshold, x1, unambiguously decreases and player 2’s threshold,
x2, increases. The threshold of player 1 decreases because in this case the strategic
substitutes effect is so strong that for her the indirect effect—of player 2 choosing H
more often—must dominate the direct effect.
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Why is the comparative statics onUH unambiguous? Details follow from the proof
of Theorem 2, but we provide the basic ideas here. The direct effect of a change in
UH is stronger for player 2 than for player 1, as 2 faces an opponent who more often
plays H (recall that x1 > x2). Moreover, we show that player 1 reacts to a change in
player 2’s threshold more strongly than the change that occurs in player 2’s threshold
itself (i.e., the slope of the best-reply function is steeper than 1). Combining these two
arguments implies that the indirect effect dominates the direct effect for player 1, and
thus the overall effect must be a decrease in player 1’s threshold. For player 2, the
opposite holds since the slope of her best-reply function is less than 1 and player 1’s
direct effect is smaller than that of player 2’s.

To see the above more formally, recall that for j = 1, 2, the best-response function
is:

x j = B
(
x− j

)
≡ UHF

(
x− j

)
+UL

(
1 − F

(
x− j

))
.

The derivatives with respect to t = UH are B j
t = F

(
x− j

)
> 0. Since F

(
x1

)
>

F
(
x2

)
, we thus have B2

t

(
x1

)
> B1

t

(
x2

)
> 0 . By Theorem 2 part (2a), the combined

effects are x2t > 0 and x1t < 0.
In our three applications, the above analysis of a change inUH yields the following

conclusions. Recall that we consider a stable asymmetric equilibrium in which x1 >

x2. In the public good environment, if the benefit of having a second contribution
decreases, then x2 will become even smaller while x1 will increase further. That is,
the player investing less often will invest even less frequently due to this, but the player
investing more often will invest even more despite the benefit of doing so going down.
In an asymmetric equilibrium of the R&D example, a decrease in duopoly competition
(e.g., an increase in product differentiation) would lead the player to invest more in the
asymmetric equilibrium to decrease his investment and the one investing less to invest
more. Finally, in the gender occupation choice example, a tax increase on households
with two high incomes would lower UH and hence further decrease the threshold of
the gender choosing the high income less often but would increase the threshold of
the one already choosing it often.
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