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The independence axiom used to derive the expected utility representation of 
preferences over lotteries is replaced by requiring only convexity, in terms of 
probability mixtures, of indifference sets. Two axiomatic characterizations are 
proven, one for simple measures and the other continuous and for all probability 
measures. The representations are structurally similar to expected utility, and are 
unique up to a generalization of afhne transformations. First-order stochastic 
dominance and risk aversion are discussed using a method which finds an expected 
utility approximation to these preferences without requiring differentiability of the 
preference functional. Journal of Economic Literature Classification Numbers: 022, 
026. ( 1986 Academx Press, Inc 

1. INTRODUCTION 

This paper provides an implicit representation for an axiomatic charac- 
terization of preferences under uncertainty. Essentially only the controver- 
sial independence axiom is changed to the substantially weaker between- 
ness axiom (Chew [2]), keeping ordering, monotonicity, and continuity 
type axioms. The betweenness axiom only requires that indifference sets be 
convex, i.e., if an individual is indifferent between two lotteries, then any 
probability mixture of these two is equally good. This characterization is of 
interest for a number of reasons. The betweenness axiom is appealing from 
a normative viewpoint but is compatible with behavior which is not per- 
mitted in expected utility, such as the Allais paradox. It also provides a 
useful behavioral approach since it is the weakest form under which 
preferences are both quasiconcave and quasiconvex. Quasiconcavity is 
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necessary for the proof of existence of a Nash equilibrium, since if preferen- 
ces are strictly quasiconvex anywhere then a mixed strategy is worse than 
one of the pure strategies used with positive probability in that mixed 
strategy. Furthermore, quasiconcavity together with risk aversion are suf- 
ficient conditions for continuity of asset demands (while risk aversion alone 
is not sufficient (Dekel [4])). Q uasiconvexity on the other hand is 
necessary and sufficient for dynamic consistency of choices under uncer- 
tainty (see Green [lo]). In general, when temporal decisions are 
made-given underlying expected utility preferences-the induced preferen- 
ces will be quasiconvex (see Kreps and Porteus [ 111, and Machina [ 131). 
Thus, in order to guarantee the existence of a Nash equilibrium, dynamic 
consistency, and continuous asset demands, we may want to impose 
quasiconcavity and quasiconvexity of preferences, giving between- 
ness-without making the additional restrictions necessary for expected 
utility. 

The paper begins by presenting the axioms and characterization, discus- 
sing recent literature, and proving the representation. Two approaches are 
taken, one with a weak continuity axiom provides a representation for all 
simple probability measures (those whose support is a finite subset of the 
outcome set), and the second imposes a stronger form of continuity which 
suffices both to extend the results to the set of all distributions and also 
implies that the functional representation is continuous. Then an example 
is constructed to show that preferences may satisfy the axioms yet not have 
any differentiable preference functional, even when preferences are over the 
simplex (hence trivially continuous). This implies that the generalization of 
local monotonicity and risk aversion to global conclusions as proven in 
Machina [ 121 might not hold for all preferences of the type discussed here. 
However, an alternative and intuitive extension of local properties is 
demonstrated by examining the slopes of the indifference hyperplanes. 

2. AXIOMATIC CHARACTERIZATION 

There is an underlying compact metric space W which is the space of 
outcomes of lotteries, representing, for example, monetary outcomes or 
commodity bundles. Preferences, 2, are defined on the space of all 
probability measures (D) or simple probability measures (D,) on the Bore1 
field of W. Convex subsets of D and D,, could also be dealt with; the details 
are not presented. From these preferences define the induced strict 
preference, > , and indifference, - , relations. Preferences over D and D, 
also induce preferences over W, where for any W, ~1’ E W, w is preferred to 
MI’ if the measure assigning probability 1 to w is preferred to the measure 
assigning probability 1 to w’. These measures will be denoted MI, w’ and this 
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preference relation is written as > where no confusion should result, and 
the context will clarify whether WE W (the outcome) or WED (the 
degenerate measure) is implied. For any w, MI’ in W the measure which 
assigns probability o! to w and 1 - N to W’ is denoted (LX, w; (1 - a). w’). 

The following axioms will be used (where P, Q, R are measures in D and 
C, w, M”, and MI” are outcomes in W). 

Al. (a) > is a weak order ( z is complete, > is asymmetric, and 
both > and - are transitive). 

(b) There exist best and worst elements in D, which are the 
sure outcomes denoted by W and w. (These are not necessarily unique.) 

A2. Solvability: If P> Q > R, then there exists an c( E (0, 1) such that 
crP+(l -a)R-Q. 

A3. Monotonicity: If M’ = w or IV = C and MI’> ~3” (resp. 12~’ - No”), 
then (a. w’; ( 1 - a), W) > (a, w”; (1 - c(), M?) for every cr E (0, 1) (resp. (CG M.‘; 
(1 -a), ~‘)-(cf, w”; (1 -CI, ~1) for every c(E [0, 11). 

A4. Betweenness: If P> Q (resp. P - Q), then P> CXP + 
(l-a)Q>Q for every a~(0, 1) (resp. P-ctP+(l-cr)Q for every 
fxE co, 11). 

PROPOSITION 1. Preferences over Do satisfy Al-A4 if and only tf  there 
exists a function u( ., .): W x [0, l] + R mcreasing in the preference ordering 
on W, and continuous in the second argument such that P> Q (resp. P- Q) 
o V[P] > V[Q] (resp. V[P] = V[Q]), w h ere V[F] is defined implicitly as 
the unique v  E [0, 11 that solves 

u(w, v) dF(w) = vu(W, v) + (1 - v) u(w, v). (*I 

Furthermore u(wx, v) is unique up to positive affine transformations which are 
continuous functions of’ v. A particular transformation exists setting 
u(w, v) = 0 and u(W, v) = 1 for every v, givingthe simpler representation 
(similar to expected utility) 

s u(w, V[F]) dF(w)= V[F]. (**I 

The uniqueness characterization of u( ., ) in Proposition 1 is a natural 
extension of the result in expected utility theory that the Bernoulli utility 
function is unique up to afline transformations to the framework developed 
in this paper. To clarify this generalization let V[F] be uniquely defined 
from u( ., ) by (* ) and let P[F] be uniquely defined by (* ), where t;( ., . ) 
replaces u( ., . ). I say that u( ., .) is unique up to positive affine transfor- 
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mations which are continuous functions of u when V’[F] and @J’] 
represent the same preferences if and only if ti(w, u) = a(o) u( w, u) + b(o) for 
some a(u) positive continuous and b(o) continuous. 

Monotonicity (A3) is a weaker axiom than the standard first-order 
stochastic dominance axioms (cf. [2, Property 31). However, as will be 
seen in Section 4, Al-A4 are sufficient to prove that the preferences are first 
order stochastic dominance preserving. In the appendix I provide a charac- 
terization which does not assume A3. This characterization is similar to 
Proposition 1, except that u(u!, u) is not necessarily increasing in u’ (see 
Sect. 3.A). 

The characterization in Proposition 1 is an implicit expected utility 
representation, and the similarity of equation (**) to an expected utility 
calculation suggests that results from the theory of expected utility can be 
extended to the framework of this paper. A general result along these lines, 
based on Epstein’s observation [lS] that many properties of an optimal 
choice depend on the indifference curve through that choice and not on the 
whole indifference map, can be derived. Let U be the set of real valued 
functions on IV, U a subset of U and D a subset of D. Consider any 
proposition in expected utility theory of the following form: if u(. ) E e 
then the distribution FED which maximizes s u(ul) dF(w) is in Is. For 
example, if 14 is concave then F is not second order stochastically 
dominated, and if 14 also has positive third derivative then the optimal F 
isn’t third order stochastically dominated. This proposition can be exten- 
ded to implicit expected utility preferences as follows: if u( ., u) E i;i for every 
u then the F which maximizes (**) is in D. This claim follows from 
corollary 1 in [ 151. So if U( ., D) has negative second derivative and positive 
third derivative with respect to the first argument for every U, then the 
optimal F is not third order stochastically dominated. 

Proposition I is related to recent axiomatic work in non-linear utility 
theory, in particular Chew [Z], and Fishburn [6, 7, S]. There are two dis- 
tinct approaches in this research, depending on whether transitivity of 
preferences is assumed [2, 73 or not [6, 81. It is common in both cases to 
use a type of symmetry axiom which imposes restrictions on how indif- 
ference sets relate to one another, while the betweenness axiom imposes 
convexity on each indifference set (see the indifference sets in the 
probability simplices in Fig. 1 ). Of course, the additional restriction 
provides stronger results, essentially guaranteeing the skew-symmetry of a 
bilinear function 4: D x D -+ R, which represents preferences by &p, q) > 0 
if and only if p >q [6]. With transitivity & ., .) can be decomposed [7] 
and a weighted expected utility decomposition has been analyzed [2]. 

The results closest to my work are those of Chew [3] and Fishburn [7]. 
In [3] Chew has independently provided an implicit weighted utility 
characterization of preferences satisfying weak order. continuity and sub- 



308 EDDIE DEKEL 

Al -A3 

4 
Al-A4 

‘.. 
..:,: 

,... : 
: d,... 

and substltution- 
independence [Zl 

Al-A4 

4 
4 

expected 
utility 

FIGURE 1 

stitution axioms which, taken together, are equivalent to Al(a), A2 and 
A4. Preferences are represented by the solution of an implicit equation 
which has the form of a weighted utility function (cf. [Z]) rather than the 
implicit expected utility structure in Proposition 1. Fishburn also does not 
require Al(b) and compactness of W, assuming instead countable boun- 
dedness (there exists a countable subset B of D such that for every PE D 
there is Q, Q’ E D with Q k P 2 Q’). Other than this his axioms are 
equivalent to Al, A2, and A4 (Continuity in [7] is A2 and Dominance is 
A4) giving [7, Theorem 11: Countable boundedness, Al (a), A2, and A4 
hold iff there exists a function f: D + R s.t. P, QED, P>Q ifff(P)>f(Q) 
and f(crP+ (1 - a)Q) is continuous and increasing (constant) in c1 if 

P>Q(P-Q,. 
The representation in this paper is a more refined functional form, closer 

in structure to expected utility, admits a simple analysis of risk aversion 
and dominance, and has a simple uniqueness characterization. 

Proposition 1 bears a formal resemblence to Fishburn’s implicit charac- 
terization of a certainty equivalent functional m: D + R [S]. m(. ) is 
defined from 14(x, m(P)) dP(x) =O, where 4 is a skew symmetric, 
monotone function and W is an interval of the real line. However, the can- 
cellation axiom in [S] is of the symmetry class, thus 4 is skew symmetric 
while u( ., .) may not be. Note that when W is restricted to a compact inter- 
val of R, I can use Proposition 1 to provide a mean value representation. 
Given u( W, v), normalized so that u( W, . ) = 1, u( w, . ) = 0, define p( VV) as the 
unique p which satisfies w N (p, W; (1 - p), w ) and define c( W, w’) = 
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u( W, p( W’ )) - p( w’). The certainty equivalent M[P’] = { w E D ) w - F} 

satisfies u(M[F], V[F])= V[F] by (*) so we have 1 c(w, M[F])dF(w)= 
J {z&v, V[F])- V[F]} dF(w)=O. Th’ IS shows how a generalized mean 
value without symmetry axioms can be derived using the approach of this 
paper. (Note that c( ., . ) may or may not be skew symmetric depending on 
whether or not the cancellation axiom is satisfied.) 

Before going through the constructive proof, it is worthwhile to consider 
the intuition of the representation. A4 implies that indifference sets are con- 
vex. Since thick indifference sets are ruled out (by A4), we are left with 
indifference sets as hyperplanes. Recall that preferences of the expected 
utility type have parallel hyperplanes for indifference sets. Imagine now 
that given the indifference hyperplane, say H(u), through the lottery (u, C; 
(1 - u), w) we ignore all the other indifference sets and construct instead a 
coilection of parallel hyperplanes. These can be taken to represent preferen- 
ces satisfying the expected utility hypothesis and therefore there exists a 
function u, (the subscript indicating the original hyperplane H(u)) which 
satisfies j u,.(. ) dF(. ) = the expected utility evaluation of F. If we set, as we 
are free to do with expected utility preferences, u,,(E) = 1 and u,,(w) = 0 
then for F= (II, @; (1 - u)w) we have u,,(M’)u + u,(w)( 1 - u) = u. Thus for 
any F E H(u), which is an indifference set both for the original preferences 
and these artificial expected utility preferences, we know that 
s u,.( .) dF’( . ) = u. Doing this for indifference hyperplanes through points 
(v, G; (1 - ti), w) for every v E (0, 1) we get a collection of functions U,.(W) 
which is exactly u(M’, u). The intuition of examining the expected utility 
extension of a given indifference hyperplane lies behind most of the sub- 
sequent results. A number of the proofs are done using the characterization 
(**). This is not restrictive and is only a choice of normalization. 

Proof qf Proposition 1. I will choose a normalization and prove the 
existence of a representation such as (**), and the uniqueness result will 
extend this to representations of the form (*). For any (p, W) with MJ # w, 
M’ # G, and PE (0, 1) the lottery (p, M’; (1 -p), w) is either: (i) strictly 
preferred to W; (ii) strictly worse than M’, or (iii) indifferent to ~1. By 
solvability find (i) a /I E (0, 1) s.t. (/3, E; (1 - j), IV) - (p, I?; (1 - p), w); or 
(ii) a yE(O,l) s.t. (y,w; (1-Y),M’)-(p,*; (1-p),w). In case (i) set 

4~!,P)=(P--8)I(l--B), m case (ii) u( W, p) = p/( 1 - Y), and in case (iii) 
u(w~,p)=p. For ~‘=U’set u(M’,p)=l, Vp; and for u’=w set u(w,p)=O. 
Since u(u,, v) will be shown to be continuous on the open interval (0, I), 
extend the definition of u(M., u) to the closed interval by continuity. 
Diagramatically (see Fig. 2) what has been done is: (a) construct the inter- 
section of the indifference set through (p. I?; (1 - p), w) with the 2-dimen- 
sional simplex with vertices (w, IV, M’); (b) find the line parallel to this inter- 
section going through the MT vertex; this is the dashed line in the diagram; 
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(c) define the point at which that parallel line meets the (w, W) edge of the 
simplex as u(w, p). This is exactly the value that expected utility preferences 
parallel to the hyperplane through (p, W; (1 - p), w) would have assigned 
to the sure outcome w  (if the values of tl, and w  were normalized to 1 and 
0). 

The proof that (**) actually represents the preferences when using the 
constructed u( ., . ) will proceed in five steps: 

(I) assigning a value to lotteries (p, M’; (1 - p), w), 

(2) considering lotteries on the edges of (w, W, W) simplices, 

(3) considering other two-outcome lotteries, 

(4) lotteries in a (w, u’, 19) simplex, 

(5) general simple lotteries. 

(1) Let V[p, W; (1 - p), w] = p, which obviously retains the preference 
ordering of such lotteries. Substituting in (**) gives pu(W, p) + 
(1 - p) u(w, p) = p as required. 

(2) Consider (p. w; (1 -/J), W) - (p, M’; (1 - p), w). By the previous step 
it is sufficient to show that (1 -/I) U(W, p) + bu(w, p) = p. By construction 
U(W p)=p/(l -B) so (l-/I)p/(l -j)+p.O=p as desired. A similar 
proof holds for lotteries on the (u’, %) edge. 

(3) This stage in the proof shows that for lotteries of the type (TV, w)‘; 
(1 - cx), MI”) with w’, IV” E W, if they are indifferent to, say (p, I?; (1 - p), w), 
then au(w’, p) + (1 - tl) u(w”, p) = p. Since the proof is a simple but lengthy 
geometric analysis it is provided in Appendix B. 

FIGURE 2 
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(4) Given Q = (q, w; q, w; 4, W)- (p, W; (1 -p), w) with q + q+j= 1, 
examine Fig. 3 to see how Q is viewed as a mixture of the two lotteries on 
the edge of the simplex, which are indifferent to Q: 

and 

Q=cx(p, @;(l -p), w)+(l -cc)(t, CT; 1 - t) IV) 

I need to show that u(w, p)q + U(W, p)q + u(P, p ‘) q= p. By the decom- 
position of Q, q=a(l-P), q==(l-@)(1-t), and q=ap+(l-u)f. 
Thus, u(w, p)q + u(w, p)q + u(@, ~14 = a[(1 - P) 4~ P) + pu(M’, PII + 
(l-a)[(l-t)u(w,p)+tu(~,p)]=ccp+(l-a)p=p,sincethefirstsquare 
brackets equal p by step (1) and the latter square brackets equal p by step 
(2). 

(5 ) Given a simple measure P which assigns positive weights p, ,..., p,, 
to w, ,..., w,, and is indifferent to (pO, I?; (1 - pO), w) it is necessary to prove 
that C;=, ,D,u(u~~, pO) = pO. Consider the simplex d c D which includes all 
measures over IV, ,..., u’,. The intersection of the indifference hyperplane 
through P with A (this intersection is denoted by H) is a compact convex 
subset of A, thus any point h E H can be written as a finite convex com- 
bination of extreme points of H. Therefore, P = x7=, ijQ,, where Qj E H is 
a lottery assigning probability qj to w’ and (1 - q,) to WI” (these are extreme 
points of H, where MI’, W” E A). By step (3) above { u(u’, pO) dQ, = pO. 
Therefore, j u( M’, pO) dP = j u( w, po) d( C I, Q,) = C lbj l u( u’, po) dQ, = 

C4Po =Po. I 

FIGURE 3 
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I now present the continuous representation theorem (Proposition 2) 
since the proofs of the properties and uniqueness results are identical for 
both representations and are provided in Section 3. Proposition 1 showed 
that there is a characterization similar to expected utility even when the 
independence axiom is weakened, for all simple measures on a compact 
consequence space. In order to get an integral representation theorem for 
more general measures we need more assumptions (just as in expected 
utility theory-see Fishburn [S, Chap. 31). Rather than attempt to provide 
equivalent theorems for ail possible extension results, only one approach of 
special interest is considered. It allows for a continuous “local utility” 
function u(w, u) by assuming that preferences are continuous. This is in the 
spirit of Grandmont [9], adapted to the more general approach of this 
paper. 

A2’. Continuity: The sets { PE D: P 2 P* 1 and (P E D: P* 2 P> for 
all P* ED are closed (in the topology of weak convergence). 

PROPOSITION 2. Preferences ooer D satisfy Al (a), A2’, A3, A4 if’ and 
only if there exists u( ., . ): W x [0, 1 ] + R’ increasing in the preference order- 
ing of W, continuous in both its arguments, such that P > Q (resp. P - Q) 
0 V[P] > V[Q] (resp. V[P] = V[Q]), th u ere V[F] is defined implicitly as 
the unique D E [0, 1 ] that solves 

u(w, v) dF(w) = vu( C, u) + (1 - U) u(w, ~1). (*I 

Furthermore, u( u‘, v) is unique up to positive affine transformations which are 
continuous .functions C$ u. 

ProoJ: Al(b) is implied by compactness of D and A2’. Parts (l)-(4) of 
the proof are as before and only part (5) changes as below, where 
j u( ., p) dQ(. ) is a continuous linear function of Q E D since the construc- 
ted U(IV, p) is continuous by A2’. 

(5’) Given a lottery F(.)- (p, W; (1 - p)w) show that J U(W, p) 
dF( w ) = p. 

By Choquet’s theorem ([ 141, pp. 19, 20) there exists a probability 
measure, say v, on the indifference hyperplane H which includes F( .), s.t. v 
represents F and is supported by the extreme points of H. An extreme 
point, say X, of H is one which can be represented only by the measure 
which assigns 1 to all Bore1 sets of H which include s, zero elsewhere. In 
this case the extreme points are those on simplex edges, i.e., of the type 

w’; (1 -p), w”). Thus 
j?(., p)dQ(.) for QED 

the continuous linear function U(Q) = 
sa is ies U(F) = jN U( ) dv, where v(flS) = 0 and t’ f 
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S is the set of all distributions on the indifference hyperplane which are also 
on simplex edges. Since for each s in S, U(s) = p (by (2) and (3) above); 
this shows that U(F) = p. 1 

3. PROPERTIES OF THE CHARACTERIZATION 

A. u( IV, v) Is Increasing in w 

The proof that U(W, u) is increasing in w relies on monotonicity. For any 
VE[O, l] and M’>M:’ consider P=(v,G; (l-v),w). If w>P>w rhen 
u( M’, u) > v > u(M~‘, U) hy the construction of u( ., ). If w > MI’ > P then by A2 
find B and /I’ such that (b, u’; (1 - fi), w) - P and (fi’, w’; (1 - fi’), w) - P. 
Now, /I’ > /I, since otherwise P - (8, MI; (1 - j?), w) > (b, w’; (1 - p), w) 2 
(fl’, w’; (1 - j?‘), w) - P (where the strict preference follows from A3 and the 
weak preference can be derived using A4). Thus u(u’, u) = r/p is greater 
than u(w’, u) = a//I’. The proof for the case when P> W> M” is similar. 

B. Uniqueness of’ u( R’, 11) Up to Continuous Positive A,fline Transjbrrnations 

The proof of uniqueness up to afftne trasformations includes two steps. 
First I show that for any function g(M’, u) increasing in M’, no preference 
functional other than those assigning value p to lotteries F,, 5 (p, G; 
(1 ~ p). w) are represented by (*). Consider these distributions F,, and a 
possible preferrence functional H[F,]. By substituting into (*), 
g(,~,HCF,l)p+g(w,HCF,I)(1 -P) = g(“JWJ,I)~CF,J +g(w,H[F,,I) 
(1 - H[F,,]). This implies that p = H[F,,], since g(M’, H[F,,]) # 
g(w, H[F,,]) by assumption. 

The next stage asks whether, for a fixed preference function V[. 1, there 
exist transformations of u( ., ) for which V[F] is the solution to (*). 
Obviously V[F] still solves (*) if we take a positive continuous affine 
transformation of u( ., ). These are now shown to be the only acceptable 
transformations. Assume j h( W, p) dF( MI) = h( w, p)( 1 - p) + h( M’, p) p and 
j u( II’, p) dF( M’) = p so that h( ., ) correctly solves V[F] = p. Define h(p) = 
4~~ PI, a(p)= [h(k, P)-Ww, ,011. and g(iv, p)=a(p)u(w, p)+h(p). I 
now show that g(\tl, p) = h( )v, p), so any solution h(~, p) which solves (**) 
is a generalized affine transformation of u( M’, p). 
F-(p>*;(l-P),w), j ( 

For any 
g MI, P) rlF(w1 = j [a(p) dw, p) + h(p)] dF(w) = 

ChOiJ, PI -NW, p)l SU(M’> p) Ww) + h(w, p) = 
Mw, P) = jhb’, p)dF(w). N 

[h(lT, p) - h(w, p] p + 
ow consider F,. = (p, MB; ( 1 - /I), w) or F,. = 

(7, M’: (I -r)C) such that F,, -F, one of which exists by solvability. 
Then either MM’, P)P+Mw, PM1 -P)=g(w, P)B+g(w, p)(l -PI or 
h(+c, P)Y+M@, p)(l -y)= g(n,, p)y+g(M’, p)(l -v), but since by con- 
struction NM’, p) = g(@, p) and 4w, P) = g(w, P) this implies 
h(Il’, p) = g( H’, p). 
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C. Uniqueness of the Implicit Solution 

Since V[F] is defined implicitly, it is necessary to show that the solution 
to the implicit function is unique. This is done by considering the expected 
utility extension of these preferences. Assume the solution to (**) is not 
unique, i.e., in addition to the correct solution u, there exists ti E [0, I], 
C#U such 
J u( 11’, 27) &( M’) = 

that ~u(u~,u)#(w)=v, j~(~y,Ij)dF(\~)=ti, and 
ti, where d is the correct solution for i? (Solutions where 

ti # [0, l] can be ignored since, even if they solve equation (**) they lie 
outside the range of permissible values-recall that u E [0, 11.) Holding 6 
constant consider ii(~) = rr(~, d) as a Bernoulli utility function which 
defines expected utility preferences through P and (2;. %; (I - li), w) but not 
through F (the latter by assumption that I; is not the correct solution for 
F). However, by assumption also J ti(. ) &(. ) = fi = J ti(. ) dF(. ), implying 
that F and F do lie in the same indifference hyperplane. 

D. For Every U’E W, u(w, v) Is Continuous in v on the Open Interval (0, 1 ) 

First fix w not indifferent to kc, and consider the simplex with vertices w, 
IV, and t?. Let B(W) = (2) 1 (r, $; (1 - II), w) 2 I~~~ and note that B(M~) is a 
closed interval from some 17 to 1. The function b(v) (which was used in the 
construction of u(M’, v)) is defined as the solution of (,6’, M’; (1 - fi), n,) - 
(~1, ~7; (1 - v), w) for any I; E B(W). Clearly p(V) = 0, p( 1) = 1, and fl(. ) is an 
increasing function (otherwise two indifference lines in the simplex will 
cross). I now show that B( -) is continuous. If not then there exists P,, r r 
with p(v) > lim fi(v,,). So for $ satisfying b(v) > fl> lim fl(u,,) it is clear that 
(~7, E; (1 -v), w)>(/3, M’; (1 -$), H’)>(L),,, M’; (1 -L>,,), w) for every II. 
Hence there exists a (unique) i, such that ([, b?; (1 - fl), w,) - (i;, M’; 
(1 -ti), w) and ~;E(D,,, v) for every n. But this cannot be satisfied since 
v,, T ~1. So the assumption that b(. ) is not continuous leads to a contradic- 
tion. Recall that by construction zf(\~, I?) is equal to u( MT, z!) = 
(v-B(v))/(~ -b(v)) for UE(L’, 1) and equal to 6 when ~=2;, so u(w’, v) is 
continuous for v E [IV, 1). A similar proof shows that u(N~, I:) is continuous 
for v E (0, V]. For MI - @ (resp. M’ - w) monotonicity implies that u(M., v) = 

rf(M’. v) = 1 (resp. u(,t’, u) = u(w, 0) =O). 
Continuity is necessary to avoid indifference sets which do not separate 

the simplex into two disconnected sets. For example, in the simplex with 
vertices w, MI and M., if u( ~3, u) = t for r < 4 and u(M~, U) = 4 for L: > f, there 
would be indifference lines which end inside of the simplex. 

4. EXTENDING LOCAL PROPERTIES 

This section relates this representation of preferences to Machina’s [12] 
work on non-expected utility preferences. If all preferences satisfying 
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Al-A4 had a preference functional U[F] which was everywhere Frechet 
differentiable, then Machina’s extension results (that local monotonicity 
and risk aversion everywhere in D imply global monotonicity and risk 
aversion) would go through. It is shown below that this is not true, in par- 
ticular it is shown how to construct a set of indifference lines in the simplex 
which have no differentiable preference functional representation. However, 
an alternative approach to extending local results is presented. Rather than 
examine the first-order approximation to the preference functional (which 
may not be smooth), if the indifference sets are smooth manifolds then the 
first order approximation to an indifference curve can be taken and exten- 
ded to parallel hyperplanes, giving an expected utility approximation. For 
preferences considered in this paper such an extension is simple. It is shown 
that for W c IF! if u( M’, ) is increasing in W, then P first order stochastically 
dominates Q, if and only if V[P] > V’[Q]. (Note that the property shown 
in the previous section is that U(M), V) is increasing in u’ with respect to the 
preference order on W. Any conclusion on stochastic dominance requires 
that this induced order is the natural order on the reals, i.e., M’> M” if and 
only if u’> \v’.) Furthermore it is proven that if u(w~, II) is concave in M’ for 
every 2) then the individual is averse to mean preserving increases in risk. 

Let f: [0, +] + [0, a] for some a E (4, 1) be continuous, strictly increas- 
ing with derivative zero a.e. (see Billingsley [ 1, Ex. 3 1.11). Define the indif- 
ference sets in a simplex as in Fig. 4. Let V( . ) be a functional representing 
these preferences, so that V( 1, ,f(~))) = V(0, y) for VE [0, +I, where the 
second argument indicates the distance along the simple edge from the 
lower vertex, and the first argument indicates which edge (1 for the lower 
sloped edge, and 0 for the vertical edge). If V(. ) is differentiable then 
Vz(O, .r) = Vz( 1, f(~l)) f’(y) wherever f(. ) is differentiable. Hence 
V,(O, -v) = 0 a.e., implying that V(0, V) is constant for y E [0, 4) (note that 

FIGURE 4 
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V(0, .) is absolutely continuous since it is everywhere differentiable and 
monotone). However, since these preferences are by assumption strictly 
increasing along the vertical edge of the simplex, we have a contradiction. 
Therefore V cannot be differentiable. 

PROPERTY 1. The following statements are equivalent: 

(a) For an)’ P, QED if P stochastically dominates Q then P is 
preferred to Q. 

(b) a( bt’, v ) is increasing in w. 

Proqf: Assume that P first order stochastically dominates Q, while p 
and q which solve j u(w’, p) dP(w) = p and j u(M’, q) dQ(w) = q satisfy p <q. 
The indifference hyperplane through Q separates D into two convex sets: 

VEL* u(w,q)dv(w)< u(w,q)dQ(w)=q. 
I I 

Since P stochastically dominates Q, P E U. If p < q then (p, M’; 
(l-p),w)~L,sincepu(~~,q)+(1-p)u(w,q)=p<q.Sotheconvexindif- 
ference surface through P and (p, M’; (1 - p), w) lies both above and below 
the separating hyperplane, thus two indifference sets intersect, obviously 
leading to a contradiction. The converse is straightforward. 1 

PROPERTV 2. Concavity qf‘u( M’, v) in 1%’ implies risk aversion (in the sense 
that the individual is ltveakly averse to mean preserving increases in risk). 

Proqf: Assume that u(M’, 2)) is concave in 11’ for every v, and that G 
differs from F by a mean preserving increase in risk. Hence 
s u(M’, v) d[G(Ml) - F( WI)] < 0. Let p and q solve j u( IV, p) dF(w) = p 
and j u(u’, q) a%(w) = q. Then q=ju(w,q)d[F(w)+(G(w-F(w))]< 
s u( ~1, q) dF(w), so F lies above the indifference hyperplane through q. If 
q > p then (p, @; (1 - p), w) lies below the indifference hyperplane through 
q. But by betweenness the indifference set which includes F- (p, @; 
(1 - p), w) is convex, intersecting the separating indifference hyperplane 
through q, leading to a contradiction; hence q < p. 1 
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APPENDIX 

A. The Representation Theorem without Monotonicity 

PROPOSITION A.1. Preferences over D, (resp. D) satisfy Al, A2, and A4 
(resp. A 1 (a), A2’, and A4) zf and only tf there exists u( ., ): W x [0, 1 ] + IR, 
continuous in the second argument (resp. continuous in both arguments), such 
that P > Q 0 V[ P] > V[Q] and P N Q o V[P] = V[Q], where V[F] is 
defined implicitl,v as the unique v E [0, 1 ] that solves 

i 4u’, v) dF(w) = UU(M’, v) + (1 - v) u(w, v). (*I 

Furthermore, u( M’, v) is unique up to positive affine transformations which are 
continuous in v. 

The proof follows essentially the same lines as the proofs of 
Propositions 1 and 2. However, monotonicity of U(W, u) in w  cannot be 
proven without A3 (see Sect. 3A). 

B. Step 3 in Proving the Representation Theorem 

For any distribution R = (0, CV’; (1 - O), M”‘) consider the 3-dimensional 
simplex with vertices (w, M-‘, M”, w”), where without loss of generality assume 
IL”’ > 1~‘. By A2 find p such that R m (p, 11’; (1 - p), w), where this last lot- 
tery is the point B in the 3-dimensional simplex. 

Construct the indifference hyperplane through R (see Fig. 5). I want to 
show that Bu(w’, p)+ (1 - 19) u(w”, p) = p. Define C as the lottery (7, w; 

w  

D’ VI’ 

FIGURE 5 
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(1 - y), w”) N B, and E as the degenerate lottery M”‘. Thus, CE = y and 
U(M)“, p) = p/( 1 - y) by case (ii) on p. 9, with w  replaced by w”. Using 
trigonometric identities based on equilateral triangles with edges of length 
normalized to 1, using also the lengths y, 8, and 1 - 0 it will be shown that 
u(w’, p) = ((0 - y)/0) . p/( 1 - y) giving the desired result. Take a parallel 
shift of the indifference plane through R, D, and C such that the new plane 
intersects w’. This new plane intersects the (w, M”‘) edge at point C’ and the 
(w, W) edge at B’. Recall that by definition u(w’, p) is the length of the 
segment between B’ and w. Therefore U(W)‘, p) can be found from the length 
of RC in triangle REC, where RE = 8, CE = y and < REC = 60”, giving 
RC = (0’ + y’ - ye)“‘. Then cos 9: CRE = (2y - 0)/2(f12 + y2 - y0)‘j2, and 
cos 3: CR = 2(8 - y)/2(02 + y2 - ~0)“~. By examining the trapezoid with 
corners (w’, R, C, C’) one can see that length CC’ = (1 - 0) y/0 and thus 
length WC’ = (0-y)/B. Looking now at the (W, w, w”) simplex, 
sin < wBC= sin 60( 1 - y)/BC and sin % BCw = p(sin 60)/BC. Thus, since 
U(W), p) = B’w = wC’(sin BCw)/(sin wBC), it has been shown that 
u(u~‘,p)=(&y)p/B(l -y) as desired. 1 
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